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Abstract: CORAL software (http:/www.insilico.eu/coral) has been used to build up quantitative structure—biodegradation relationships (QSPR).
The normalized degradation percentage has been used as the measure of biodegradation (for diverse organic compounds, n=445). Six
random splits into sub-training, calibration, and test sets were examined. For each split the QSPR one-variable linear regression model
based on the SMILES-based optimal descriptors has been built up. The average values of numbers of compounds and the correlation
coefficients (r?) between experimental and calculated biodegradability values of these six models for the test sets are n=88.2+11.7
and r’=0.728+0.05. These six models were further tested against a set of chemicals (n=285) for which only categorical values
(biodegradable or not) were available. Thus we also evaluated the use of the model as a classifier. The average values of the sensitivity,
specificity, and accuracy were 0.811+0.019, 0.795+0.024, and 0.803+0.008, respectively.

Keywords: QSPR ¢ SMILES « Biodegradability * CORAL software
© Versita Sp. z o.0.

1. Introduction

Persistent organic pollutants are toxic organic
compounds that are persistent in the environment and
thus may have a greater risk to accumulate in biological
organisms [1-7]. Chemicals having the potential to
persist in environmental media, to undergo long-range
transport via water and the atmosphere, to accumulate
in the tissues of living organisms, and (in some cases)
to cause adverse biological effects after long-term
exposure, are the focus of national and international risk
management measures, due to the special concerns
they raise for human health and the environment
[8-10]. These compounds are classified as Persistent,
Bioaccumulative and Toxic (PBT) or very Persistent and
very Bioaccumulative (vPvB) according to the European
REACH regulation for chemicals.

A chemical is defined as persistent if it resists
degradation processes and is present in the environment
for a long time [12]. Persistent (P) and very persistent
(vP) refer to chemicals that have degradation half-lives
above certain trigger values in surface water, sediment

or soil [12]. The triggers are reported in the Annex XIlII
of REACH. This Annex also explicitly indicates the use
of biodegradation QSAR models as screening methods:
if they (safely) predict the compound as non-persistent
it can be classified as nP (non-persistent), otherwise
experimental tests are necessary to evaluate the
biodegradability.

In the European Chemicals Agency (ECHA)
guidelines, biodegradation is defined as the biologically-
mediated degradation or transformation of chemicals
carried out by microorganisms. Most of the models
generate qualitative predictions (usually, ready vs. non-
ready biodegradability) [8-10]. Indeed, the OECD tests for
ready biodegradability according to OECD guideline 301
[11] represent the most prominent group of standardized
experimental biodegradation screening tests [9,12]. The
most common procedure is the OECD 301c test, based
on the MITI1 test.

Quantitative structure—activity relationships (QSAR)
are a tool for the modern natural sciences [14-16]. QSAR
for the prediction of biodegradability have been built up
[8,10,17].

* E-mail: andrey.toropov@marionegri.it



A. A. Toropov et al.

The aim of the present study is the estimation
of CORAL software as a possible tool to model the
biodegradation of organic compounds by means of
QSARs calculated with the optimal descriptors based
on the simplified molecular input line entry system
(SMILES).

2. Experimental procedure

2.1. Data

Experimental data on the normalized degradation
percentage (NDP) and qualitative data on the NDP were
taken from different sources [18-21].

A dataset of 730 compounds with continuous
and discrete values of ready biodegradability (i.e.,
percentage of degradation at 28 days) was obtained
extracting data from the OECD toolbox v2.0 and from
BioWin v4.10 (data used to build and test the Linear and
Non-Linear MITI Biodegradation Model (i.e., Biowin 5
and Biowin 6). OECD toolbox v2.0 contains continuous
values, whereas BioWin v4.10 contains discrete values:
0 means that the percentage of biodegradation is below
the threshold of 60%, 1 that the threshold is reached
(i.e., the substance is ready biodegradable). All the data
are obtained performing the MITI-1 test. The compounds
in common between the two datasets were checked for
agreement: the compounds with values in disagreement
were eliminated.

The 445 compounds with continuous values
were involved in order to build up the model. Six
random splits were prepared on the basis of the 445
compounds. These splits are random, but the range
of endpoint for sub-training, calibration, and test
sets is approximately equivalent. The additional 285
compounds characterized by discrete values (0 means
stable; 1 means biodegradable) were used to test the
model. If the predicted biodegradability 0.5 then one
should expect that a substance is stable; vice versa,
if the predicted biodegradability >0.5 then one should
expect a substance is biodegradable.

On the one hand, each model calculated with the
Monte Carlo method is a random event. On the other
hand, each model is a measurement of the statistical
characteristics which are obtained by a given approach.
Thus, average values of the statistical characteristics
for a group split are more informative than the statistical
characteristics of the model for solely one split. However,
carrying out hundreds of such measurements results
in extremely time-intensive calculations. We have
estimated six random splits as a reasonable compromise
between the reliability of the results and the time of the
calculations.

2.2. Optimal SMILES-based descriptor

The structural descriptor used for one-variable models
of the biodegradability is calculated as

DCW(Threshold, Nepoch) = CW(ATOMPAIR) +
+ CW(BOND) + CW(NOSP) + CW(HALO) +
+ Y CW(S,) + CW(SS,) + CW(SSS)) (1)

where ATOMPAIR is defined in the following way. We
consider nine SMILES elements: F, Cl, Br, N, O, S, P,
double bond, triple bond. Then the software checks for
the simulataneous presence of two of these SMILES
elements. Similarly, the software searches for the
occurrence of these bonds in the BOND index: double,
triple, or stereochemical bonds, and if they are present
at the same time in the molecule. The NOSP index
looks specifically for the occurrence of these atoms:
N, O, P, S, and if they are present together or not.
Finally, the HALO index searches in the molecule the
occurrence of halogens: F, Cl, Br, and if they are present
simultaneously in the molecule. Table 1 contains an
example of ATOMPAIR, BOND, NOSP, HALO, Sk,
SSk, and SSSk which are extracted from SMILES.
It should be noted that molecular features represented
by ATOMPAIR and molecular features represented by
BOND, NOSP, and HALO are different: e.g. ATOMPAIR
= ....N...O... is an indicator of the presence of nitrogen
together with oxygen, whereas NOSP=NOSP11000000
is an indicator of the presence of nitrogen together with
oxygen in the absence of sulphur and phosphorus.

SMILES is a sequence of symbols which are a
representation of a molecular structure. Hence, one
can speak about above-mentioned SMILES symbols
as about molecular fragments (e.g. S,, SS,, SSS)).
However, ATOMPAIR, BOND, NOSP and HALO are
not fragments: they are descriptors for combinations of
different molecular features.

There are symbols which themselves are
representations of a molecular feature, e.g. ‘c’, ‘C,
'N’, etc. There are undivided pairs of symbols which
represent a molecular feature, e.g. ‘Cl', ‘Br’, ‘@@, efc.
We have denoted both these kinds of information as
SMILES atoms (S,). S8S, and SSS, are combinations
of two and three SMILES atoms. E.g. if the SMILES is
ABCDE, the SS, are AB, BC, CD, and DE; similarly SSS,
are ABC, BCD, and CDE. In order to avoid situations
where the same molecular fragment is represented
twice (i.e., AB and BA), the SS, and SSS, are ordered
according to ASCII codes of symbols. It is to be noted,
that for a SMILES attribute that contains four SMILES-
atoms SSSS,, it is impossible to define the rule for
selection of solely one “correct” possibility that is similar
to the above-mentioned AB-BA or ABC-CBA. CW(x)
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is the correlation weight for a SMILES attribute x (x =
ATOMPAIR, BOND, NOSP, HALO, S, SS,, and SSS,).
Each SMILES attribute for registration and for the
Monte Carlo calculations is represented by a sequence
of twelve symbols (Table 1). The first four symbols are
the first zone; the second four symbols are the second
zone; finally, the third four symbols are the third zone
(Table 1). All three zones are necessary for the SMILES
attributes involving three SMILES atoms (i.e., SSS)).
The SS, are represented in the first and second zones.
The S, are located in the first zone. Vacant positions in
this twelve-symbols representation are indicated by x'.
CW(x) are calculated with the Monte Carlo method. The
classic scheme is to build up a model that is satisfactory
for the training set and evaluate that the model is also
appropriate for external optimization sets. However, the
balance of correlation seems a more realistic approach.
This approach, based on the split of the training set into
sub-training and calibration sets, is aimed at avoiding
overtraining by means of the control of the statistical
quality of the model for the calibration set. The balance
of correlation is the optimization with target function
BC= R+R’-ABS(R-R’), where R and R’ are correlation
coefficients for the sub-training and calibration sets,
respectively. Thus, the calibration set plays the role of a
‘preliminary test set’.

The correlation weights of rare molecular features
(which are represented by SMILES attributes) are
improving the statistical quality only for compounds
which are involved in the sub-training or calibration sets
(but not for the test set). Thus, the reliable model must
be based on molecular fragments which are not rare.
For this reason we introduced a threshold which is a
tool to select SMILES attributes which are ‘not rare’.
If the threshold is defined as five, then all SMILES
attributes (including ATOMPAIR, BOND, NOSP, HALO,
S,, SS,, and SSS,) which take place only in four (or less)
SMILES of the training set will be classified as rare. The
correlation weights for “rare” attributes will be defined as
zero. Table 1 contains an example of the calculation of
the optimal descriptor (Split 1).

The Supplementary materials section contains
SMILES, numerical (n=445), qualitative (n=285) data
for studied substances, and correlation weights used for
calculating DCW(2,11) in Eq. 2.

3. Results and discussion

Table 2 contains the statistical quality of the model
obtained for cases with the threshold from 0-3 and the
number of epochs of the Monte Carlo optimization for
the correlation weights N 30.

epoch_

Determination coefficient

0 5 10 N* 15 20

Number of epochs

Subtraining set (-) Calibration set () Testset (2)

Figure 1. The co-evolution of correlations during 20 epochs
of the Monte Carlo method optimization. N* is the value
of the epochs which gives the maximumcorrelation
coefficient for the external test set.

test

Threshold =2

N#=11

2

R'jes¢ =F (Threshold, Nepoch )

Figure 2. The correlation coefficient between experimental
and calculated values of an endpoint for the external test
set is a mathematical function of the threshold and the
N The N is the number of epochs which gives the

meg&cihrhum correlation coefficient for the external test set.

Fig. 1 shows the representation of a co-evolution

of correlations for the sub-training, calibration, and test
sets for split 1. The preferable threshold for split 1 is 2
and the preferable number of epochs of the Monte Carlo
optimization (N*) is 11 (Fig. 2). The preferable N* and
T* give the maximum correlation coefficient between
the experimental and calculated value of an endpoint
for the test set. In fact, the correlation coefficient
between experimental and predicted biodegradability
is a mathematical function of the threshold and the
number of epochs of the Monte Carlo optimization.
Fig. 2 shows the scheme for definition of N* and T*.
From Table 2, one can see that the N* values are 11,
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Table 1. Example of the registration of SMILES attributes and the
calculation of optimal descriptors for SMILES="N#CC(C)
(©)0”; DCW= 23.4562619; NDP= 0.7623872 (Eq. 2).

SMILES attribute (SA) Correlation Weight
Sk
NDOOOOOXXX 0.1278310
FXOOOOKKXXX -3.8165450
C00XXXXXXX -0.8716681
CO0OXXXXXKXK -0.8716681
(20OXXKXK -1.2502889
CO00XXXXXXX -0.8716681
(2OOOXXXXXXK -1.2502889
(000X KX -1.2502889
CO0OXXXXXXX -0.8716681
(2OOOXXXXXXXK -1.2502889
OOXKOOKKX 0.7492272
SS,
INDOOCH XXX -3.8706420
COOXXH XOOKXXX -4.5024889
CoXCXXXXXXXK -0.6221895
CH00X (XOXXXX 0.2491393
C00X (XXX 0.2491393
C00X (2K X 0.2491393
(200X (OOXXX -1.6281275
CH00x (XO0XXX 0.2491393
C00X (XXX 0.2491393
OXOXX (XOO0XXX -2.2514967
NDOOE# XXX C XXX -4.4966284
SSS,
COOXCXXXH#XXX 1.5037750
CoxXC XXX (XXX -0.2453117
CxxXx (XxCxxx 1.2474111
(O Cxxx (XXX -0.0013274
Croax (200 (xxx 1.4998647
Coax (30 (xxx 1.4998647
(XXX C XXX (XXX -0.0013274
Oxx (XXCxxxX 2.0037458
NOSP
NOSP11000000 -1.4985284
HALO
HALOOO000000 9.8771395
BOND
BONDO1000000 12.0024523
ATOMPAIR
+...N...O... 2.9950425
....0...B3.. 10.4998562
....N...B3.. 9.6267963

14, 19, 20, 20, and 15 for splits 1-6, respectively. The
preferable threshold (T*) is 2 for all splits.

The statistical characteristics of the models for splits
1-6 calculated with threshold 2 (i.e. T*=2) and above-
mentioned N* are the following:

Split 1

NDP = 0.1924( +0.0011) +
+0.0243 (+0.0001) * DCW(2,11) @)

n=236, r’=0.5199, q>=0.5133, s=0.276, F=253 (sub-
training set)

n=124, r*=0.7909, r? =0.7859, s=0.191, F=462
(calibration set)

n=85, ’=0.7548, r?| _=0.7426, R* =0.6573, s=0.211,
F=256 (test set)

Split 2

NDP = 0.0519( £ 0.0011) +
+0.0337 (+0.0001) * DCW(2,14) 3)

n=237, r>=0.5920, ¢?=0.5864, s=0.258, F=341 (sub-
training set)

n=132, r’=0.8336, r? ,=0.8295, s=0.183, F=651
(calibration set)

n=76, r*=0.6338,r* ,=0.6167, R? =0.5663, s=0.247,
F=128 (test set)

Split 3

NDP = 0.0146( % 0.0010) +
+0.0342 (+0.0001) * DCW(2,19) (4)

n=265, r’=0.6030, ¢?=0.5984, s=0.249, F=399 (sub-
training set)

n=104, r’=0.8822, r? =0.8783, s=0.149, F=764
(calibration set)

n=76, r*=0.7730,r* ,=0.7609, R? =0.7595, s=0.203,
F=252 (test set)

Split 4

NDP = 0.0002( + 0.0012) +
+0.0353 ( +0.0001) * DCW(2,20) (5)

n=214, r>=0.5683, ¢?=0.5624, s=0.262, F=279 (sub-
training set)

n=127, r’=0.8248, r? =0.8200, s=0.177, F=588
(calibration set)

n=104, r>=0.7120, r? ,=0.7032, R? =0.7015,
s=0.221, F=252 (test set)
Split 5
NDP = 0.0383(+0.0014) +
+0.0286 (£ 0.0001) * DCW(2,20) (6)

n=208, r>=0.5538, ¢?=0.5472, s=0.273, F=256 (sub-
training set)

n=133, r’=0.8122, r?, =0.8073, s=0.204, F=567
(calibration set)
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Table 2. search for most informative threshold T* and the number of epochs of the Monte Carlo optimization N* for splits 1-6: T* and N* are values
which produce the maximum correlation coefficient between experimental and calculated endpoint values for the test set.

Split Threshold Probe 1 Probe 2 Probe 3 Average Dispersion
1 R(lesl)2
0.7709 0.7610 0.7542 0.7620 0.0068
1 0.7564 0.7484 0.7497 0.7515 0.0035
2 0.7707 0.7613 0.7557 0.7626 0.0062
3 0.7567 0.7343 0.7446 0.7452 0.0091
N*
0 10 12 11 11.00 0.82
1 11 9 11 10.33 0.94
2 12 10 12 11.33 0.94
3 10 11 12 11.00 0.82
2 (lesl)2
0.6222 0.6325 0.6095 0.6214 0.0094
1 0.6149 0.6282 0.6218 0.6216 0.0055
2 0.6187 0.6414 0.6151 0.6250 0.0116
3 0.6178 0.6246 0.6216 0.6214 0.0028
N*
0 11 11 12 11.33 0.47
1 10 12 11 11.00 0.82
2 12 14 15 13.67 1.25
3 10 12 12 11.33 0.94
3 Fi(lesl)Z
0 0.7791 0.7481 0.7605 0.7626 0.0127
1 0.7486 0.7709 0.7503 0.7566 0.0101
2 0.7748 0.7751 0.7448 0.7649 0.0142
3 0.6987 0.7080 0.7192 0.7086 0.0084
N*
0 20 19 19 19.33 0.47
1 19 20 17 18.67 1.25
2 18 19 19 18.67 0.47
3 16 17 20 17.67 1.70
4 R(lesl)
0 0.6295 0.6341 0.6475 0.6370 0.0076
1 0.6204 0.6565 0.6463 0.6410 0.0152
2 0.7404 0.7354 0.7062 0.7273 0.0151
3 0.7330 0.7148 0.7303 0.7260 0.0080
N*
0 17 9 16 14.00 3.56
1 7 9 8 8.00 0.82
2 15 16 12 14.33 1.70
3 13 14 14 13.67 0.47
5 R(iesl)
0 0.7216 0.7048 0.7034 0.7099 0.0083
1 0.7140 0.7361 0.7232 0.7244 0.0091
2 0.7315 0.7287 0.7242 0.7281 0.0030
3 0.7391 0.7285 0.7107 0.7261 0.0117
N*
0 15 17 19 17.00 1.63
1 14 18 16 16.00 1.63
2 20 18 20 19.33 0.94
3 20 19 18 19.00 0.82
6 R(‘esl2
0 0.7037 0.7120 0.7284 0.7147 0.0103
1 0.7156 0.7119 0.7202 0.7159 0.0034
2 0.7664 0.7979 0.8022 0.7888 0.0160
3 0.7527 0.7201 0.7168 0.7299 0.0162
N*
0 9 9 10 9.33 0.47
1 12 9 10 10.33 1.25
2 15 15 13 14.33 0.94
3 15 13 11 13.00 1.63
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n=104, r>=0.7208, r? =0.7104, R? =0.6496,
$=0.213, F=263 (test set)
Split 6
NDP = 0.0228( £ 0.0013) +
+0.0329 (£ 0.0001) * DCW(2,15) (7)

n=225, r’=0.5689, ¢?=0.5635, s=0.270, F=294 (sub-
training set)

n=136, r’=0.8330, r? ,=0.8290, s=0.184, F=669
(calibration set)

n=84, r’=0.7978, r?
F=324 (test set)

=0.7897, R? =0.7696, s=0.191,

pred

As a further check on the model performance, we
took the data for which we had only values reported as
classes: degradable or not. These data could not be
used to build up the model, because the CORAL model
is a regression model, and thus continuous values are
needed. Thus, this exercise can be considered as both
an example of the use of the model as a classifier and as
an external validation study. The predictive potential of
the models calculated with Egs. 2-7 has been checked
with qualitative data on the biodegradability (n=286).
Table 3 contains sensitivity, specificity and accuracy
values for the validation set.

One can see (Egs. 2-7 and Table 3) that the statistical
quality of the described models varies for different splits.
For random splits #1, #3, and #6 (Egs. 2, 4, and 7) R?_t
20.75, whereas for split 2 (Eq. 3) R?__, =0.63. We submit
that one should expect that correlation coefficients for
different splits will be different. The range of correlation
coefficients for a group of random splits is important
information: the average value of the correlation
coefficient for the test sets is 0.728+0.05 (Egs. 2-7).
Thus, the proposed approach can be used to model the
biodegradability.

Probably, at present, a QSAR study on NDP is
absent, but the prediction of rate constants for radical
degradation of aromatic pollutants is a task similar to the
prediction of the biodegradability [22]. The four-variable
linear regression model based on DRAGON descriptors
together with quantum mechanics parameters is
statistically characterized by the following n=60,
r?=0.735, s=0.174 (training set) and n=18, r>=0.760,
s$=0.200 (test set). Thus, the predictability of one-
variable regression models calculated with Egs. 2-7 can
be estimated as equivalent to the predictability of the
above-mentioned model. In other words, predictions
which have been obtained by the approach described
above are reasonably good.

Table 3. Thetesting of models (splits 1-6) against external qualitative
data on biodegradability (n=285). True positive means a
prediction where the biodegradability is modeled correctly
and classified a chemical as biodegradable, analogical
definitions for “true negative”, “false positive”, etc.

Split 1

The Number of True_Positive = 121 42.46%
The Number of True_Negative = 110 38.60%
The Number of False_Positive = 20 7.02%

The Number of False_Negative = 34 11.93%
Sensitivity* = 0.781

Specificity = 0.846

Accuracy = 0.811

Split 2

The Number of True_Positive = 129 45.26%
The Number of True_Negative = 103 36.14%
The Number of False_Positive = 27 9.47%

The Number of False_Negative = 26 9.12%
Sensitivity = 0.832

Specificity = 0.792

Accuracy = 0.814

Split 3

The Number of True_Positive = 129 45.26%
The Number of True_Negative = 101 35.44%
The Number of False Positive = 29 10.18%
The Number of False_Negative = 26 9.12%
Sensitivity = 0.832
Specificity = 0.777
Accuracy = 0.807

Split4

The Number of True_Positive = 125 43.86%
The Number of True_Negative = 101 35.44%
The Number of False_Positive = 29 10.18%
The Number of False_Negative = 30 10.53%
Sensitivity = 0.806
Specificity = 0.777
Accuracy = 0.793

Split 5

The Number of True_Positive = 123 43.16%
The Number of True_Negative = 104 36.49%
The Number of False_Positive = 26 9.12%

The Number of False_Negative = 32 11.23%
Sensitivity = 0.794

Specificity = 0.800

Accuracy = 0.796

Split 6

The Number of True_Positive = 127 44.56%
The Number of True_Negative = 101 35.44%
The Number of False Positive = 29 10.18%
The Number of False_Negative = 28 9.82%
Sensitivity = 0.819
Specificity = 0.777
Accuracy = 0.800

*) Sensitivity = True _ Positive
) True _ Positive + False _ Negative

Specificity = True _ Negative

True _ Negative + False _ Positive
True _ Positive + True _ Negative
True _ Positive+ False _ Positive + True _ Negative + False_ Negative

Accuracy =

Predicting the biodegradability of chemicals can be
done with special rules [10] based on the presence of
various molecular features, e.g. presence of C-O, C=C,
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Cl, aromatic groups, various cycles, etc. The accuracy
of the model for biodegradability described in the
literature [10] is about 77-89% (350-400 compounds). In
fact the accuracy of the models calculated with Egs. 2-7
(Table 3) is similar: one can see (Table 3), that for all
six models this criterion is about 0.80, consequently, the
number of false positive and false negative predictions
for all splits is about 53-55 compounds, i.e., 19-20%.
Hence, the numerical values of these criteria for models
(classification into two classes: biodegradable or not
biodegradable) which are calculated with Egs. 2-7 are
quite good.

There are several software packages available for
the generation of SMILES notations (http://depth-first.
com/articles/2007/04/03/creating-canonical-smiles-
with-ruby-open-babel/). We have used the canonical
version of SMILES notations (ACD/ChemSketch
Freeware, v. 11.00, Inc., Toronto, Canada, www.acdlabs.
com, 2007). However, we deem that selected global
SMILES attributes (i.e. ATOMPAIR, BOND, NOSP, and
HALO) most probably will be the same for the majority
(maybe for all) versions of SMILES. Unfortunately, local
SMILES attributes considerably depended upon the
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