
1. Introduction
The interest in polymeric nanoparticles is increasing due 
to their potential applications, for example as drug carriers 
[1-3]. Polymer nanoparticles may be obtained using 
surfactants for their stabilization, in physical processes as 
well as in chemical reactions. Another approach is based 
on self-assembling of block copolymers in selective 
solvents, when polymeric micelles are formed [4-9].

The special properties of polysiloxanes are well-
known: they are hydrophobic and soluble in non-polar 
solvents, they have very high chain flexibility, very low 
Tg, low cohesive energy, very low surface tension, good 
thermal stability, resistance to UV radiation and to ozone. 
They are also non-toxic materials, with physiological 
inertness and have many medical applications [10-12]. 
Polysiloxanes could be valuable candidates for the 
encapsulation of hydrophobic drugs into nanoparticles, 
but their liquid state at room temperature may be 

a drawback for their colloidal stability. Some of our 
experiments showed that polydimethylsiloxane (PDMS) 
nanoparticles obtained by nanoprecipitation collapse 
after drying, although they are stable in water dispersion 
[13].

The principles of nanoprecipitation have been 
described for the first time by Fessi et al. [14]; they 
showed that the use of one solvent with unlimited water 
miscibility (acetone, ethanol or THF) can lead to the 
spontaneous formation of nanoparticulate pseudolatex 
dispersions, provided that the polymer is insoluble in 
the resulting water/solvent mixture [14-17]. We used this 
simple process in order to obtain polymer nanoparticles 
with various cores [18,13,19], in the presence of original 
siloxane surfactants.

Based on our observation that nanoparticles from 
linear polysiloxane have limited stability [13], we proposed 
a method of cross-linking to eliminate this drawback [19]. 
Nevertheless, in general the particles size and stability 
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Polydimethylsiloxane nanoparticles were obtained by nanoprecipitation, using a siloxane surfactant as stabilizer. Two neural 
networks and a genetic algorithm were used to optimize this process, by minimizing the particle diameter and the polydispersity, 
finding in this way the optimum values for surfactant and polymer concentrations, and storage temperature. In order to improve 
the performance of the non-dominated sorting genetic algorithm, NSGA-II, a genetic operator was introduced in this study – the transposition 
operator – “real jumping genes”, resulting NSGA-II-RJG. It was implemented in original software and was applied to the multi-objective 
optimization of the polymeric nanoparticles synthesis with silicone surfactants. The multi-objective function of the algorithm included 
two fitness functions. One fitness function was calculated with a neural network modelling the variation of the particle diameter on 
the surfactant concentration, polymer concentration, and storage temperature, and the other was computed by a neural network 
modelling the dependence of polydispersity index on surfactant and polymer concentrations. The performance of the software program 
that implemented NSGA-II-RJG was highlighted by comparing it with the software implementation of NSGA-II. The results obtained 
from simulations showed that NSGA-II-RJG is able to find non-dominated solutions with a greater diversity and a faster convergence 
time than NSGA-II.
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depends on many factors [15], from which concentration 
and solvent/water ratio are very important.

The optimization of a polymerization process is 
usually a multi-objective problem, as it often involves a 
series of incommensurable and contradictory objectives 
which must be satisfied at the same time. Multi-objective 
evolutionary algorithms (MOEA) have attracted the 
attention of many researchers in various fields, precisely 
because of their effectiveness and robustness in finding 
a set of compromise solutions between divergent 
and incommensurable objectives. Moreover, their 
applications have become very popular over the last few 
years [20-23].

The most popular and efficient algorithm for multi-
objective optimization, which provides a set of Pareto 
optimal solutions, is the non-dominated sorting genetic 
algorithm (NSGA) with its two versions: NSGA-I and 
NSGA-II [24]. As an enhancement to NSGA-I, NSGA-II 
introduces the concept of elitism – the preservation of 
the best individuals through the evolutionary process – 
which leads to a faster convergence of the algorithm. 
The advantages of NSGA-II have been revised by [25] 
and its effectiveness in the multi-objective optimization of 
complex polymerization processes has been highlighted 
in a series of applications [26-28].

Unfortunately, the use of elitism leads to the 
decrease in the population diversity which can cause 
the premature convergence of the algorithm to a local 
optimum. The artificial genetic operator – “jumping 
genes” (JG) – has been introduced in NSGA-II as 
a response to this problem [29]. Its origins lie in the 
paper of McKlintock [30] who stated that DNAs, known 
as transposons or jumping genes, can jump from a 
chromosome to another or in the same chromosome, by 
changing their location.

The main feature of the obtained algorithm, NSGA-II-
JG, consists of a simple operation in which a transposition 
of one or more genes is induced in the same or another 
chromosome, in the genetic algorithm. The novelty of 
this technique is that it allows gene mobility in the same 
chromosome or even in the neighbouring chromosomes 
in the search for optimal non-dominated solutions, in the 
context of multi-objective optimization problems.

NSGA-II-JG has been successfully used by 
researchers in optimizing polymerization processes 
[31,32], but only in its binary-coded version. Nawaz Ripon 
et al. [33] implemented a real-coded version of NSGA-
II-JG (noted RJGGA) and compared it with its binary-
coded version and other multi-objective evolutionary 
algorithms, using a series of benchmark test functions. 
RJGGA performed better than other MOEAs in finding 

non-dominated solutions with greater diversity and 
convergence.

In this study, we analyze the influence of 
surfactant and polymer concentrations and storage 
temperature on the result of nanoprecipitation of a 
linear polydimethylsiloxane (PDMS), with instruments of 
artificial intelligence. A series of polymer nanoparticles 
was obtained, using the same siloxane surfactant. 
The particle dispersions have been analyzed by DLS 
(dynamic light scattering) and the resultant information 
on average diameter and polydispersity index of the 
particles has been interpreted and modelled with artificial 
intelligence tools.

Our main purposes were to investigate the 
efficiency of the anionic surfactant in stabilizing PDMS 
nanoparticles, to obtain useful information for optimizing 
the process, and to verify the applicability of artificial 
intelligence methods for modelling and optimization of 
the PDMS nanoprecipitation.

For the last goal, a new application of NSGA-II-JG, 
in a real-coded version (NSGA-II-RJG), was proposed 
and applied to the multi-objective optimization of 
the polymeric nanoparticles synthesis with silicone 
surfactants. The aim of the optimization was to 
simultaneously minimize the particle diameter and 
the polydispersity by determining the optimal decision 
variables: the surfactant concentration, the polymer 
concentration, and the storage temperature. The 
genetic operators used here were different than those 
used by Nawaz Ripon et al. [33], the real coded NSGA-
II-JG being implemented in original software. The 
vectorial objective function included in the algorithm 
was calculated with two optimized neural networks 
(NNs) corresponding to the two fitness functions. One 
neural network modelled the variation of the average 
diameter on the concentration of surfactant, polymer 
concentration, and storage temperature, and the other 
modelled the dependence of polydispersity on surfactant 
and polymer concentrations.

A new formula was constructed for the quantification 
of the performance of the two neural networks.

The performance of the software program that 
implemented the new NSGA-II-RJG was highlighted by 
comparing it with the software implementation of NSGA-
II, applied to the same polymerization process. In order 
to evaluate the two algorithms, a series of standard 
performance metrics measuring the convergence 
time, the proximity to the Pareto optimal front, and the 
distribution of non-dominated solutions throughout the 
Pareto front, were used.
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2. Experimental procedure

2.1. Materials
Polydimethylsiloxane (PDMS) (Scheme 1) with 
average viscometric molecular weight, Mv = 350 000, 
was obtained by the adapted literature method [34], 
i.e., bulk anionic ring opening polymerization of the 
octamethyl-cyclotetrasiloxane (D4) in presence of 
tetramethylammonium hydroxide as catalyst and a 
Lewis base (DMF) as promoter.

The reaction occurred under a steady stream of 
nitrogen at 80oC for 90 min. After 1 h, the temperature 
was raised at 150oC to decompose the catalyst, and then 
vacuum was applied, while maintaining this temperature, 
in order to remove the equilibrium cyclic compounds. The 
molecular mass of the resultant polymer was evaluated 
by viscometry.

The surfactant, pentamethylsebacomethyldisiloxane 
potassium salt (Scheme 1) was obtained according 
to Racles et al. [13]. Equimolar amounts of sebacic 
acid and potassium sebacate were dispersed 
in DMF, and then the stoichiometric amount of 
pentamethylchloromethyldisiloxane was added. 
After 22 h of stirring at 130oC, KCl was filtered off 
and the crude acid was recovered by precipitation in 
water, filtration and washing. The acid was purified by 
washing with diethyl ether and subsequent extraction 
with benzene. The potassium salt was obtained by 
titration, using 0.1 N KOH solution, followed by removal 
of water.

The surface properties, i.e., critical micelle 
concentration (CMC) and equilibrium surface tension 
(γ) were measured by tensiometry, with a Sigma 700 
automatic tensiometer from KSV. The values obtained 
were: CMC = 0.087 g L-1, γ = 39.6 mN m-1.

2.2. Preparation of nanoparticles
As a general procedure, 3 mL of a THF solution 
containing PDMS in different concentrations was 
added via a syringe into 6 mL of an aqueous solution 
of surfactant (various concentrations, according 
to Table 1), under mild stirring, at room temperature. 
After 15 minutes, the stirring was stopped for another 
30 minutes, then the THF and an amount of water were 
removed on rotatory evaporator. The resulting aqueous 
dispersions containing approximately 3% PDMS 
particles were stored for 48 hours either at 4oC or at 
40oC, prior to DLS analyses.

In Table 1, Cs is the concentration of surfactant, 
Cp is the concentration of polymer, T - the storage 
temperature, Zave - the average diameter (measured in 
nm), and PDI – the polydispersity index.

2.3. Methods
Particles size (average diameter) and distribution 
(polydispersity index) were determined by DLS on a 
Malvern Zetasizer NS (Malvern Instruments, UK), which 
uses non-invasive backscatter detection (NIBS) (173o) 
and laser wavelength of 633 nm. The concentrated 
dispersions of nanoparticles were measured without 
further dilution. The autocorrelation signal was analyzed 
by the method of cumulants, giving the z-average 
diameter of the particles and the polydispersity index 
(according to ISO13321 Part 8).

3. 

The core of the optimization procedure was the 
enhanced real coded NSGA-II, namely NSGA-II-RJG. 
New elements were added to the algorithm so that it 
would be distinguished from the well known NSGA-II-
JG. The real coding was used because it eliminates a 
series of drawbacks related to the continuous search 
space of the studied problem [35]. Consequently, the 
genetic operators used in the algorithm were adapted to 
the real coding of the solutions.

The genetic operator, jumping genes, manifests 
as a horizontal transmission of the genes, through 
two kinds of operations: copy and paste and cut and 
paste. In the binary coding, each chromosome has 
several consecutive genes that are selected for creating 
a transposon. The transposon is either copied and 
inserted in another position or removed from its original 
location and inserted in a new one.

Due to the use of real coding in the representation 
of the solutions, the transposition operators (copy and 
paste and cut and paste) must be redefined because, if 
these operators are used in their standard versions, the 
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new individuals produced will be corrupted and unusable. 
Therefore, the jumping genes operator was implemented 
as a random mutation or an arithmetic crossover, 
depending on the new position of the transposon (in 
the same chromosome or in another chromosome, 
respectively) and the number of chromosomes used 
(one or two chromosomes). This implementation of the 
jumping genes operator differs from the one proposed 
by Nawaz Ripon et al. [33] through the fact that it uses 
other types of mutation and crossover and the two 
chromosomes representing the operands are both 
selected at the beginning of the operation. The random 
mutation used here is an equivalent of the macro-macro 
mutation used by Kasat and Gupta [29] for the binary 
jumping genes transposition. Fig. 1 schematically 
shows how the real jumping genes transposition was 
constructed.

The jumping genes operator was introduced in 
NSGA-II after the selection process and before the 
arithmetic crossover operation.

Chromosomes (solutions) with two real-coded 
genes, corresponding to the two of the decision variables 
(surfactant concentration and polymer concentration), 
were used in the proposed software implementation 
of NSGA-II-RJG algorithm. The boundaries of the 
decision variables were included in their encoding. The 
ranking method was used for the selection of a new 
population and the selection through tournament was 
performed for choosing the parents of a new individual. 
The mutation operation consisted in resetting the value 
of the gene at a random value between its minimum and 
maximum limits. The arithmetic crossover with a single 
point, different for each gene, used in the algorithm, 
generated a random real value in the range from 0 to 
1 to represent the amount of information taken from the 
mother chromosome, the rest of the information being 
taken from the father chromosome. The stop condition 

of the evolutionary iterations was the achievement of the 
preset maximum number of generations.

In the pseudocode presented below, popSize 
represents the number of chromosomes in a population 
and noGen is the maximum number of generations. 
JGProb represents the probability for a jumping genes 
transposition to take place. In a similar way, CrossProb 
signifies the probability for a crossover operation to 
happen and MutProb – the probability for a mutation 
operation to be executed. TourSize designates the 
number of chromosomes that are candidates for the 
selection of a parent chromosome through tournament.

The steps describing the working principle of the 
proposed software implementation for NSGA-II-RJG, 
as adapted for the studied multi-objective optimization 
problem, are presented next:

1) Load the parameters of the problem: popSize, 
noGen, TourSize, CrossProb, MutProb, JGProb. 

2) Initialize the population of chromosomes with real 
random values in the specified bounds. Compute the 
fitness for every chromosome using NN model. Number 
of generations = 0.

3) Sort the population of chromosomes using non-
dominated Pareto fronts according to the fitness. Assign 
crowding distance to every chromosome based on a 
ranking matrix constructed from the partial fitness of 
every chromosome.

4) Obtain popSize child chromosomes by selecting 
parents based on rank and crowding distance and 
by applying jumping genes, crossover and mutation 
operators. Create a new temporary population of size 
2*popSize formed half from chromosomes representing 
the parents’ generation and half from chromosomes 
representing the childrens’ generation. Execute step 3.

5) Select a new population of popSize chromosomes 
based on Pareto dominance and crowding distance. The 
number of generations increases with 1.

Table 1. DLS data for PDMS nanoparticles prepared in various conditions.

Sample Cs (g L-1) Cp (weight %)
Zave (nm) 

samples stored at 4oC PDI Stability
Zave (nm) 

samples stored at 40oC

1 1 0.5 374 0.382 yes 289
2 1 0.75 374 0.317 yes 362
3 1 1 555 0.347 yes 571
4 1 1.5 781 0.719 no 401
5 1 2 520 0.467 no >> 10 micron
6 2 0.5 271 0.402 yes 240
7 2 0.75 221 0.236 yes 255
8 2 1 215 0.446 yes 332
9 2 1.5 212 0.441 no 347
10 0.5 0.5 302 0.263 yes 302
11 0.5 0.75 262 0.271 yes 263
12 0.5 1 272 0.264 yes 272
13 0.5 1.5 416 0.701 no 366
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6) If the number of generations is lower than noGen, 
then go to step 4, else go to step 7.

7) Get the solution vector - the non-dominated Pareto 
optimal front.

8) Calculate the average diameter and the 
polydispersity index using the two neural models. 
Compute the performance metrics.

9) Print the solutions: the optimal decision variables 
(surfactant concentration, polymer concentration, and 
storage temperature) and the corresponding average 
diameter and polydispersity.

In order to define Pareto dominance, we say that a 
chromosome dominates another chromosome if all its 
partial fitness functions are greater than or equal to those 
of the other chromosome and one is strictly greater.

The multi-objective vectorial function used by 
the genetic algorithm was composed by two fitness 
functions:

f(Cs, Cp, T) = (- Zave, - PDI)                                           (1)

The goal of the optimization procedure was to minimize 
the average diameter and the polydispersity by finding 
the optimal decision variables (the concentrations of 
surfactant and polymer, and the storage temperature).
The boundaries for the decision variables, derived from 
the experimental data set, were:

Cs: 0.5 – 2 g L-1, Cp: 0.5 – 2%, T: 4oC or 40oC            (2)
                                                               

Because in the experiments there were only two 
values used for the storage temperature, this decision 
variable was not encoded in the chromosomes, its 
optimization being achieved just by choosing the value 

that led to the best fitness function. Moreover, due to 
the fact that the polydispersity had the same value for 
the two different values of the storage temperature, this 
reaction condition was not considered as input to the 
neural network modelling the polydispersity.

The neural network used for modelling the 
dependence of the average diameter on the surfactant 
concentration, polymer concentration, and storage 
temperature was a multilayer perceptron (MLP) with 
three inputs and one output. Likewise, the neural 
network modelling the variation of the polydispersity 
index on surfactant and polymer concentrations was a 
multilayer perceptron with two inputs and one output.

The parameters of the neural networks were 
optimized in order to obtain maximum performance for 
the neural models. The methodology used here was 
developed in a previous study [36]. Data from the input 
file for the neural networks was randomized and divided 
into 80% training data set and 20% testing data set. 
The input file used for constructing the neural networks 
consisted of 49 experimental data sets, 26 of them 
being presented in Table 1 (half obtained at a storage 
temperature of 4oC and half at 40oC). The remainder of 
the 49 data sets represent supplementary experiments 
needed for achieving a sufficient number of training and 
testing data (Table 2). 

The training was stopped when the mean squared 
error for the training data set decreased beyond a 
certain threshold (0.001) or the maximum number of 
training epochs (1000) was reached.

The minimum mean squared error at training 
(MinMSEtrain), the mean squared error at testing 
(MSEtest), and the linear correlation coefficient at testing 
(r) were considered as performance indices. A neural 

Figure 1. Flowchart of the jumping genes transposition.
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network with high generalization ability must have a 
correlation coefficient at testing close to 1 and the mean 
squared errors at training and testing close to 0. Thus, 
for the quantification of the networks performance, the 
following formula was constructed:

perf_index = r – (MinMSEtrain + MSEtest)                 (3)                                                                                                                   

The greater the value of perf_index is, the better the 
performance of the network.

For evaluating the global performance of the 
algorithm and for comparing NSGA-II with NSGA-
II-RJG, the convergence time was measured by 
calculating the time taken by the algorithm to reach the 
preset maximum number of iterations/generations. The 
proximity to the Pareto optimal front was determined by 
using the set coverage metric [22] and the distribution 
of non-dominated solutions throughout the Pareto front 
was evaluated with the spacing metric [22], where the 
Euclidean distance was used as distance measure.

The set coverage metric (relative coverage 
comparison of two sets) was calculated with the following 
formula:

                                                                                                                          
                 (4)

where X′, X″ are two sets of solution vectors. CS maps 
the ordered pair (X′, X″) to the interval [0, 1]. CS(X′, X″) 
is the ratio of solutions from X″ vector that are weakly 
dominated by at least one of the solutions from X′ 
vector. CS(X′, X″) = 1 means that all points in X″ are 
weakly dominated by the solutions in X′. The opposite, 
CS(X′, X″) = 0, represents the situation when none of 
the solutions in X″ are covered by the set X′. Since 
the domination operator is not symmetric, CS(X′, X″) 
is not necessarily equal to 1 – CS(X′, X″). Therefore, 
both CS(X′, X″) and CS(X′, X″) need to be considered. 
The set coverage metric can be regarded as a percentage 

of the amount of elements from the X″ solution vector 
that are equal with or dominated by at least one of the 
elements from the X′ vector. If, for example, CS(X′, X″) 
is greater than CS(X′, X″), it means that there are more 
dominated solutions in X″ than in X′, so X′ is considered 
better than X″ and closer to Pareto optimal front.

The spacing metric was calculated as:

( )∑
=

−=
PF

1i

2

mi dd
PF
1S                                           (5)

where PF is the solution vector (Pareto front), di is 
the Euclidean distance (measured in objective space) 
between solution i∈PF and the next consecutive 
solution in PF, and dm is the mean value of the above 
measured distances. S numerically describes the spread 
of solutions in the Pareto front. When S = 0, all solutions 
are spaced evenly apart. Thus, an algorithm having a 
smaller S is better.

A performance metric combining the convergence 
time and the spacing metric was used as a solutions 
performance index:

sol_perf = 0.001 * Ct + 0.999 * S                                (6)

where Ct is the convergence time and S is the spacing 
metric. sol_perf represents a weighted sum, where the 
weight for the convergence time was chosen to be 0.001 
in order to scale its values (expressed in seconds) in the 
same range as the range of the values obtained for the 
spacing metric. Accordingly, the weight for the spacing 
metric was 0.999, because it was considered more 
important to have a uniform spread of the solutions 
in the Pareto optimal front, than to have a very fast 
convergence time. The more sol_pref decreases to 0, 
the better are the convergence time and the spread of 
the solutions along the optimal Pareto front.

Table 2. Supplementary experimental data added to the input file for training and testing the neural networks.

Sample Cs (g L-1) Cp (weight %)
Zave (nm) 

samples stored at 4oC PDI
Zave (nm) 

samples stored at 40oC

1 0.50 2.00 728 0.702 389
2 0.75 0.50 295 0.315 220
3 0.75 0.75 273 0.276 271
4 0.75 1.00 282 0.285 430
5 0.75 1.50 695 0.723 468
6 0.75 2.00 757 0.659 367
7 1.50 0.50 734 0.523 309
8 1.50 0.75 668 0.432 358
9 1.50 1.00 469 0.523 416
10 1.50 1.50 279 0.473 369
11 1.50 2.00 333 0.374 342
12 2.00 2.00 309 0.490 345
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An evaluation technique based on the set coverage 
metric was developed in order to find the most 
dominant Pareto front from those obtained with different 
combinations of values for NSGA-II and NSGA-II-RJG 
parameters. The evaluation technique started with the 
first obtained Pareto front and compared it with the next 
obtained one, using the set coverage metric. The front 
with the greater set coverage metric was chosen for the 
comparison with the next achieved Pareto front. The 
comparisons continued until the most dominating Pareto 
front was found. This evaluation technique was based 
on the property of transitivity of the Pareto dominance 
relation [22]. The non-dominated sorting arranges the 
points in the objective space in a strict partial order.

It is important to emphasize that solving the multi-
objective optimization problem with a vectorial algorithm, 
particularly NSGA-II-RJA, which provides a set of 
equally good optimal solutions, is a better alternative 
instead of obtaining a unique optimal solution with a 
scalar approach [37,38].

4. Results and discussion
PDMS nanoparticles have been prepared following, 
in general terms, the principles of nanoprecipitation 
[14-17]. We used an organic solvent which is miscible 
with water and has a lower boiling point than water. 
The organic solution was injected under pressure in 
an aqueous solution of a siloxane-based surfactant, 
and then the organic solvent was removed by vacuum 
distillation.

An anionic low molar mass surfactant was used 
(Scheme 1) for the stabilization of the particles. The 
concentration of the surfactant solutions was variable in 
our set of experiments, but in all the cases it was higher 
than the measured CMC. The concentration of the 
organic phase was also varied, but the phase volume 
ratio was maintained constant.

The results of the nanoprecipitation experiments 
were firstly assessed visually, then the dispersions 
were analyzed by DLS in order to acquire information 
on particles size (average diameter, Zave), polydispersity 
(polydispersity index, PDI) and stability. The stability 
was estimated by the absence of large particles 
(above 1 micrometer). If such particles were present in 
more than 10% (by intensity), we considered the system 
unstable (collapsed). The visual observation during and 
after the preparation of the particles was in agreement 
with the DLS results: massive precipitation was 
observed for the same samples when the above stability 
criterion was not accomplished. For these samples, the 
precipitate was removed and only the water dispersions 
were analyzed.

Some examples of the obtained distribution curves 
are presented in Fig. 2. In these examples, samples 
7 and 10 were considered stable, while sample 5 was 
considered unstable. In Table 1 the DLS results are 
collected. There are a few comments that may be made 
while analyzing these data and all the DLS curves: 

• Submicronic particles were formed in most of the 
tested conditions.

• The tested surfactant concentrations were sufficient 
to stabilize PDMS particles.

• For initial polymer concentrations equal to or higher 
than 1.5%, the nanoprecipitation failed (the particles 
were not stable).

• The smallest stable particles were obtained for 
sample 7.

• Multimodal curves and high PDI were obtained for 
most of the samples, probably due to the coalescence 
tendency of the soft material used as particles core.

It is interesting to observe that the particles obtained 
with 2 g L-1 and 0.5 g L-1 surfactant had average diameter 
less than 300 nm, while those obtained with 1 g L-1 were 
larger. The reason for this result is still not understood. 
Nevertheless, it is worth mentioning that this surfactant 
may be used effectively for the stabilization of PDMS 
nanoparticles in concentration as low as 0.5 g L-1.

As mentioned before, PDMS is a soft material at 
ambient temperature (Tg = -123oC) and,consequently, 
its nanoparticles have a natural tendency to collapse. 
That is why this polymer cannot lead as such to long 
term stable nanoparticles, although certain stability 
can be obtained. Nevertheless, improved results in 
terms of size and stability may be obtained by cross-
linking of PDMS or by encapsulating different solid 
materials (which could open very attractive application 
perspectives).

On the other hand, its instability imparts to the 
system a pronounced lack of predictability, making it 
suitable for complex investigations with the instruments 
of artificial intelligence. We focused on two very 
important parameters for nano/micro-particles, which 
are the size and the distribution (polydispersity). Usually, 
in practice, small particle and narrow size distribution 
are key requirements. Many properties are dictated by 
the particle size, thus more reliable characteristics are 
obtained for narrow polydispersity. On the other hand, 
the stability of the system increases for narrow size 
distribution, since phenomena like Ostwald ripening 
and collapse are minimized. Small particles mean large 
specific area. In our case, the particle size cannot be 
very low, as observed in our previous work with the 
same technique and polymers. However, we aim for the 
submicron range of the particle size, for stability and 
application reasons.
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In order for NSGA-II and NSGA-II-RJG to have 
maximum performance, the neural model used for 
calculating the fitness functions of the algorithms must 
be the optimum one. Using the methodology developed 
in a previous study [36] and shortly described in 
section 3, “Multi-objective optimization procedure”, 
a series of neural networks with optimal values for the 
parameters was obtained. It has been observed that 
using two separate neural networks, with one output 
each, led to better results than those obtained with a 
two outputs network, for modelling the average diameter 
and the polydispersity, depending on the concentration 
of surfactant, polymer concentration, and storage 
temperature.

The results of the “Vary a parameter” training 
process [36], applied for finding the optimal number 
of hidden neurons and training epochs for the neural 
network modelling the average diameter and the 
one modelling the polydispersity, can be observed in 
Tables 3 and 4, respectively. The best results correspond 
to simulation number 5, marked in bold in Table 3 and 
to the simulation number 1, marked with bold in Table 4. 
In these tables, the performance indices (MinMSEtrain, 
MSEtest, r) were calculated both for average diameter 
(Table 3) and for polydispersity (Table 4). So, the 
obtained (best) neural networks were MLP(3:9:1) for 
modelling the average diameter and MLP(2:6:1) for 
modelling the polydispersity index.

The performance at testing, i.e., the absolute errors, 
obtained by the two optimized neural networks, when 
presented with data not seen at training, are illustrated in 
Figs. 3 and 4 for the modelling of the average diameter 
and of the polydispersity, respectively.

The obtained neural models were included in 
NSGA-II and then the multi-objective optimization of 
the polymeric nanoparticles synthesis was performed, 
searching at the same time the optimal parameters for 
the genetic algorithm. After obtaining the optimal values 
for the parameters of NSGA-II, the jumping genes 
operator was introduced in the algorithm, simultaneously 
aiming at finding an optimal jumping genes probability. 
The convergence time, the spacing and the set coverage 
performance metrics [22] proved to be very useful in 
these approaches.

The criterion used in selecting the best combination 
of parameter values was based on the most convenient 
compromise that could be done between the level 
of dominance of the Pareto front (indicated by the 
set coverage metric) and the solutions performance 
(quantified through sol_perf index) achieved when using 
the tested combination of values.

Table 3. The results of the simulations for optimizing the number of hidden neurons for the neural network modelling the average diameter.

Sim. no. No. of hidden neurons / epochs Zave MinMSEtrain Zave MSEtest Zave r Zave perf_index

1 9 / 1000 0.0013 0.0018 0.9420 0.9389

2 7 / 1000 0.0012 0.0041 0.9026 0.8973
3 8 / 1000 0.0013 0.0027 0.9251 0.9211
4 9 / 862 0.0010 0.0044 0.8876 0.8822
5 9 / 780 0.0010 0.0008 0.9788 0.9770

Figure 2. Results  of  DLS  analysis  for  selected  PDMS   particles  
        dispersions.
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The convergence time of the optimization procedure 
was computed with a 2.4 GHz processor. For all the 
simulations and tests of the two algorithms analyzed in 
this study, the tournament size (TourSize) was 3.

A series of simulations with the crossover probability 
set to 0.9, the mutation probability of 0.03, different 
values for the population size (namely 10, 50, 100, 300, 
and 500) and, also, different values for the maximum 
number of generations (namely 50, 100, 300, 500, and 
1000) were performed. The results of the simulations 
can be observed in Tables 5 and 6, the best of them 
being highlighted in bold (simulations number 21 and 
23, respectively). Table 5 shows the convergence time, 
the spacing metric, and the solutions performance index 
achieved when using NSGA-II with different combinations 
of values for the population size and the maximum 

number of generations. As expected, the convergence 
time increased with the increase in population size and 
in the maximum number of generations.

Table 6, like all the tables in this paper which illustrate 
the values obtained through the evaluation technique 
based on the set coverage metric, must be analyzed by 
tracking the way in which it was constructed, along the 
simulations with different combinations of values for the 
parameters of the genetic algorithms. Every simulation 
led to obtaining a different Pareto front. At the beginning 
of the evaluation technique based on the set coverage 
metric, the first obtained Pareto front was considered the 
best and it was compared with itself. This is why the first 
row in Tables 6, 8, and 10 had the same combination 
of parameter values in the columns “Current NSGA-II 
parameters” or “Current JGProb” and in the columns 
“Best NSGA-II parameters” or “Best JGProb”. The rows 
of these tables were filled simulation by simulation. In 
the columns named “Current NSGA-II parameters” 
or “Current JGProb”, Tables 6, 8, and 10 present the 
combination of values for the parameters which provided 
the current Pareto front, namely the Pareto front currently 
taken into consideration for comparison. This front was 
compared with the best Pareto front obtained until the 
current front was obtained. The combination of parameter 
values corresponding to the best obtained Pareto front 
are listed in the columns “Best NSGA-II parameters” 
or “Best JGProb”. The result of each comparison was 
listed in these columns, on the next line, below the pairs 
of parameters being compared at the time. So, each 
newly obtained Pareto front was confronted with the 
best Pareto front obtained until the comparison and the 
combination of parameter values, corresponding to the 
new best Pareto front, was written on the next row, in the 
“Best NSGA-II parameters” or “Best JGProb” columns. 
This is the reason why these columns have an extra 
row, as a result of the last comparison.

After applying the performance evaluation technique 
based on the set coverage metric, the best parameter 
values proved to be popSize = 500 and noGen = 1000. 
But for these values, the sol_perf metric was considerably 
high compared with the ones obtained with other values 
for population size and maximum number of generations. 
Thus, the next combination of parameter values, from the 

Table 4. The results of the simulations for optimizing the number of hidden neurons for the neural network modelling the polydispersity.

Sim. no. No. of hidden neurons / epochs PDI MinMSEtrain PDI MSEtest PDI r PDI perf_index

1 6 / 845 0.0010 0.0049 0.9686 0.9627
2 6 / 755 0.0010 0.0297 0.4253 0.3946
3 5 / 913 0.0010 0.0370 0.8759 0.8379
4 5 / 979 0.0010 0.0095 0.8065 0.796
5 9 / 530 0.0010 0.0112 0.7643 0.7521

Figure 4. 

Figure 3. The testing results of the neural network modelling 
                              the average diameter for unseen data.

The testing results of the neural network modelling 
of the polydispersity for unseen data.
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bottom rows in “Best NSGA-II parameters” column from 
Table 6, with a corresponding small sol_perf (0.0067) in 
Table 5, was chosen, namely popSize = 500 and noGen 
= 50 (Ct = 26.9219 s, S = 0.0040).

With the population size set to 500 and the maximum 
number of generations set to 50, the crossover probability 
(taking, one by one, the values 0.1, 0.3, 0.5, 0.7, and 
0.9) and the mutation probability (with the values 0.01, 
0.05, 0.2, 0.5, and 0.8) were varied in order to find 
their optimal rates. The simulations revealed that the 
convergence time decreased with the increase in the 
mutation probability. The results of the simulations can 
be observed in Tables 7 and 8, the best results being 
highlighted in bold (line 25 in both tables).

Table 7 depicts the values for the convergence 
time, the spacing metric, and the solutions performance 
index provided by NSGA-II with different combinations 
of values for the crossover probability and the mutation 
probability.

The results of the performance evaluation technique 
based on the set coverage metric indicated that the best 
parameter values were CrossProb = 0.1 and MutProb 
= 0.01, as can be seen in the last row of Table 8. But 
the sol_perf (0.0086) corresponding to these values 
was considerably higher than the sol_perf obtained with 
other combinations of values. It was also higher than the 
best sol_perf achieved when optimizing the population 
size and the maximum number of generations. 
Therefore, because the Pareto front resulted when using 
CrossProb = 0.1 and MutProb = 0.01 dominated all the 
Pareto fronts obtained with the other combinations of 
parameter values, the selection of the best combination 
was mainly based on the sol_perf metric. The smallest 
sol_perf (0.0053) was achieved with CrossProb = 0.3 
and MutProb = 0.8 and also with CrossProb = 0.9 and 
MutProb = 0.8. The Pareto fronts obtained with the two 
pairs of parameter values dominated 17.4% and 24%, 
respectively, of the solutions from the most dominating 
Pareto front. So, CrossProb = 0.9 and MutProb = 0.8 
(Ct = 13.2031 s, S = 0.0040) were considered the best 
values for the crossover probability and the mutation 
probability.

The simulations continued with the introduction 
of the jumping genes operator in NSGA-II. The same 
optimization technique used for the parameters of 
NSGA-II was applied to the jumping genes probability 
by varying its value from 0.1 to 0.9 (0.1, 0.3, 0.5, 0.7, 
and 0.9), through a series of simulations. Table 9 
presents the values obtained for the convergence time, 
spacing metric, and solutions performance index. The 
best results were obtained at simulation number 1, 
highlighted in bold in the table.

Table 10 contains the values obtained for the 
set coverage metric along with the best value for the 
jumping genes probability, highlighted in bold, in the last 
line of the table.

Because the set coverage metric showed that 
the best jumping genes probability was 0.1 and the 
solutions performance index corresponding to this 
value was the minimum one (sol_perf = 0.0055, 
Ct = 13.8125 s, S = 0.0041), the JGProb used in the 
multi-objective optimization with NSGA-II-RJG was 0.1.

After introducing the jumping genes operator in the 
optimized real coded NSGA-II with the best jumping 
genes probability, the results obtained when optimizing 
the polymeric nanoparticles synthesis process with 
NSGA-II and NSGA-II-RJG, respectively, were 
compared.

By calculating the set coverage metrics for the Pareto 
fronts obtained with the two algorithms, the result was 
that the solution vector achieved by NSGA-II dominates 
the solution vector obtained by NSGA-II-RJG, because 
CS(X_NSGA-II, X_NSGA-II-RJG) > CS(X_NSGA-II-
RJG, X_NSGA-II) (see Eqs. 7 and 8).

Table 5. 

Sim. no.
NSGA-II 

parameters Ct (s) S sol_perf
popSize noGen

1 10 50 0.0781 0.0037 0.0037
2 10 100 0.0938 0.0048 0.0048
3 10 300 0.3281 0.0037 0.0037
4 10 500 0.6250 0.0025 0.0026
5 10 1000 1.1719 0.0048 0.0049
6 50 50 0.4063 0.0042 0.0042
7 50 100 0.8750 0.0046 0.0047
8 50 300 2.7354 0.0053 0.0056
9 50 500 4.6484 0.0042 0.0047
10 50 1000 9.1563 0.0009 0.0018
11 100 50 1.1719 0.0045 0.0046
12 100 100 2.3281 0.0038 0.0040
13 100 300 7.4531 0.0043 0.0050
14 100 500 12.3760 0.0043 0.0055
15 100 1000 24.7656 0.0041 0.0066
16 300 50 9.0938 0.0042 0.0051
17 300 100 18.4531 0.0042 0.0060
18 300 300 56.4375 0.0042 0.0098
19 300 500 91.6777 0.0041 0.0133
20 300 1000 171.8457 0.0041 0.0213
21 500 50 26.9219 0.0040 0.0067
22 500 100 56.7031 0.0041 0.0098
23 500 300 171.7217 0.0040 0.0212
24 500 500 292.1416 0.0040 0.0332
25 500 1000 606.5801 0.0041 0.0648

The results of the simulations for  different values 
of popSize and noGen with CrossProb = 0.9 
and MutProb = 0.03 (convergence time,  spacing metric, 
and solutions performance index) for NSGA-II.
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CS(X_NSGA-II-RJG, X_NSGA-II) = 0.126                 (7)

CS(X_NSGA-II, X_NSGA-II-RJG) = 0.336                 (8)

The convergence time and the spacing metric 
achieved with NSGA-II-RJG (Ct = 13.8125 s, S = 
0.0041) were slightly higher than the ones obtained with 
NSGA-II (Ct = 13.2031 s, S = 0.0040). Therefore, it can 
be stated that, for the particular problem studied here, 
the introduction of the jumping genes operator does not 
lead to the improvement of the solutions diversity or to 
the decrease in the convergence time of the algorithm. 
This result reinforces the conclusion which emerges 
from the theoretical comparative study done by Nawaz 
Ripon et al. [33], namely that the efficiency of the jumping 
gene operator, in its real-coded version, depends on the 
problem to which it is applied.

Fig. 5 shows a comparison of the Pareto fronts 
obtained with the two algorithms. The discontinuity in 
the obtained Pareto fronts is due to the disconnected 
regions in the solutions search space.

Additional optimizations were performed on the 
values of the NSGA-II-RJG parameters starting with a 
jumping genes probability of 0.5 (the value used by most 

of the researchers with the jumping genes operator). 
The population size and the maximum number of 
generations were varied in the same way as for the 
NSGA-II algorithm and the results were evaluated with 
the same performance metrics (convergence time, 
spacing metric and set coverage metric).

Considering that the values obtained for the 
set coverage metric, corresponding to different 
combinations of values for popSize and noGen, were 
almost similar (with few exceptions), sol_perf was the 
index regarded as being the most important in choosing 
the optimal values for population size and maximum 
number of generations. Thereby, in the approach to 
obtain better performance for NSGA-II-RJG, popSize 
of 100 and noGen of 300 were selected (sol_perf = 
0.0047, Ct = 5.5156 s, S = 0.0041). Once again, it was 
observed that the convergence time increased with the 
increase in population size and in the maximum number 
of generations. Also, based on the results obtained, it 
could be highlighted that a large number of generations 
and a large population size will generally lead to finding 
better solutions because the search space and time are 
larger. So, the methodology of optimizing the parameter 
values of the multi-objective genetic algorithms has the 

Table 6. The results of the simulations for different values of popSize and noGen with CrossProb = 0.9 and MutProb = 0.03 (set coverage 
                          metric) for NSGA-II.

Sim. no.
Current NSGA-II parameters

CS (current, best) CS (best, current)
Best NSGA-II parameters

popSize noGen popSize noGen

1 10 50 1.000 1.000 10 50
2 10 100 0.500 0.000 10 50
3 10 300 0.200 0.100 10 100
4 10 500 0.000 0.100 10 300
5 10 1000 0.200 0.200 10 300
6 50 50 0.400 0.020 10 300
7 50 100 0.200 0.240 50 50
8 50 300 0.220 0.120 50 50
9 50 500 0.080 0.160 50 300
10 50 1000 0.020 0.480 50 300
11 100 50 0.200 0.170 50 300
12 100 100 0.350 0.230 100 50
13 100 300 0.180 0.310 100 100
14 100 500 0.200 0.280 100 100
15 100 1000 0.250 0.160 100 100
16 300 50 0.460 0.203 100 1000
17 300 100 0.383 0.227 300 50
18 300 300 0.313 0.183 300 100
19 300 500 0.193 0.287 300 300
20 300 1000 0.260 0.283 300 300
21 500 50 0.340 0.302 300 300
22 500 100 0.268 0.432 500 50
23 500 300 0.380 0.296 500 50
24 500 500 0.282 0.378 500 300
25 500 1000 0.326 0.312 500 300

500 1000
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role to find a compromise between determining the best 
non-dominated solutions, minimizing the convergence 
time, and increasing the solutions diversity.

The simulations continued with the optimization of 
the crossover probability and the mutation probability in 
the same manner as for NSGA-II. Thus, it was revealed 
that the convergence time decreased with the increase 
in the mutation probability and also with the increase in 
the crossover probability.

Although the evaluation technique based on the set 
coverage metric indicated that a crossover probability 
of 0.9 and a mutation probability of 0.8 led to the most 
dominating Pareto front (CS(XCross_Prob=0.9,Mut_Prob=0.8, XCross_

Prob=0.9,Mut_Prob=0.5) = 0.19, CS(XCross_Prob=0.9,Mut_Prob=0.5, XCross_

Prob=0.9, Mut_Prob=0.8) = 0.17), the values 0.9 and 0.5 giving 
the next most dominating solution vector were chosen 
because the corresponding spacing metric was lower 
for these values (sol_perf = 0.0044, Ct = 2.0313 s, S = 
0.0042).

The optimization of the jumping genes probability 
led to very similar values for the set coverage metric 
corresponding to different jumping genes probabilities. 
Therefore, the selection of the optimal JGProb was 
made based on the sol_perf performance index and a 

probability of 0.3 for the jumping genes transposition 
was chosen because it provided the smallest sol_perf 
(sol_perf = 0.0038, Ct = 2.0938 s, S = 0.0036).

The optimized NSGA-II-RJG has better convergence 
time (Ct = 2.0938 s) and better solution diversity (S = 
0.0036) than the optimized NSGA-II (Ct = 13.2031 s, 
S = 0.0040). Nevertheless, the Pareto front obtained 
with NSGA-II dominates the one obtained with NSGA-II-
RJG, as Eqs. 9 and 10 show:

CS(X_NSGA-II-RJG, X_NSGA-II) = 0.042                 (9)

CS(X_NSGA-II, X_NSGA-II-RJG) = 0.51                 (10)

So, the NSGA-II-RJG algorithm with popSize = 100, 
noGen = 300, CrossProb = 0.9, MutProb = 0.5, and 
JGProb = 0.3 has greater performance than NSGA-
II with popSize = 500, noGen = 50, CrossProb = 0.9, 
and MutProb = 0.8, when applied to the multi-objective 
optimization of the polymeric nanoparticles synthesis 
with silicone surfactants. A comparison of the Pareto 
fronts obtained with these optimized values of the 
parameters for the two algorithms is given in Fig. 6.

Fig. 7 illustrates the optimal decision variables 
(surfactant concentration, polymer concentration, and 
storage temperature), corresponding to each point 
from the optimal Pareto front provided by NSGA-II-
RJG with optimized parameter values. The storage 
temperature only influenced the average diameter, 

Table 7. 

Sim. no.
NSGA-II parameters

Ct (s) S
sol_
perfCrossProb MutProb

1 0.1 0.01 45.7744 0.0040 0.0086
2 0.1 0.05 25.6729 0.0041 0.0067
3 0.1 0.20 17.8750 0.0040 0.0058
4 0.1 0.50 16.0000 0.0041 0.0057
5 0.1 0.80 13.1250 0.0045 0.0058
6 0.3 0.01 45.1406 0.0039 0.0084
7 0.3 0.05 23.6094 0.0040 0.0064
8 0.3 0.20 18.8438 0.0040 0.0059
9 0.3 0.50 16.7500 0.0041 0.0058
10 0.3 0.80 13.0938 0.0040 0.0053
11 0.5 0.01 47.4629 0.0047 0.0094
12 0.5 0.05 23.6563 0.0041 0.0065
13 0.5 0.20 17.6738 0.0039 0.0057
14 0.5 0.50 15.5938 0.0040 0.0056
15 0.5 0.80 13.1611 0.0043 0.0056
16 0.7 0.01 48.0781 0.0041 0.0089
17 0.7 0.05 23.7275 0.0041 0.0065
18 0.7 0.20 18.8281 0.0040 0.0059
19 0.7 0.50 15.6094 0.0040 0.0056
20 0.7 0.80 13.1250 0.0046 0.0059
21 0.9 0.01 44.0625 0.0040 0.0084
22 0.9 0.05 24.2969 0.0041 0.0065
23 0.9 0.20 19.3916 0.0040 0.0059
24 0.9 0.50 15.9385 0.0041 0.0057
25 0.9 0.80 13.2031 0.0040 0.0053

The results of the simulations for different values of 
CrossProb and MutProb with popSize = 500 and noGen 
= 50 (convergence time, spacing metric, and solutions 
performance index) for NSGA-II.

Figure 5. Comparison  of  the  Pareto  fronts obtained with NSGA-II  
        and NSGA-II-RJG.

Figure 6. Comparison  of  the  Pareto fronts obtained with NSGA-II  
        and optimized NSGA-II-RJG.
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while the surfactant concentration and the polymer 
concentration had an impact on the both conflicting 
objectives of the optimization. For instance, a surfactant 
concentration of 2 g L-1, a polymer concentration from 
0.9% to 1.02%, and a storage temperature of 4oC led 
to obtaining minimum values for the average diameter, 
resulting in the points from the upper extremity of the 
Pareto front displayed in Fig. 6, for NSGA-II-RJG. The 
points from the middle region of the same Pareto front 
were achieved with a surfactant concentration between 
0.6 and 0.8 g L-1, a polymer concentration between 
0.5% and 0.63%, and a storage temperature of 40oC. 
The minimization of the polydispersity was realised with 

a surfactant concentration between 0.5 and 0.6 g L-1, 
a polymer concentration between 0.55% and 0.67%, 
and a storage temperature of 40oC, creating the lower 
extremity of the Pareto front determined with NSGA-
II-RJG (Fig. 6). The lowest value for the polydispersity 
was achieved using a surfactant concentration 
of 0.5 g L-1, a polymer concentration of 0.53% and a 
storage temperature of 4oC.

After optimizing the values of NSGA-II parameters, 
the insertion of the real-coded jumping genes operator 
with an optimal probability of occurrence did not lead to 
a better diversity of the non-dominated solutions, nor to 
a lower convergence time. These goals were achieved 
after the proper optimization of the parameter values of 
the new NSGA-II-RJG algorithm.

Concluding, we can say that the introduction of the 
jumping genes operator induces an improvement to the 
diversity of the solutions obtained using NSGA-II, only if 
the newly obtained NSGA-II-RJG algorithm is optimized 
at the best values for its parameters. The drawback of 
not obtaining the best non-dominated solutions must be 
taken into account.

Table 9.

Sim. no. JGProb Ct (s) S sol_perf

1 0.1 13.8125 0.0041 0.0055
2 0.3 13.7500 0.0041 0.0055
3 0.5 13.9063 0.0043 0.0057
4 0.7 14.3057 0.0042 0.0056
5 0.9 14.2344 0.0044 0.0058

Table 8. The results of the simulations for different values of CrossProb and MutProb with popSize = 500 and noGen = 50 (set coverage metric)  
      for NSGA-II.

Sim. no.
Current NSGA-II parameters

CS (current, best) CS (best, current)
Best NSGA-II parameters

Cross Prob MutProb CrossProb MutProb

1 0.1 0.01 1.000 1.000 0.1 0.01
2 0.1 0.05 0.250 0.398 0.1 0.01
3 0.1 0.20 0.268 0.430 0.1 0.01
4 0.1 0.50 0.226 0.322 0.1 0.01
5 0.1 0.80 0.158 0.263 0.1 0.01
6 0.3 0.01 0.286 0.386 0.1 0.01
7 0.3 0.05 0.252 0.466 0.1 0.01
8 0.3 0.20 0.250 0.440 0.1 0.01
9 0.3 0.50 0.222 0.400 0.1 0.01
10 0.3 0.80 0.174 0.185 0.1 0.01
11 0.5 0.01 0.292 0.344 0.1 0.01
12 0.5 0.05 0.196 0.402 0.1 0.01
13 0.5 0.20 0.234 0.442 0.1 0.01
14 0.5 0.50 0.182 0.404 0.1 0.01
15 0.5 0.80 0.186 0.286 0.1 0.01
16 0.7 0.01 0.304 0.342 0.1 0.01
17 0.7 0.05 0.298 0.348 0.1 0.01
18 0.7 0.20 0.232 0.420 0.1 0.01
19 0.7 0.50 0.194 0.406 0.1 0.01
20 0.7 0.80 0.204 0.226 0.1 0.01
21 0.9 0.01 0.294 0.306 0.1 0.01
22 0.9 0.05 0.206 0.470 0.1 0.01
23 0.9 0.20 0.244 0.388 0.1 0.01
24 0.9 0.50 0.288 0.344 0.1 0.01
25 0.9 0.80 0.240 0.288 0.1 0.01

0.1 0.01

The results of the simulations for different values of JGProb, 
with CrossProb = 0.9, MutProb = 0.8, popSize = 500, 
and noGen = 50 (convergence time, spacing metric, and 
solutions performance index) for NSGA-II-RJG.
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Table 10. 

Sim. no. Current JGProb CS (current, best) CS (best, current) Best JGProb

1 0.1 1.000 1.000 0.1
2 0.3 0.188 0.285 0.1
3 0.5 0.130 0.410 0.1
4 0.7 0.111 0.339 0.1
5 0.9 0.151 0.339 0.1

0.1

The results of the simulations for different values of JGProb with CrossProb = 0.9, MutProb = 0.8, popSize = 500 and noGen = 50 (set 
coverage metric) for NSGA-II-RJG.

 

 

Figure 7. The optimal decision variables (surfactant concentration, polymer concentration, and storage temperature) corresponding to each 
                             point from the Pareto front obtained using NSGA-II-RJG with optimized parameter values.
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5. Conclusions
PDMS submicron particles were obtained using a 
siloxane-containing surfactant, in various concentrations. 
High PDI values were detected by DLS and the 
dispersions were rather unstable, due to the liquid state 
of PDMS at ambient temperature. Nevertheless, the 
DLS data allowed us to study the influence of different 
parameters on the result of nanoprecipitation, using 
artificial intelligence tools.

The multi-objective evolutionary algorithms, and 
mostly NSGA-II, have been found to be best suited 
for optimizing complex polymerization processes. Still, 
the use of elitism in NSGA-II can cause the decrease 
in population diversity, thus determining the premature 
convergence of the algorithm to a local optimum. 
The jumping genes operator has been introduced in 
NSGA-II as a response to this problem. The freshly 
obtained algorithm, NSGA-II-JG, adds diversity in 
the evolutionary process achieved through NSGA-II. 
Benefits of using elitism are exploited, while genetic 
diversity is maintained.

In this study, a unique real-coded version of NSGA-
II-JG (called NSGA-II-RGJ) has been implemented in 
an original software program and applied to the multi-
objective optimization of the polymeric nanoparticles 
synthesis process. The new real-coded jumping genes 

operator introduced here was based on a random 
mutation and an arithmetic crossover which were 
alternatively applied, depending on the new location of 
the transposition (in the same or another chromosome). 
The results of the multi-objective optimization, compared 
with the ones obtained with NSGA-II, showed that 
NSGA-II-RJG is able to find non-dominated solutions 
with a greater diversity and a faster convergence time 
than NSGA-II, provided that its parameters are optimized 
at their most appropriate value.

The influence of the algorithm parameters was 
evaluated and discussed in detail, demonstrating that 
carefully choosing their values has significant influence 
on the optimization results.

The proposed software implementation is easy to 
manipulate and suitable to a large variety of optimization 
problems with two or more conflicting objectives.
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