
1. Introduction
Persistent organic pollutants are toxic organic 
compounds that are persistent in the environment and 
thus may have a greater risk to accumulate in biological 
organisms [1-7]. Chemicals having the potential to 
persist in environmental media, to undergo long-range 
transport via water and the atmosphere, to accumulate 
in the tissues of living organisms, and (in some cases) 
to cause adverse biological effects after long-term 
exposure, are the focus of national and international risk 
management measures, due to the special concerns 
they raise for human health and the environment 
[8-10]. These compounds are classified as Persistent, 
Bioaccumulative and Toxic (PBT) or very Persistent and 
very Bioaccumulative (vPvB) according to the European 
REACH regulation for chemicals.

A chemical is defined as persistent if it resists 
degradation processes and is present in the environment 
for a long time [12]. Persistent (P) and very persistent 
(vP) refer to chemicals that have degradation half-lives 
above certain trigger values in surface water, sediment 

or soil [12].  The triggers are reported in the Annex XIII 
of REACH. This Annex also explicitly indicates the use 
of biodegradation QSAR models as screening methods: 
if they (safely) predict the compound as non-persistent 
it can be classified as nP (non-persistent), otherwise 
experimental tests are necessary to evaluate the 
biodegradability. 

In the European Chemicals Agency (ECHA) 
guidelines, biodegradation is defined as the biologically-
mediated degradation or transformation of chemicals 
carried out by microorganisms.  Most of the models 
generate qualitative predictions (usually, ready vs. non-
ready biodegradability) [8-10]. Indeed, the OECD tests for 
ready biodegradability according to OECD guideline 301 
[11] represent the most prominent group of standardized 
experimental biodegradation screening tests [9,12]. The 
most common procedure is the OECD 301c test, based 
on the MITI1 test. 

Quantitative structure–activity relationships (QSAR) 
are a tool for the modern natural sciences [14-16]. QSAR 
for the prediction of biodegradability have been built up 
[8,10,17].
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CORAL software  (http:/www.insilico.eu/coral) has been used to build up quantitative structure–biodegradation relationships (QSPR). 
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The aim of the present study is the estimation 
of CORAL software as a possible tool to model the 
biodegradation of organic compounds by means of 
QSARs calculated with the optimal descriptors based 
on the simplified molecular input line entry system 
(SMILES).

2. Experimental procedure

2.1. Data
Experimental data on the normalized degradation 
percentage (NDP) and qualitative data on the NDP were 
taken from different sources [18-21].

A dataset of 730 compounds with continuous 
and discrete values of ready biodegradability (i.e., 
percentage of degradation at 28 days) was obtained 
extracting data from the OECD toolbox v2.0 and from 
BioWin v4.10 (data used to build and test the Linear and 
Non-Linear MITI Biodegradation Model (i.e., Biowin 5 
and Biowin 6). OECD toolbox v2.0 contains continuous 
values, whereas BioWin v4.10 contains discrete values: 
0 means that the percentage of biodegradation is below 
the threshold of 60%, 1 that the threshold is reached 
(i.e., the substance is ready biodegradable). All the data 
are obtained performing the MITI-1 test. The compounds 
in common between the two datasets were checked for 
agreement: the compounds with values in disagreement 
were eliminated. 

The 445 compounds with continuous values 
were involved in order to build up the model.  Six 
random splits were prepared on the basis of the 445 
compounds. These splits are random, but the range 
of endpoint for sub-training, calibration, and test 
sets is approximately equivalent. The additional 285 
compounds characterized by discrete values (0 means 
stable; 1 means biodegradable) were used to test the 
model.  If the predicted biodegradability ≤0.5 then one 
should expect that a substance is stable; vice versa, 
if the predicted biodegradability >0.5 then one should 
expect a substance is biodegradable.

On the one hand, each model calculated with the 
Monte Carlo method is a random event. On the other 
hand, each model is a measurement of the statistical 
characteristics which are obtained by a given approach. 
Thus, average values of the statistical characteristics 
for a group split are more informative than the statistical 
characteristics of the model for solely one split. However, 
carrying out hundreds of such measurements results 
in extremely time-intensive calculations. We have 
estimated six random splits as a reasonable compromise 
between the reliability of the results and the time of the 
calculations.

2.2. Optimal SMILES-based descriptor
The structural descriptor used for one-variable models 
of the biodegradability is calculated as

DCW(Threshold, Nepoch)  = CW(ATOMPAIR) + 
     + CW(BOND) + CW(NOSP) + CW(HALO) + 
         +  ∑ CW(Sk ) + ∑CW(SSk) + ∑CW(SSSk)          (1)

where ATOMPAIR is defined in the following way. We 
consider nine SMILES elements: F, Cl, Br, N, O, S, P, 
double bond, triple bond. Then the software checks for 
the simulataneous presence of two of these SMILES 
elements. Similarly, the software searches for the 
occurrence of these bonds in the BOND index: double, 
triple, or stereochemical bonds, and if they are present 
at the same time in the molecule. The NOSP index 
looks specifically for the occurrence of these atoms: 
N, O, P, S, and if they are present together or not. 
Finally, the HALO index searches in the molecule the 
occurrence of halogens: F, Cl, Br, and if they are present 
simultaneously in the molecule. Table 1 contains an 
example of ATOMPAIR, BOND, NOSP, HALO, Sk, 
SSk, and SSSk which are extracted from SMILES.  
It should be noted that molecular features represented 
by ATOMPAIR and molecular features represented by 
BOND, NOSP, and HALO are different: e.g. ATOMPAIR 
= ....N...O... is an indicator of the presence of nitrogen 
together with oxygen, whereas NOSP=NOSP11000000 
is an indicator of the presence of nitrogen together with 
oxygen in the absence of sulphur and phosphorus.

SMILES is a sequence of symbols which are a 
representation of a molecular structure. Hence, one 
can speak about above-mentioned SMILES symbols 
as about molecular fragments (e.g. Sk, SSk, SSSk).  
However, ATOMPAIR, BOND, NOSP and HALO are 
not fragments: they are descriptors for combinations of 
different molecular features. 

There are symbols which themselves are 
representations of a molecular feature, e.g. ‘c’, ‘C’, 
’N’, etc. There are undivided pairs of symbols which 
represent a molecular feature, e.g. ‘Cl’, ‘Br’, ‘@@’, etc. 
We have denoted both these kinds of information as 
SMILES atoms (Sk). SSk and SSSk are combinations 
of two and three SMILES atoms. E.g. if the SMILES is 
ABCDE, the SSk are AB, BC, CD, and DE; similarly SSSk 

are ABC, BCD, and CDE. In order to avoid situations 
where the same molecular fragment is represented 
twice (i.e., AB and BA), the SSk and SSSk are ordered 
according to ASCII codes of symbols.  It is to be noted, 
that for a SMILES attribute that contains four SMILES-
atoms SSSSk, it is impossible to define the rule for 
selection of solely one “correct” possibility that is similar 
to the above-mentioned AB-BA or ABC-CBA. CW(x) 
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is the correlation weight for a SMILES attribute x (x = 
ATOMPAIR, BOND, NOSP, HALO,  Sk,  SSk, and SSSk). 
Each SMILES attribute for registration and for the 
Monte Carlo calculations is represented by a sequence 
of twelve symbols (Table 1). The first four symbols are 
the first zone; the second four symbols are the second 
zone; finally, the third four symbols are the third zone 
(Table 1). All three zones are necessary for the SMILES 
attributes involving three SMILES atoms (i.e., SSSk). 
The SSk are represented in the first and second zones. 
The Sk are located in the first zone. Vacant positions in 
this twelve-symbols representation are indicated by ‘x’. 
CW(x) are calculated with the Monte Carlo method. The 
classic scheme is to build up a model that is satisfactory 
for the training set and evaluate that the model is also 
appropriate for external optimization sets. However, the 
balance of correlation seems a more realistic approach. 
This approach, based on the split of the training set into 
sub-training and calibration sets, is aimed  at avoiding 
overtraining by means of the control of the statistical 
quality of the model for the calibration set. The balance 
of correlation is the optimization with target function 
BC= R+R’-ABS(R-R’), where R and R’ are correlation 
coefficients for the sub-training and calibration sets, 
respectively. Thus, the calibration set plays the role of a 
‘preliminary test set’.

The correlation weights of rare molecular features 
(which are represented by SMILES attributes) are 
improving the statistical quality only for compounds 
which are involved in the sub-training or calibration sets 
(but not for the test set). Thus, the reliable model must 
be based on molecular fragments which are not rare. 
For this reason we introduced a threshold which is a 
tool to select SMILES attributes which are ‘not rare’. 
If the threshold is defined as five, then all SMILES 
attributes (including ATOMPAIR, BOND, NOSP, HALO, 
Sk, SSk, and SSSk) which take place only in four (or less) 
SMILES of the training set will be classified as rare. The 
correlation weights for “rare” attributes will be defined as 
zero. Table 1 contains an example of the calculation of 
the optimal descriptor (Split 1). 

The Supplementary materials section contains 
SMILES, numerical (n=445), qualitative (n=285) data 
for studied substances, and correlation weights used for 
calculating DCW(2,11) in Eq. 2.

3. Results and discussion
Table 2 contains the statistical quality of the model 
obtained for cases with the threshold from 0-3 and the 
number of epochs of the Monte Carlo optimization for 
the correlation weights Nepoch=30. 

Fig. 1 shows the representation of a co-evolution 
of correlations for the sub-training, calibration, and test 
sets for split 1. The preferable threshold for split 1 is 2 
and the preferable number of epochs of the Monte Carlo 
optimization (N*) is 11 (Fig. 2). The preferable N* and 
T* give the maximum correlation coefficient between 
the experimental and calculated value of an endpoint 
for the test set. In fact, the correlation coefficient 
between experimental and predicted biodegradability 
is a mathematical function of the threshold and the 
number of epochs of the Monte Carlo optimization. 
Fig. 2 shows the scheme for definition of N* and T*.  
From Table 2, one can see that the N* values are 11, 

Figure 1. The co-evolution of correlations during 20 epochs 
of the Monte Carlo method optimization. N* is the value 
of the epochs which gives the maximumcorrelation 
coefficient for the external test set.

Figure 2. The correlation coefficient between experimental 
and calculated values of an endpoint for the external test 
set is a mathematical function of the threshold and the 
Nepoch. The N*

 is the number of epochs which gives the 
maximum correlation coefficient for the external test set.
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14, 19, 20, 20, and 15 for splits 1-6, respectively. The 
preferable threshold (T*) is 2 for all splits.
The statistical characteristics of the models for splits 
1-6 calculated with threshold 2 (i.e. T*=2) and above-
mentioned N* are the following:

Split 1

NDP =   0.1924( ± 0.0011) +    
          + 0.0243 ( ± 0.0001) * DCW(2,11)                    (2)

n=236, r2=0.5199, q2=0.5133, s=0.276, F=253 (sub-
training set)

n=124, r2=0.7909, r2
pred=0.7859, s=0.191, F=462 

(calibration set)
n=85, r2=0.7548, r2

pred=0.7426, R2
m=0.6573, s=0.211, 

F=256 (test set)

Split 2

NDP  =   0.0519( ± 0.0011) +    
          + 0.0337 ( ± 0.0001) * DCW(2,14)                    (3)

n=237, r2=0.5920, q2=0.5864, s=0.258, F=341 (sub-
training set)

n=132, r2=0.8336, r2
pred=0.8295, s=0.183, F=651 

(calibration set)
n=76, r2=0.6338, r2

pred=0.6167, R2
m=0.5663, s=0.247, 

F=128 (test set)

Split 3

NDP  =   0.0146( ± 0.0010) +    
           + 0.0342 ( ± 0.0001) * DCW(2,19)                   (4)

n=265, r2=0.6030, q2=0.5984, s=0.249, F=399 (sub-
training set)

n=104, r2=0.8822, r2
pred=0.8783, s=0.149, F=764 

(calibration set)
n=76, r2=0.7730, r2

pred=0.7609, R2
m=0.7595, s=0.203, 

F=252 (test set)

Split 4

NDP  =   0.0002( ± 0.0012) +    
           + 0.0353 ( ± 0.0001) * DCW(2,20)                   (5)

n=214, r2=0.5683, q2=0.5624, s=0.262, F=279 (sub-
training set)

n=127, r2=0.8248, r2
pred=0.8200, s=0.177, F=588 

(calibration set)
n=104, r2=0.7120, r2

pred=0.7032, R2
m=0.7015, 

s=0.221, F=252 (test set)

Split 5

NDP  =   0.0383( ± 0.0014) +    
           + 0.0286 ( ± 0.0001) * DCW(2,20)                   (6)

n=208, r2=0.5538, q2=0.5472, s=0.273, F=256 (sub-
training set)

n=133, r2=0.8122, r2
pred=0.8073, s=0.204, F=567 

(calibration set)

Table 1. 

SMILES attribute (SA) Correlation Weight

Sk       
Nxxxxxxxxxxx            0.1278310
#xxxxxxxxxxx           -3.8165450

Cxxxxxxxxxxx           -0.8716681
Cxxxxxxxxxxx           -0.8716681
(xxxxxxxxxxx           -1.2502889
Cxxxxxxxxxxx           -0.8716681
(xxxxxxxxxxx           -1.2502889
(xxxxxxxxxxx           -1.2502889
Cxxxxxxxxxxx           -0.8716681
(xxxxxxxxxxx           -1.2502889
Oxxxxxxxxxxx            0.7492272
SSk       
Nxxx#xxxxxxx           -3.8706420
Cxxx#xxxxxxx           -4.5024889
CxxxCxxxxxxx           -0.6221895
Cxxx(xxxxxxx            0.2491393
Cxxx(xxxxxxx            0.2491393
Cxxx(xxxxxxx            0.2491393
(xxx(xxxxxxx           -1.6281275
Cxxx(xxxxxxx            0.2491393
Cxxx(xxxxxxx            0.2491393
Oxxx(xxxxxxx           -2.2514967
Nxxx#xxxCxxx           -4.4966284
SSSk       
CxxxCxxx#xxx            1.5037750
CxxxCxxx(xxx           -0.2453117
Cxxx(xxxCxxx            1.2474111
(xxxCxxx(xxx           -0.0013274
Cxxx(xxx(xxx            1.4998647
Cxxx(xxx(xxx            1.4998647
(xxxCxxx(xxx           -0.0013274
Oxxx(xxxCxxx            2.0037458
NOSP       
NOSP11000000           -1.4985284
HALO       
HALO00000000            9.8771395
BOND       
BOND01000000           12.0024523
ATOMPAIR       
....N...O...            2.9950425
 ....O...B3..           10.4998562
  ....N...B3..            9.6267963

Example of the registration of SMILES attributes and the 
calculation of optimal descriptors for SMILES=”N#CC(C)
(C)O”;  DCW=  23.4562619;  NDP=   0.7623872 (Eq. 2).
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Table 2. 

Split Threshold   Probe 1   Probe 2    Probe 3     Average     Dispersion

1 R(test)
2

0   0.7709   0.7610   0.7542     0.7620     0.0068
1   0.7564   0.7484   0.7497     0.7515     0.0035
2   0.7707   0.7613   0.7557     0.7626     0.0062
3   0.7567   0.7343   0.7446     0.7452     0.0091

N*
0       10       12       11      11.00       0.82
1       11        9       11      10.33       0.94
2       12       10       12      11.33       0.94
3       10       11       12      11.00       0.82

2 R(test)
2

0   0.6222   0.6325   0.6095     0.6214     0.0094
1   0.6149   0.6282   0.6218     0.6216     0.0055
2   0.6187   0.6414   0.6151     0.6250     0.0116
3   0.6178   0.6246   0.6216     0.6214     0.0028

N*
0       11       11       12      11.33       0.47
1       10       12       11      11.00       0.82
2       12       14       15      13.67       1.25
3       10       12       12      11.33       0.94

3 R(test)
2

0   0.7791   0.7481   0.7605     0.7626     0.0127
1   0.7486   0.7709   0.7503     0.7566     0.0101
2   0.7748   0.7751   0.7448     0.7649     0.0142
3   0.6987   0.7080   0.7192     0.7086     0.0084

N*
0       20       19       19      19.33       0.47
1       19       20       17      18.67       1.25
2       18       19       19      18.67       0.47
3       16       17       20      17.67       1.70

4 R(test)
2

0 0.6295 0.6341 0.6475 0.6370 0.0076
1 0.6204 0.6565 0.6463 0.6410 0.0152
2 0.7404 0.7354 0.7062 0.7273 0.0151
3 0.7330 0.7148 0.7303 0.7260 0.0080

N*
0 17 9 16 14.00 3.56
1 7 9 8 8.00 0.82
2 15 16 12 14.33 1.70
3 13 14 14 13.67 0.47

5 R(test)
2

0   0.7216   0.7048   0.7034     0.7099     0.0083
1   0.7140   0.7361   0.7232     0.7244     0.0091
2   0.7315   0.7287   0.7242     0.7281     0.0030
3   0.7391   0.7285   0.7107     0.7261     0.0117

N*
0       15       17       19      17.00       1.63
1       14       18       16      16.00       1.63
2       20       18       20      19.33       0.94
3       20       19       18      19.00       0.82

6 R(test)
2

0   0.7037   0.7120   0.7284     0.7147     0.0103
1   0.7156   0.7119   0.7202     0.7159     0.0034
2   0.7664   0.7979   0.8022     0.7888     0.0160
3   0.7527   0.7201   0.7168     0.7299     0.0162

N*
0        9        9       10       9.33       0.47
1       12        9       10      10.33       1.25
2       15       15       13      14.33       0.94
3       15       13       11      13.00       1.63

Search for most informative threshold T* and the number of epochs of the Monte Carlo optimization N* for splits 1-6: T* and N* are values 
which produce the maximum correlation coefficient between experimental and calculated endpoint values for the test set.
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n=104, r2=0.7208, r2
pred=0.7104, R2

m=0.6496, 
s=0.213, F=263 (test set)

Split 6

NDP  =   0.0228( ± 0.0013) +    
           + 0.0329 ( ± 0.0001) * DCW(2,15)                   (7)

n=225, r2=0.5689, q2=0.5635, s=0.270, F=294 (sub-
training set)

n=136, r2=0.8330, r2
pred=0.8290, s=0.184, F=669 

(calibration set)
n=84, r2=0.7978, r2

pred=0.7897, R2
m=0.7696, s=0.191, 

F=324 (test set)

As a further check on the model performance, we 
took the data for which we had only values reported as 
classes: degradable or not. These data could not be 
used to build up the model, because the CORAL model 
is a regression model, and thus continuous values are 
needed. Thus, this exercise can be considered as both 
an example of the use of the model as a classifier and as 
an external validation study. The predictive potential of 
the models calculated with Eqs. 2-7 has been checked 
with qualitative data on the biodegradability (n=286). 
Table 3 contains sensitivity, specificity and accuracy 
values for the validation set. 

One can see (Eqs. 2-7 and Table 3) that the statistical 
quality of the described models varies for different splits. 
For random splits #1, #3, and #6 (Eqs. 2, 4, and 7) R2

test 
≥0.75, whereas for split 2 (Eq. 3) R2

test =0.63. We submit 
that one should expect that correlation coefficients for 
different splits will be different. The range of correlation 
coefficients for a group of random splits is important 
information: the average value of the correlation 
coefficient for the test sets is 0.728±0.05 (Eqs. 2-7). 
Thus, the proposed approach can be used to model the 
biodegradability. 

Probably, at present, a QSAR study on NDP is 
absent, but the prediction of rate constants for radical 
degradation of aromatic pollutants is a task similar to the 
prediction of the biodegradability [22]. The four-variable 
linear regression model based on DRAGON descriptors 
together with quantum mechanics parameters is 
statistically characterized by the following n=60, 
r2=0.735, s=0.174 (training set) and n=18, r2=0.760, 
s=0.200 (test set). Thus, the predictability of one-
variable regression models calculated with Eqs. 2-7 can 
be estimated as equivalent to the predictability of the 
above-mentioned model. In other words, predictions 
which have been obtained by the approach described 
above are reasonably good.

Predicting the biodegradability of chemicals can be 
done with special rules [10] based on the presence of 
various molecular features, e.g. presence of C-O, C=C, 

Table 3. 

Split 1

The Number of True_Positive  =  121  42.46%
The Number of True_Negative  =  110  38.60%
The Number of False_Positive =   20   7.02%
The Number of False_Negative =   34  11.93%
Sensitivity* =  0.781
Specificity =  0.846
Accuracy    =  0.811

Split 2

The Number of True_Positive  =  129  45.26%
The Number of True_Negative  =  103  36.14%
The Number of False_Positive =   27   9.47%
The Number of False_Negative =   26   9.12%
Sensitivity =  0.832
Specificity =  0.792
Accuracy    =  0.814

Split 3

The Number of True_Positive  =  129  45.26%
The Number of True_Negative  =  101  35.44%
The Number of False_Positive =   29  10.18%
The Number of False_Negative =   26   9.12%
Sensitivity =  0.832
Specificity =  0.777
Accuracy    =  0.807

Split 4

The Number of True_Positive  =  125  43.86%
The Number of True_Negative  =  101  35.44%
The Number of False_Positive =   29  10.18%
The Number of False_Negative =   30  10.53%
Sensitivity =  0.806
Specificity =  0.777
Accuracy    =  0.793

Split 5

The Number of True_Positive  =  123  43.16%
The Number of True_Negative  =  104  36.49%
The Number of False_Positive =   26   9.12%
The Number of False_Negative =   32  11.23%
Sensitivity =  0.794
Specificity =  0.800
Accuracy    =  0.796

Split 6

The Number of True_Positive  =  127  44.56%
The Number of True_Negative  =  101  35.44%
The Number of False_Positive =   29  10.18%
The Number of False_Negative =   28   9.82%
Sensitivity =  0.819
Specificity =  0.777
Accuracy    =  0.800

*) 
NegativeFalsePositiveTrue

PositiveTrueySensitivit
__

_
+

=

PositiveFalseNegativeTrue
NegativeTrueySpecificit

__
_
+

=

NegativeFalseNegativeTruePositiveFalsePositiveTrue
NegativeTruePositiveTrueAccuracy

____
__

+++
+

=

The testing of models (splits 1-6) against external qualitative 
data on biodegradability (n=285). True positive means a 
prediction where the biodegradability is modeled correctly 
and classified a chemical as biodegradable, analogical 
definitions for “true negative”, “false positive”, etc.
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Cl, aromatic groups, various cycles, etc. The accuracy 
of the model for biodegradability described in the 
literature [10] is about 77-89% (350-400 compounds). In 
fact the accuracy of the models calculated with Eqs. 2-7 
(Table 3)  is similar: one can see (Table 3), that for all 
six models this criterion is about 0.80, consequently, the 
number of false positive and false negative predictions 
for all splits is about 53-55 compounds, i.e., 19-20%. 
Hence, the numerical values of these criteria for models 
(classification into two classes: biodegradable or not 
biodegradable) which are calculated with Eqs. 2-7 are 
quite good.

There are several software packages available for 
the generation of SMILES notations (http://depth-first.
com/articles/2007/04/03/creating-canonical-smiles-
with-ruby-open-babel/). We have used the canonical 
version of SMILES notations (ACD/ChemSketch 
Freeware, v. 11.00, Inc., Toronto, Canada, www.acdlabs.
com, 2007). However, we deem that selected global 
SMILES attributes (i.e. ATOMPAIR, BOND, NOSP, and 
HALO) most probably will be the same for the majority 
(maybe for all) versions of SMILES. Unfortunately, local 
SMILES attributes considerably depended upon the 

difference in various SMILES formats. Consequently, for 
a robust model, one should use the same SMILES for all 
compounds. The best way is to use canonic SMILES.

4. Conclusions
1. The CORAL software gives reasonable models for 
the biodegradability of organic compounds; 2. The 
model can be used both to predict continuous values, 
and, from these values, chemicals can be categorized 
as persistent or not; 3. The suggested modeling process 
for biodegradability is based on the representation of the 
molecular structure by SMILES and on the experimental 
data.
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