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Abstract: Polydimethylsiloxane nanoparticles were obtained by nanoprecipitation, using a siloxane surfactant as stabilizer. Two neural
networks and a genetic algorithm were used to optimize this process, by minimizing the particle diameter and the polydispersity,
finding in this way the optimum values for surfactant and polymer concentrations, and storage temperature. In order to improve
the performance of the non-dominated sorting genetic algorithm, NSGA-II, agenetic operator was introducedinthis study —the transposition
operator — “real jumping genes”, resulting NSGA-II-RJG. It was implemented in original software and was applied to the multi-objective
optimization of the polymeric nanoparticles synthesis with silicone surfactants. The multi-objective function of the algorithm included
two fitness functions. One fitness function was calculated with a neural network modelling the variation of the particle diameter on
the surfactant concentration, polymer concentration, and storage temperature, and the other was computed by a neural network
modelling the dependence of polydispersity index on surfactant and polymer concentrations. The performance of the software program
that implemented NSGA-II-RJG was highlighted by comparing it with the software implementation of NSGA-Il. The results obtained
from simulations showed that NSGA-II-RJG is able to find non-dominated solutions with a greater diversity and a faster convergence

time than NSGA-II.
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1. Introduction

The interest in polymeric nanoparticles is increasing due
to their potential applications, for example as drug carriers
[1-3]. Polymer nanoparticles may be obtained using
surfactants for their stabilization, in physical processes as
well as in chemical reactions. Another approach is based
on self-assembling of block copolymers in selective
solvents, when polymeric micelles are formed [4-9].

The special properties of polysiloxanes are well-
known: they are hydrophobic and soluble in non-polar
solvents, they have very high chain flexibility, very low
Tg, low cohesive energy, very low surface tension, good
thermal stability, resistance to UV radiation and to ozone.
They are also non-toxic materials, with physiological
inertness and have many medical applications [10-12].
Polysiloxanes could be valuable candidates for the
encapsulation of hydrophobic drugs into nanoparticles,
but their liquid state at room temperature may be

a drawback for their colloidal stability. Some of our
experiments showed that polydimethylsiloxane (PDMS)
nanoparticles obtained by nanoprecipitation collapse
after drying, although they are stable in water dispersion
[13].

The principles of nanoprecipitation have been
described for the first time by Fessi et al. [14]; they
showed that the use of one solvent with unlimited water
miscibility (acetone, ethanol or THF) can lead to the
spontaneous formation of nanoparticulate pseudolatex
dispersions, provided that the polymer is insoluble in
the resulting water/solvent mixture [14-17]. We used this
simple process in order to obtain polymer nanoparticles
with various cores [18,13,19], in the presence of original
siloxane surfactants.

Based on our observation that nanoparticles from
linear polysiloxane have limited stability [13], we proposed
a method of cross-linking to eliminate this drawback [19].
Nevertheless, in general the particles size and stability
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depends on many factors [15], from which concentration
and solvent/water ratio are very important.

The optimization of a polymerization process is
usually a multi-objective problem, as it often involves a
series of incommensurable and contradictory objectives
which must be satisfied at the same time. Multi-objective
evolutionary algorithms (MOEA) have attracted the
attention of many researchers in various fields, precisely
because of their effectiveness and robustness in finding
a set of compromise solutions between divergent
and incommensurable objectives. Moreover, their
applications have become very popular over the last few
years [20-23].

The most popular and efficient algorithm for multi-
objective optimization, which provides a set of Pareto
optimal solutions, is the non-dominated sorting genetic
algorithm (NSGA) with its two versions: NSGA-I and
NSGA-II [24]. As an enhancement to NSGA-I, NSGA-II
introduces the concept of elitism — the preservation of
the best individuals through the evolutionary process —
which leads to a faster convergence of the algorithm.
The advantages of NSGA-II have been revised by [25]
and its effectiveness in the multi-objective optimization of
complex polymerization processes has been highlighted
in a series of applications [26-28].

Unfortunately, the use of elitism leads to the
decrease in the population diversity which can cause
the premature convergence of the algorithm to a local
optimum. The artificial genetic operator — “jumping
genes” (JG) — has been introduced in NSGA-Il as
a response to this problem [29]. Its origins lie in the
paper of McKlintock [30] who stated that DNAs, known
as transposons or jumping genes, can jump from a
chromosome to another or in the same chromosome, by
changing their location.

The main feature of the obtained algorithm, NSGA-II-
JG, consists of a simple operation in which a transposition
of one or more genes is induced in the same or another
chromosome, in the genetic algorithm. The novelty of
this technique is that it allows gene mobility in the same
chromosome or even in the neighbouring chromosomes
in the search for optimal non-dominated solutions, in the
context of multi-objective optimization problems.

NSGA-II-JG has been successfully used by
researchers in optimizing polymerization processes
[31,32], butonlyinits binary-coded version. Nawaz Ripon
et al. [33] implemented a real-coded version of NSGA-
[I-JG (noted RIGGA) and compared it with its binary-
coded version and other multi-objective evolutionary
algorithms, using a series of benchmark test functions.
RJGGA performed better than other MOEAs in finding

non-dominated solutions with greater diversity and
convergence.

In this study, we analyze the influence of
surfactant and polymer concentrations and storage
temperature on the result of nanoprecipitation of a
linear polydimethylsiloxane (PDMS), with instruments of
artificial intelligence. A series of polymer nanoparticles
was obtained, using the same siloxane surfactant.
The particle dispersions have been analyzed by DLS
(dynamic light scattering) and the resultant information
on average diameter and polydispersity index of the
particles has been interpreted and modelled with artificial
intelligence tools.

Our main purposes were to investigate the
efficiency of the anionic surfactant in stabilizing PDMS
nanoparticles, to obtain useful information for optimizing
the process, and to verify the applicability of artificial
intelligence methods for modelling and optimization of
the PDMS nanoprecipitation.

For the last goal, a new application of NSGA-II-JG,
in a real-coded version (NSGA-II-RJG), was proposed
and applied to the multi-objective optimization of
the polymeric nanoparticles synthesis with silicone
surfactants. The aim of the optimization was to
simultaneously minimize the particle diameter and
the polydispersity by determining the optimal decision
variables: the surfactant concentration, the polymer
concentration, and the storage temperature. The
genetic operators used here were different than those
used by Nawaz Ripon et al. [33], the real coded NSGA-
[I-JG being implemented in original software. The
vectorial objective function included in the algorithm
was calculated with two optimized neural networks
(NNs) corresponding to the two fitness functions. One
neural network modelled the variation of the average
diameter on the concentration of surfactant, polymer
concentration, and storage temperature, and the other
modelled the dependence of polydispersity on surfactant
and polymer concentrations.

A new formula was constructed for the quantification
of the performance of the two neural networks.

The performance of the software program that
implemented the new NSGA-II-RJG was highlighted by
comparing it with the software implementation of NSGA-
I, applied to the same polymerization process. In order
to evaluate the two algorithms, a series of standard
performance metrics measuring the convergence
time, the proximity to the Pareto optimal front, and the
distribution of non-dominated solutions throughout the
Pareto front, were used.
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2. Experimental procedure

2.1. Materials

Polydimethylsiloxane (PDMS) (Scheme 1) with
average viscometric molecular weight, Mv = 350 000,
was obtained by the adapted literature method [34],
i.e., bulk anionic ring opening polymerization of the
octamethyl-cyclotetrasiloxane (D,) in presence of
tetramethylammonium hydroxide as catalyst and a
Lewis base (DMF) as promoter.

The reaction occurred under a steady stream of
nitrogen at 80°C for 90 min. After 1 h, the temperature
was raised at 150°C to decompose the catalyst, and then
vacuum was applied, while maintaining this temperature,
in order to remove the equilibrium cyclic compounds. The
molecular mass of the resultant polymer was evaluated
by viscometry.

The surfactant, pentamethylsebacomethyldisiloxane
potassium salt (Scheme 1) was obtained according
to Racles et al. [13]. Equimolar amounts of sebacic
acid and potassium sebacate were dispersed
in DMF, and then the stoichiometric amount of
pentamethylchloromethyldisiloxane was added.
After 22 h of stirring at 130°C, KCI was filtered off
and the crude acid was recovered by precipitation in
water, filtration and washing. The acid was purified by
washing with diethyl ether and subsequent extraction
with benzene. The potassium salt was obtained by
titration, using 0.1 N KOH solution, followed by removal
of water.

The surface properties, ie., critical micelle
concentration (CMC) and equilibrium surface tension
(y) were measured by tensiometry, with a Sigma 700
automatic tensiometer from KSV. The values obtained
were: CMC =0.087 g L, y =39.6 mN m™.

2.2. Preparation of nanoparticles
As a general procedure, 3 mL of a THF solution
containing PDMS in different concentrations was
added via a syringe into 6 mL of an aqueous solution
of surfactant (various concentrations, according
to Table 1), under mild stirring, at room temperature.
After 15 minutes, the stirring was stopped for another
30 minutes, then the THF and an amount of water were
removed on rotatory evaporator. The resulting aqueous
dispersions containing approximately 3% PDMS
particles were stored for 48 hours either at 4°C or at
40°C, prior to DLS analyses.

In Table 1, C_is the concentration of surfactant,
Cp is the concentration of polymer, T - the storage
temperature, Z__ - the average diameter (measured in

ave

nm), and PDI — the polydispersity index.
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H.C—Si i—C~ "kt
CTP ST O (CHJgO K
H:C CH, o) 0
Surfactant
Scheme 1. Chemical structures of the core polymer and of the
surfactant.

2.3. Methods

Particles size (average diameter) and distribution
(polydispersity index) were determined by DLS on a
Malvern Zetasizer NS (Malvern Instruments, UK), which
uses non-invasive backscatter detection (NIBS) (173°)
and laser wavelength of 633 nm. The concentrated
dispersions of nanoparticles were measured without
further dilution. The autocorrelation signal was analyzed
by the method of cumulants, giving the z-average
diameter of the particles and the polydispersity index
(according to 1ISO13321 Part 8).

3. Multi -
procedure

The core of the optimization procedure was the
enhanced real coded NSGA-II, namely NSGA-II-RJG.
New elements were added to the algorithm so that it
would be distinguished from the well known NSGA-II-
JG. The real coding was used because it eliminates a
series of drawbacks related to the continuous search
space of the studied problem [35]. Consequently, the
genetic operators used in the algorithm were adapted to
the real coding of the solutions.

The genetic operator, jumping genes, manifests
as a horizontal transmission of the genes, through
two kinds of operations: copy and paste and cut and
paste. In the binary coding, each chromosome has
several consecutive genes that are selected for creating
a transposon. The transposon is either copied and
inserted in another position or removed from its original
location and inserted in a new one.

Due to the use of real coding in the representation
of the solutions, the transposition operators (copy and
paste and cut and paste) must be redefined because, if
these operators are used in their standard versions, the

objective optimization
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Table 1. DLS data for PDMS nanoparticles prepared in various conditions.

Sample | C, (g L) C (weight %) samplezsavgt(t;‘r:‘t?l at4aec PDI  Stability sample:a:tg:::i)at 40°C
1 1 0.5 374 0.382 yes 289

2 1 0.75 374 0.317 yes 362

3 1 1 555 0.347 yes 571

4 1 15 781 0.719 no 401

5 1 2 520 0.467 no >> 10 micron
6 2 0.5 271 0.402 yes 240

7 2 0.75 221 0.236 yes 255

8 2 1 215 0.446 yes 332

9 2 1.5 212 0.441 no 347

10 0.5 0.5 302 0.263 yes 302

11 0.5 0.75 262 0.271 yes 263

12 0.5 1 272 0.264 yes 272

13 0.5 1.5 416 0.701 no 366

new individuals produced will be corrupted and unusable.
Therefore, the jumping genes operator was implemented
as a random mutation or an arithmetic crossover,
depending on the new position of the transposon (in
the same chromosome or in another chromosome,
respectively) and the number of chromosomes used
(one or two chromosomes). This implementation of the
jumping genes operator differs from the one proposed
by Nawaz Ripon et al. [33] through the fact that it uses
other types of mutation and crossover and the two
chromosomes representing the operands are both
selected at the beginning of the operation. The random
mutation used here is an equivalent of the macro-macro
mutation used by Kasat and Gupta [29] for the binary
jumping genes transposition. Fig. 1 schematically
shows how the real jumping genes transposition was
constructed.

The jumping genes operator was introduced in
NSGA-Il after the selection process and before the
arithmetic crossover operation.

Chromosomes (solutions) with two real-coded
genes, corresponding to the two of the decision variables
(surfactant concentration and polymer concentration),
were used in the proposed software implementation
of NSGA-II-RJG algorithm. The boundaries of the
decision variables were included in their encoding. The
ranking method was used for the selection of a new
population and the selection through tournament was
performed for choosing the parents of a new individual.
The mutation operation consisted in resetting the value
of the gene at a random value between its minimum and
maximum limits. The arithmetic crossover with a single
point, different for each gene, used in the algorithm,
generated a random real value in the range from 0 to
1 to represent the amount of information taken from the
mother chromosome, the rest of the information being
taken from the father chromosome. The stop condition

of the evolutionary iterations was the achievement of the
preset maximum number of generations.

In the pseudocode presented below, popSize
represents the number of chromosomes in a population
and noGen is the maximum number of generations.
JGProb represents the probability for a jumping genes
transposition to take place. In a similar way, CrossProb
signifies the probability for a crossover operation to
happen and MutProb — the probability for a mutation
operation to be executed. TourSize designates the
number of chromosomes that are candidates for the
selection of a parent chromosome through tournament.

The steps describing the working principle of the
proposed software implementation for NSGA-II-RJG,
as adapted for the studied multi-objective optimization
problem, are presented next:

1) Load the parameters of the problem: popSize,
noGen, TourSize, CrossProb, MutProb, JGProb.

2) Initialize the population of chromosomes with real
random values in the specified bounds. Compute the
fitness for every chromosome using NN model. Number
of generations = 0.

3) Sort the population of chromosomes using non-
dominated Pareto fronts according to the fitness. Assign
crowding distance to every chromosome based on a
ranking matrix constructed from the partial fitness of
every chromosome.

4) Obtain popSize child chromosomes by selecting
parents based on rank and crowding distance and
by applying jumping genes, crossover and mutation
operators. Create a new temporary population of size
2*popSize formed half from chromosomes representing
the parents’ generation and half from chromosomes
representing the childrens’ generation. Execute step 3.

5) Select a new population of popSize chromosomes
based on Pareto dominance and crowding distance. The
number of generations increases with 1.
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6) If the number of generations is lower than noGen,
then go to step 4, else go to step 7.

7) Get the solution vector - the non-dominated Pareto
optimal front.

8) Calculate the average diameter and the
polydispersity index using the two neural models.
Compute the performance metrics.

9) Print the solutions: the optimal decision variables
(surfactant concentration, polymer concentration, and
storage temperature) and the corresponding average
diameter and polydispersity.

In order to define Pareto dominance, we say that a
chromosome dominates another chromosome if all its
partial fithess functions are greater than or equal to those
of the other chromosome and one is strictly greater.

The multi-objective vectorial function used by
the genetic algorithm was composed by two fitness
functions:

fC, C, T =(-2Z,, - PDI) )

The goalofthe optimization procedure was tominimize
the average diameter and the polydispersity by finding
the optimal decision variables (the concentrations of
surfactant and polymer, and the storage temperature).
The boundaries for the decision variables, derived from
the experimental data set, were:

C;:05-2gL", C;0.5-2%, T: 4°C or 40°C 2)

Because in the experiments there were only two
values used for the storage temperature, this decision
variable was not encoded in the chromosomes, its
optimization being achieved just by choosing the value

that led to the best fitness function. Moreover, due to
the fact that the polydispersity had the same value for
the two different values of the storage temperature, this
reaction condition was not considered as input to the
neural network modelling the polydispersity.

The neural network used for modelling the
dependence of the average diameter on the surfactant
concentration, polymer concentration, and storage
temperature was a multilayer perceptron (MLP) with
three inputs and one output. Likewise, the neural
network modelling the variation of the polydispersity
index on surfactant and polymer concentrations was a
multilayer perceptron with two inputs and one output.

The parameters of the neural networks were
optimized in order to obtain maximum performance for
the neural models. The methodology used here was
developed in a previous study [36]. Data from the input
file for the neural networks was randomized and divided
into 80% training data set and 20% testing data set.
The input file used for constructing the neural networks
consisted of 49 experimental data sets, 26 of them
being presented in Table 1 (half obtained at a storage
temperature of 4°C and half at 40°C). The remainder of
the 49 data sets represent supplementary experiments
needed for achieving a sufficient number of training and
testing data (Table 2).

The training was stopped when the mean squared
error for the training data set decreased beyond a
certain threshold (0.001) or the maximum number of
training epochs (1000) was reached.

The minimum mean squared error at training
(MinMSEtrain), the mean squared error at testing
(MSEtest), and the linear correlation coefficient at testing
(r) were considered as performance indices. A neural

Select mother and father chromosomes

No

Y
.

No__—fandom no.< JGProb =

return return
father mother

(mother, father)

Figure 1. Flowchart of the jumping genes transposition.

child = crossover N Y

child = mutation
(mother)

child = mutation
(father)

AR

'

return
child
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Table 2. supplementary experimental data added to the input file for training and testing the neural networks.

Sample | C, (gL7) C, (weight %) samplezsavgt(t;‘r:é at 4°C PDI sample:agtt()?;?i)at 40°C
1 0.50 2.00 728 0.702 389
2 0.75 0.50 295 0.315 220
3 0.75 0.75 273 0.276 271
q 0.75 1.00 282 0.285 430
5 0.75 1.50 695 0.723 468
6 0.75 2.00 757 0.659 367
7 1.50 0.50 734 0.523 309
8 1.50 0.75 668 0.432 358
9 1.50 1.00 469 0.523 416
10 1.50 1.50 279 0.473 369
11 1.50 2.00 333 0.374 342
12 2.00 2.00 309 0.490 345

network with high generalization ability must have a
correlation coefficient at testing close to 1 and the mean
squared errors at training and testing close to 0. Thus,
for the quantification of the networks performance, the
following formula was constructed:

perf_index = r — (MinMSEtrain + MSEtest) (3)

The greater the value of perf_index is, the better the
performance of the network.

For evaluating the global performance of the
algorithm and for comparing NSGA-Il with NSGA-
II-RJG, the convergence time was measured by
calculating the time taken by the algorithm to reach the
preset maximum number of iterations/generations. The
proximity to the Pareto optimal front was determined by
using the set coverage metric [22] and the distribution
of non-dominated solutions throughout the Pareto front
was evaluated with the spacing metric [22], where the
Euclidean distance was used as distance measure.

The set coverage metric (relative coverage
comparison of two sets) was calculated with the following
formula:
ffa"e X" 3a'e X' a' > a"}

X “

CS(X', X") =

where X', X" are two sets of solution vectors. CS maps
the ordered pair (X', X") to the interval [0, 1]. CS(X", X")
is the ratio of solutions from X" vector that are weakly
dominated by at least one of the solutions from X’
vector. CS(X’, X") = 1 means that all points in X" are
weakly dominated by the solutions in X". The opposite,
CS(X', X") = 0, represents the situation when none of
the solutions in X" are covered by the set X" Since
the domination operator is not symmetric, CS(X’, X")
is not necessarily equal to 1 — CS(X', X"). Therefore,
both CS(X’, X") and CS(X’, X") need to be considered.
The set coverage metric can be regarded as a percentage

of the amount of elements from the X" solution vector
that are equal with or dominated by at least one of the
elements from the X' vector. If, for example, CS(X’, X")
is greater than CS(X’, X"), it means that there are more
dominated solutions in X" than in X', so X'is considered
better than X" and closer to Pareto optimal front.

The spacing metric was calculated as:

sz\/Li(d,, -d,Y (5)

P14

where PF is the solution vector (Pareto front), d, is
the Euclidean distance (measured in objective space)
between solution ie PF and the next consecutive
solution in PF, and d  is the mean value of the above
measured distances. S numerically describes the spread
of solutions in the Pareto front. When S = 0, all solutions
are spaced evenly apart. Thus, an algorithm having a
smaller S is better.

A performance metric combining the convergence
time and the spacing metric was used as a solutions
performance index:

sol_perf=0.001*C,+0.999 * S (6)

where C, is the convergence time and S is the spacing
metric. sol_perf represents a weighted sum, where the
weight for the convergence time was chosen to be 0.001
in order to scale its values (expressed in seconds) in the
same range as the range of the values obtained for the
spacing metric. Accordingly, the weight for the spacing
metric was 0.999, because it was considered more
important to have a uniform spread of the solutions
in the Pareto optimal front, than to have a very fast
convergence time. The more sol_pref decreases to 0,
the better are the convergence time and the spread of
the solutions along the optimal Pareto front.
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An evaluation technique based on the set coverage
metric was developed in order to find the most
dominant Pareto front from those obtained with different
combinations of values for NSGA-Il and NSGA-II-RJG
parameters. The evaluation technique started with the
first obtained Pareto front and compared it with the next
obtained one, using the set coverage metric. The front
with the greater set coverage metric was chosen for the
comparison with the next achieved Pareto front. The
comparisons continued until the most dominating Pareto
front was found. This evaluation technique was based
on the property of transitivity of the Pareto dominance
relation [22]. The non-dominated sorting arranges the
points in the objective space in a strict partial order.

It is important to emphasize that solving the multi-
objective optimization problem with a vectorial algorithm,
particularly NSGA-II-RJA, which provides a set of
equally good optimal solutions, is a better alternative
instead of obtaining a unique optimal solution with a
scalar approach [37,38].

4. Results and discussion

PDMS nanoparticles have been prepared following,
in general terms, the principles of nanoprecipitation
[14-17]. We used an organic solvent which is miscible
with water and has a lower boiling point than water.
The organic solution was injected under pressure in
an aqueous solution of a siloxane-based surfactant,
and then the organic solvent was removed by vacuum
distillation.

An anionic low molar mass surfactant was used
(Scheme 1) for the stabilization of the particles. The
concentration of the surfactant solutions was variable in
our set of experiments, but in all the cases it was higher
than the measured CMC. The concentration of the
organic phase was also varied, but the phase volume
ratio was maintained constant.

The results of the nanoprecipitation experiments
were firstly assessed visually, then the dispersions
were analyzed by DLS in order to acquire information
on particles size (average diameter, Z_ ), polydispersity
(polydispersity index, PDI) and stability. The stability
was estimated by the absence of large particles
(above 1 micrometer). If such particles were present in
more than 10% (by intensity), we considered the system
unstable (collapsed). The visual observation during and
after the preparation of the particles was in agreement
with the DLS results: massive precipitation was
observed for the same samples when the above stability
criterion was not accomplished. For these samples, the
precipitate was removed and only the water dispersions
were analyzed.

Some examples of the obtained distribution curves
are presented in Fig. 2. In these examples, samples
7 and 10 were considered stable, while sample 5 was
considered unstable. In Table 1 the DLS results are
collected. There are a few comments that may be made
while analyzing these data and all the DLS curves:

» Submicronic particles were formed in most of the
tested conditions.

* The tested surfactant concentrations were sufficient
to stabilize PDMS particles.

« For initial polymer concentrations equal to or higher
than 1.5%, the nanoprecipitation failed (the particles
were not stable).

» The smallest stable particles were obtained for
sample 7.

» Multimodal curves and high PDI were obtained for
most of the samples, probably due to the coalescence
tendency of the soft material used as particles core.

It is interesting to observe that the particles obtained
with 2 g L"and 0.5 g L surfactant had average diameter
less than 300 nm, while those obtained with 1 g L™ were
larger. The reason for this result is still not understood.
Nevertheless, it is worth mentioning that this surfactant
may be used effectively for the stabilization of PDMS
nanoparticles in concentration as low as 0.5 g L.

As mentioned before, PDMS is a soft material at
ambient temperature (Tg = -123°C) and,consequently,
its nanoparticles have a natural tendency to collapse.
That is why this polymer cannot lead as such to long
term stable nanoparticles, although certain stability
can be obtained. Nevertheless, improved results in
terms of size and stability may be obtained by cross-
linking of PDMS or by encapsulating different solid
materials (which could open very attractive application
perspectives).

On the other hand, its instability imparts to the
system a pronounced lack of predictability, making it
suitable for complex investigations with the instruments
of artificial intelligence. We focused on two very
important parameters for nano/micro-particles, which
are the size and the distribution (polydispersity). Usually,
in practice, small particle and narrow size distribution
are key requirements. Many properties are dictated by
the particle size, thus more reliable characteristics are
obtained for narrow polydispersity. On the other hand,
the stability of the system increases for narrow size
distribution, since phenomena like Ostwald ripening
and collapse are minimized. Small particles mean large
specific area. In our case, the particle size cannot be
very low, as observed in our previous work with the
same technique and polymers. However, we aim for the
submicron range of the particle size, for stability and
application reasons.
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In order for NSGA-Il and NSGA-II-RJG to have
maximum performance, the neural model used for
calculating the fitness functions of the algorithms must
be the optimum one. Using the methodology developed
in a previous study [36] and shortly described in
section 3, “Multi-objective optimization procedure”,
a series of neural networks with optimal values for the

The criterion used in selecting the best combination
of parameter values was based on the most convenient
compromise that could be done between the level
of dominance of the Pareto front (indicated by the
set coverage metric) and the solutions performance
(quantified through sol_perfindex) achieved when using
the tested combination of values.

parameters was obtained. It has been observed that
using two separate neural networks, with one output
each, led to better results than those obtained with a
two outputs network, for modelling the average diameter
and the polydispersity, depending on the concentration i
of surfactant, polymer concentration, and storage
temperature.

The results of the “Vary a parameter” training
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Figs. 3 and 4 for the modelling of the average diameter
and of the polydispersity, respectively. "

The obtained neural models were included in 8
NSGA-Il and then the multi-objective optimization of
the polymeric nanoparticles synthesis was performed,
searching at the same time the optimal parameters for
the genetic algorithm. After obtaining the optimal values

Sample 7
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The convergence time, the spacing and the set coverage
performance metrics [22] proved to be very useful in
these approaches.

Sample 10

Figure 2. Results of DLS analysis for selected PDMS particles
dispersions.

Table 3. The results of the simulations for optimizing the number of hidden neurons for the neural network modelling the average diameter.

Sim. no. No. of hidden neurons / epochs Z_ . MinMSEtrain Z_  _ MSEtest zZ..r Z_ . perf_index
1 9/1000 0.0013 0.0018 0.9420 0.9389
2 7/1000 0.0012 0.0041 0.9026 0.8973
3 8/1000 0.0013 0.0027 0.9251 0.9211
4 9/862 0.0010 0.0044 0.8876 0.8822
5 9/780 0.0010 0.0008 0.9788 0.9770
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Table 4. The results of the simulations for optimizing the number of hidden neurons for the neural network modelling the polydispersity.

Sim. no. No. of hidden neurons / epochs PDI MinMSEtrain PDI MSEtest PDIr PDI perf_index
1 6/845 0.0010 0.0049 0.9686 0.9627
2 6/755 0.0010 0.0297 0.4253 0.3946
3 5/913 0.0010 0.0370 0.8759 0.8379
4 5/979 0.0010 0.0095 0.8065 0.796
5 9/530 0.0010 0.0112 0.7643 0.7521
08 number of generations. As expected, the convergence
07 time increased with the increase in population size and
5 06 in the maximum number of generations.
‘GE'i 05 Table 6, like all the tables in this paper which illustrate
g 0.4 the values obtained through the evaluation technique
© 03 based on the set coverage metric, must be analyzed by
? 0.2 - tracking the way in which it was constructed, along the
% 0.1 - simulations with different combinations of values for the
0 - parameters of the genetic algorithms. Every simulation
T2z 3 E‘;(emf;:lars T8 9 led to obtaining a different Pareto front. At the beginning
mZ Average Desired DZ-Average NN Output of the evaluation technique based on the set coverage

J

Figure 3. The testing results of the neural network modelling
the average diameter for unseen data.
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Figure 4. The testing results of the neural network modelling
of the polydispersity for unseen data.

The convergence time of the optimization procedure
was computed with a 2.4 GHz processor. For all the
simulations and tests of the two algorithms analyzed in
this study, the tournament size (TourSize) was 3.

A series of simulations with the crossover probability
set to 0.9, the mutation probability of 0.03, different
values for the population size (namely 10, 50, 100, 300,
and 500) and, also, different values for the maximum
number of generations (namely 50, 100, 300, 500, and
1000) were performed. The results of the simulations
can be observed in Tables 5 and 6, the best of them
being highlighted in bold (simulations number 21 and
23, respectively). Table 5 shows the convergence time,
the spacing metric, and the solutions performance index
achieved when using NSGA-Il with different combinations
of values for the population size and the maximum

metric, the first obtained Pareto front was considered the
best and it was compared with itself. This is why the first
row in Tables 6, 8, and 10 had the same combination
of parameter values in the columns “Current NSGA-II
parameters” or “Current JGProb” and in the columns
“Best NSGA-II parameters” or “Best JGProb”. The rows
of these tables were filled simulation by simulation. In
the columns named “Current NSGA-Il parameters”
or “Current JGProb”, Tables 6, 8, and 10 present the
combination of values for the parameters which provided
the current Pareto front, namely the Pareto front currently
taken into consideration for comparison. This front was
compared with the best Pareto front obtained until the
currentfrontwas obtained. The combination of parameter
values corresponding to the best obtained Pareto front
are listed in the columns “Best NSGA-Il parameters”
or “Best JGProb”. The result of each comparison was
listed in these columns, on the next line, below the pairs
of parameters being compared at the time. So, each
newly obtained Pareto front was confronted with the
best Pareto front obtained until the comparison and the
combination of parameter values, corresponding to the
new best Pareto front, was written on the next row, in the
“Best NSGA-II parameters” or “Best JGProb” columns.
This is the reason why these columns have an extra
row, as a result of the last comparison.

After applying the performance evaluation technique
based on the set coverage metric, the best parameter
values proved to be popSize = 500 and noGen = 1000.
Butforthese values, the sol_perfmetric was considerably
high compared with the ones obtained with other values
for population size and maximum number of generations.
Thus, the next combination of parameter values, from the



R. Furtuna, S. Curteanu, C. Racles

bottom rows in “Best NSGA-Il parameters” column from
Table 6, with a corresponding small sol_perf (0.0067) in
Table 5, was chosen, namely popSize = 500 and noGen
=50 (C, = 26.9219 s, S = 0.0040).

With the population size set to 500 and the maximum
number of generations setto 50, the crossover probability
(taking, one by one, the values 0.1, 0.3, 0.5, 0.7, and
0.9) and the mutation probability (with the values 0.01,
0.05, 0.2, 0.5, and 0.8) were varied in order to find
their optimal rates. The simulations revealed that the
convergence time decreased with the increase in the
mutation probability. The results of the simulations can
be observed in Tables 7 and 8, the best results being
highlighted in bold (line 25 in both tables).

Table 7 depicts the values for the convergence
time, the spacing metric, and the solutions performance
index provided by NSGA-II with different combinations
of values for the crossover probability and the mutation
probability.

The results of the performance evaluation technique
based on the set coverage metric indicated that the best
parameter values were CrossProb = 0.1 and MutProb
= 0.01, as can be seen in the last row of Table 8. But
the sol_perf (0.0086) corresponding to these values
was considerably higher than the sol_perf obtained with
other combinations of values. It was also higher than the
best sol_perf achieved when optimizing the population
size and the maximum number of generations.
Therefore, because the Pareto front resulted when using
CrossProb = 0.1 and MutProb = 0.01 dominated all the
Pareto fronts obtained with the other combinations of
parameter values, the selection of the best combination
was mainly based on the sol_perf metric. The smallest
sol_perf (0.0053) was achieved with CrossProb = 0.3
and MutProb = 0.8 and also with CrossProb = 0.9 and
MutProb = 0.8. The Pareto fronts obtained with the two
pairs of parameter values dominated 17.4% and 24%,
respectively, of the solutions from the most dominating
Pareto front. So, CrossProb = 0.9 and MutProb = 0.8
(Ct =13.2031 s, S = 0.0040) were considered the best
values for the crossover probability and the mutation
probability.

The simulations continued with the introduction
of the jumping genes operator in NSGA-Il. The same
optimization technique used for the parameters of
NSGA-II was applied to the jumping genes probability
by varying its value from 0.1 to 0.9 (0.1, 0.3, 0.5, 0.7,
and 0.9), through a series of simulations. Table 9
presents the values obtained for the convergence time,
spacing metric, and solutions performance index. The
best results were obtained at simulation number 1,
highlighted in bold in the table.

Table 5. The results of the simulations for  different values
of popSize and noGen with CrossProb = 09
and MutProb = 0.03 (convergence time, spacing metric,
and solutions performance index) for NSGA-II.

NSGA-II
Sim. no. parameters C, (s) S sol_perf
popSize noGen
1 10 50 0.0781 0.0037 0.0037
2 10 100 0.0938  0.0048 0.0048
3 10 300 0.3281 0.0037 0.0037
4 10 500 0.6250  0.0025 0.0026
5 10 1000 11719 0.0048 0.0049
6 50 50 0.4063  0.0042 0.0042
7 50 100 0.8750  0.0046 0.0047
8 50 300 2.7354  0.0053 0.0056
9 50 500 4.6484  0.0042 0.0047
10 50 1000 9.1563  0.0009 0.0018
11 100 50 11719  0.0045 0.0046
12 100 100 2.3281 0.0038 0.0040
13 100 300 7.4531 0.0043 0.0050
14 100 500 12.3760 0.0043 0.0055
15 100 1000 24,7656  0.0041 0.0066
16 300 50 9.0938  0.0042 0.0051
17 300 100 18.4531  0.0042 0.0060
18 300 300 56.4375 0.0042 0.0098
19 300 500 91.6777  0.0041 0.0133
20 300 1000 171.8457 0.0041 0.0213
21 500 50 26.9219 0.0040 0.0067
22 500 100 56.7031  0.0041 0.0098
23 500 300 171.7217  0.0040 0.0212
24 500 500 292.1416  0.0040 0.0332
25 500 1000 606.5801 0.0041 0.0648

Table 10 contains the values obtained for the
set coverage metric along with the best value for the
jumping genes probability, highlighted in bold, in the last
line of the table.

Because the set coverage metric showed that
the best jumping genes probability was 0.1 and the
solutions performance index corresponding to this
value was the minimum one (sol_perf = 0.0055,
Ct = 13.8125 s, S = 0.0041), the JGProb used in the
multi-objective optimization with NSGA-1I-RJG was 0.1.

After introducing the jumping genes operator in the
optimized real coded NSGA-II with the best jumping
genes probability, the results obtained when optimizing
the polymeric nanoparticles synthesis process with
NSGA-Il  and NSGA-II-RJG, respectively, were
compared.

By calculating the set coverage metrics for the Pareto
fronts obtained with the two algorithms, the result was
that the solution vector achieved by NSGA-Il dominates
the solution vector obtained by NSGA-II-RJG, because
CS(X_NSGA-Il, X_NSGA-II-RJG) > CS(X_NSGA-II-
RJG, X_NSGA-Il) (see Egs. 7 and 8).
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Table 6. The results of the simulations for different values of popSize and noGen with CrossProb = 0.9 and MutProb = 0.03 (set coverage

metric) for NSGA-II.

Sim. no. Current -NSGA-II parameters CS (current, best) CS (best, current) Best NS-GA-II parameters
popSize noGen popSize noGen
1 10 50 1.000 1.000 10 50
2 10 100 0.500 0.000 10 50
3 10 300 0.200 0.100 10 100
4 10 500 0.000 0.100 10 300
5 10 1000 0.200 0.200 10 300
6 50 50 0.400 0.020 10 300
7 50 100 0.200 0.240 50 50
8 50 300 0.220 0.120 50 50
9 50 500 0.080 0.160 50 300
10 50 1000 0.020 0.480 50 300
11 100 50 0.200 0.170 50 300
12 100 100 0.350 0.230 100 50
13 100 300 0.180 0.310 100 100
14 100 500 0.200 0.280 100 100
15 100 1000 0.250 0.160 100 100
16 300 50 0.460 0.203 100 1000
17 300 100 0.383 0.227 300 50
18 300 300 0.313 0.183 300 100
19 300 500 0.193 0.287 300 300
20 300 1000 0.260 0.283 300 300
21 500 50 0.340 0.302 300 300
22 500 100 0.268 0.432 500 50
23 500 300 0.380 0.296 500 50
24 500 500 0.282 0.378 500 300
25 500 1000 0.326 0.312 500 300
500 1000
CS(X_NSGA-II-RJG, X_NSGA-Il) =0.126 (7) of the researchers with the jumping genes operator).
The population size and the maximum number of
CS(X_NSGA-Il, X_NSGA-II-RJG) = 0.336 (8) generations were varied in the same way as for the

The convergence time and the spacing metric
achieved with NSGA-II-RJG (Ct = 13.8125 s, S =
0.0041) were slightly higher than the ones obtained with
NSGA-II (Ct =13.2031 s, S = 0.0040). Therefore, it can
be stated that, for the particular problem studied here,
the introduction of the jumping genes operator does not
lead to the improvement of the solutions diversity or to
the decrease in the convergence time of the algorithm.
This result reinforces the conclusion which emerges
from the theoretical comparative study done by Nawaz
Ripon et al. [33], namely that the efficiency of the jumping
gene operator, in its real-coded version, depends on the
problem to which it is applied.

Fig. 5 shows a comparison of the Pareto fronts
obtained with the two algorithms. The discontinuity in
the obtained Pareto fronts is due to the disconnected
regions in the solutions search space.

Additional optimizations were performed on the
values of the NSGA-II-RJG parameters starting with a
jumping genes probability of 0.5 (the value used by most

NSGA-II algorithm and the results were evaluated with
the same performance metrics (convergence time,
spacing metric and set coverage metric).

Considering that the values obtained for the
set coverage metric, corresponding to different
combinations of values for popSize and noGen, were
almost similar (with few exceptions), sol_perf was the
index regarded as being the most important in choosing
the optimal values for population size and maximum
number of generations. Thereby, in the approach to
obtain better performance for NSGA-II-RJG, popSize
of 100 and noGen of 300 were selected (sol_perf =
0.0047, Ct = 5.5156 s, S = 0.0041). Once again, it was
observed that the convergence time increased with the
increase in population size and in the maximum number
of generations. Also, based on the results obtained, it
could be highlighted that a large number of generations
and a large population size will generally lead to finding
better solutions because the search space and time are
larger. So, the methodology of optimizing the parameter
values of the multi-objective genetic algorithms has the
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Table 7.The results of the simulations for different values of
CrossProb and MutProb with popSize = 500 and noGen
= 50 (convergence time, spacing metric, and solutions
performance index) for NSGA-II.

Sim. no. NSGA-Il parameters c.(s) s sol_
CrossProb MutProb perf

1 0.1 0.01 45.7744 0.0040 0.0086
2 0.1 0.05 25.6729 0.0041 0.0067
3 0.1 0.20 17.8750 0.0040 0.0058
4 0.1 0.50 16.0000 0.0041 0.0057
5 0.1 0.80 13.1250 0.0045 0.0058
6 0.3 0.01 45.1406 0.0039 0.0084
7 0.3 0.05 23.6094 0.0040 0.0064
8 0.3 0.20 18.8438 0.0040 0.0059
9 0.3 0.50 16.7500 0.0041 0.0058
10 0.3 0.80 13.0938 0.0040 0.0053
11 0.5 0.01 47.4629 0.0047 0.0094
12 0.5 0.05 23.6563 0.0041 0.0065
13 0.5 0.20 17.6738 0.0039 0.0057
14 0.5 0.50 15.5938 0.0040 0.0056
15 0.5 0.80 13.1611 0.0043 0.0056
16 0.7 0.01 48.0781 0.0041 0.0089
17 0.7 0.05 23.7275 0.0041 0.0065
18 0.7 0.20 18.8281 0.0040 0.0059
19 0.7 0.50 15.6094 0.0040 0.0056
20 0.7 0.80 13.1250 0.0046 0.0059
21 0.9 0.01 44.0625 0.0040 0.0084
22 0.9 0.05 24.2969 0.0041 0.0065
23 0.9 0.20 19.3916 0.0040 0.0059
24 0.9 0.50 15.9385 0.0041 0.0057
25 0.9 0.80 13.2031 0.0040 0.0053

role to find a compromise between determining the best
non-dominated solutions, minimizing the convergence
time, and increasing the solutions diversity.

The simulations continued with the optimization of
the crossover probability and the mutation probability in
the same manner as for NSGA-II. Thus, it was revealed
that the convergence time decreased with the increase
in the mutation probability and also with the increase in
the crossover probability.

Although the evaluation technique based on the set
coverage metric indicated that a crossover probability
of 0.9 and a mutation probability of 0.8 led to the most
dominating Pareto front (CS(X X

Cross_Prob=0.9,Mut_Prob=0.8’ Cross_
0.19, CS(X

Prob=0.9,Mut_Prob=0. 5) - Cross_Prob=0.9,Mut_Prob=0.5" Cross_

prob=09, mut rov=0.g) = 0-17), the values 0.9 and 0.5 giving
the next most dominating solution vector were chosen
because the corresponding spacing metric was lower
for these values (sol_perf = 0.0044, Ct = 2.0313 s, S =
0.0042).

The optimization of the jumping genes probability
led to very similar values for the set coverage metric
corresponding to different jumping genes probabilities.
Therefore, the selection of the optimal JGProb was
made based on the sol_perf performance index and a
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Figure 5. Comparison of the Pareto fronts obtained with NSGA-II
and NSGA-II-RJG.
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Figure 6. Comparison of the Pareto fronts obtained with NSGA-II
and optimized NSGA-II-RJG.

probability of 0.3 for the jumping genes transposition

was chosen because it provided the smallest sol perf

(sol_perf=0.0038, Ct=2.0938 s, S = 0.0036).

The optimized NSGA-II-RJG has better convergence
time (Ct = 2.0938 s) and better solution diversity (S =
0.0036) than the optimized NSGA-II (Ct = 13.2031 s,
S = 0.0040). Nevertheless, the Pareto front obtained
with NSGA-II dominates the one obtained with NSGA-II-
RJG, as Egs. 9 and 10 show:

CS(X_NSGA-II-RJG, X_NSGA-I|) = 0.042 9)

CS(X_NSGA-Il, X_NSGA-II-RJG) = 0.51 (10)
So, the NSGA-II-RJG algorithm with popSize = 100,
noGen = 300, CrossProb = 0.9, MutProb = 0.5, and
JGProb = 0.3 has greater performance than NSGA-
Il with popSize = 500, noGen = 50, CrossProb = 0.9,
and MutProb = 0.8, when applied to the multi-objective
optimization of the polymeric nanoparticles synthesis
with silicone surfactants. A comparison of the Pareto
fronts obtained with these optimized values of the
parameters for the two algorithms is given in Fig. 6.
Fig. 7 illustrates the optimal decision variables
(surfactant concentration, polymer concentration, and
storage temperature), corresponding to each point
from the optimal Pareto front provided by NSGA-II-
RJG with optimized parameter values. The storage
temperature only influenced the average diameter,
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Table 8. The results of the simulations for different values of CrossProb and MutProb with popSize = 500 and noGen = 50 (set coverage metric)

for NSGA-II.
Sim. no. Current NSGA-Il parameters CS (current, best) CS (best, current) Best NSGA-Il parameters
Cross Prob MutProb CrossProb MutProb
1 0.1 0.01 1.000 1.000 0.1 0.01
2 0.1 0.05 0.250 0.398 0.1 0.01
3 0.1 0.20 0.268 0.430 0.1 0.01
a 0.1 0.50 0.226 0.322 0.1 0.01
5 0.1 0.80 0.158 0.263 0.1 0.01
6 0.3 0.01 0.286 0.386 0.1 0.01
7 0.3 0.05 0.252 0.466 0.1 0.01
8 0.3 0.20 0.250 0.440 0.1 0.01
9 0.3 0.50 0.222 0.400 0.1 0.01
10 0.3 0.80 0.174 0.185 0.1 0.01
11 0.5 0.01 0.292 0.344 0.1 0.01
12 0.5 0.05 0.196 0.402 0.1 0.01
13 0.5 0.20 0.234 0.442 0.1 0.01
14 0.5 0.50 0.182 0.404 0.1 0.01
15 0.5 0.80 0.186 0.286 0.1 0.01
16 0.7 0.01 0.304 0.342 0.1 0.01
17 0.7 0.05 0.298 0.348 0.1 0.01
18 0.7 0.20 0.232 0.420 0.1 0.01
19 0.7 0.50 0.194 0.406 0.1 0.01
20 0.7 0.80 0.204 0.226 0.1 0.01
21 0.9 0.01 0.294 0.306 0.1 0.01
22 0.9 0.05 0.206 0.470 0.1 0.01
23 0.9 0.20 0.244 0.388 0.1 0.01
24 0.9 0.50 0.288 0.344 0.1 0.01
25 0.9 0.80 0.240 0.288 0.1 0.01
0.1 0.01

Table 9. The results of the simulations for different values of JGProb,
with CrossProb = 0.9, MutProb = 0.8, popSize = 500,
and noGen = 50 (convergence time, spacing metric, and
solutions performance index) for NSGA-II-RJG.

Sim. no JGProb C, (s) S sol_perf
1 0.1 13.8125 0.0041 0.0055
2 0.3 13.7500 0.0041 0.0055
3 0.5 13.9063 0.0043 0.0057
q 0.7 14.3057 0.0042 0.0056
5 0.9 14.2344 0.0044 0.0058

while the surfactant concentration and the polymer
concentration had an impact on the both conflicting
objectives of the optimization. For instance, a surfactant
concentration of 2 g L, a polymer concentration from
0.9% to 1.02%, and a storage temperature of 4°C led
to obtaining minimum values for the average diameter,
resulting in the points from the upper extremity of the
Pareto front displayed in Fig. 6, for NSGA-II-RJG. The
points from the middle region of the same Pareto front
were achieved with a surfactant concentration between
0.6 and 0.8 g L', a polymer concentration between
0.5% and 0.63%, and a storage temperature of 40°C.
The minimization of the polydispersity was realised with

a surfactant concentration between 0.5 and 0.6 g L™,
a polymer concentration between 0.55% and 0.67%,
and a storage temperature of 40°C, creating the lower
extremity of the Pareto front determined with NSGA-
II-RJG (Fig. 6). The lowest value for the polydispersity
was achieved using a surfactant concentration
of 0.5 g L', a polymer concentration of 0.53% and a
storage temperature of 4°C.

After optimizing the values of NSGA-II parameters,
the insertion of the real-coded jumping genes operator
with an optimal probability of occurrence did not lead to
a better diversity of the non-dominated solutions, nor to
a lower convergence time. These goals were achieved
after the proper optimization of the parameter values of
the new NSGA-II-RJG algorithm.

Concluding, we can say that the introduction of the
jumping genes operator induces an improvement to the
diversity of the solutions obtained using NSGA-II, only if
the newly obtained NSGA-II-RJG algorithm is optimized
at the best values for its parameters. The drawback of
not obtaining the best non-dominated solutions must be
taken into account.
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Figure 7. The optimal decision variables (surfactant concentration, polymer concentration, and storage temperature) corresponding to each
point from the Pareto front obtained using NSGA-II-RJG with optimized parameter values.

Table 10. The results of the simulations for different values of JGProb with CrossProb = 0.9, MutProb = 0.8, popSize = 500 and noGen = 50 (set

coverage metric) for NSGA-II-RJG.

Sim. no. Current JGProb CS (current, best) CS (best, current) Best JGProb
1 0.1 1.000 1.000 0.1
2 0.3 0.188 0.285 0.1
3 05 0.130 0.410 0.1
4 0.7 0.111 0.339 0.1
5 0.9 0.151 0.339 0.1
0.1
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5. Conclusions

PDMS submicron particles were obtained using a
siloxane-containing surfactant, in various concentrations.
High PDI values were detected by DLS and the
dispersions were rather unstable, due to the liquid state
of PDMS at ambient temperature. Nevertheless, the
DLS data allowed us to study the influence of different
parameters on the result of nanoprecipitation, using
artificial intelligence tools.

The multi-objective evolutionary algorithms, and
mostly NSGA-II, have been found to be best suited
for optimizing complex polymerization processes. Still,
the use of elitism in NSGA-Il can cause the decrease
in population diversity, thus determining the premature
convergence of the algorithm to a local optimum.
The jumping genes operator has been introduced in
NSGA-Il as a response to this problem. The freshly
obtained algorithm, NSGA-II-JG, adds diversity in
the evolutionary process achieved through NSGA-II.
Benefits of using elitism are exploited, while genetic
diversity is maintained.

In this study, a unique real-coded version of NSGA-
[I-JG (called NSGA-II-RGJ) has been implemented in
an original software program and applied to the multi-
objective optimization of the polymeric nanoparticles
synthesis process. The new real-coded jumping genes
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