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Abstract: A quantitative structure-activity relationship (QSAR) study on a set of 66 structurally-similar 6-fluoroquinolones was performed
using a large pool of theoretical molecular descriptors. Ab initio geometry optimizations were carried out to reproduce
thegeometricalandelectronic structure parameters. Theresultingmolecularstructures were confirmedto be minimaviaharmonicfrequency
calculations. Obtained atomic charges, HOMO and LUMO energies, orbital electron densities, dipole moment, energy and many other
properties served as quantum-chemical descriptors. A multiple linear regression (MLR) technique was applied to generate a linear model
for predicting the biological activity, Minimal Inhibitory Concentration (MIC), treated as negative decade logarithm, (pMIC). The heuristic
method was used to optimize the model parameters and select the most significant descriptors. The model was tested internally using the
CVLOO procedure on the training set and validated against the external validation set. The result (Q2,, = 0.7393), which was obtained on
an external, previously excluded validation data set, shows the predictive performances of this model (7%, = 0.7416, @?, = 0.6613)
in establishing (Q)SAR of 6-fluoroquinolones. This validated model could be proficiently used to design new 6-fluoroquinolones with

possible higher activity.

Keywords: Tuberculosis * Fluoroquinolones  DNA gyrase * Molecular descriptors * QSAR

© Versita Sp. z 0.0.

1. Introduction

In the last few years, the incidence of tuberculosis has
dramatically increased. The global statistics from the
World Health Organization (WHO) indicate that today
approximately one third of the human population is
infected by Mycobacterium tuberculosis and around
8 million people die from tuberculosis every year [1].
M. tuberculosis, the causative agent of tuberculosis,
is a persistent pathogen microorganism. Although
tuberculosis itself is a disease mainly caused by the
microorganism M. tuberculosis, in some cases it can
be caused by other Mycobacterium species such as
M. fortuitum, M. smegmatis and M. avium-intracellulare
complex [2-4]. Tuberculosis can be treated with
chemotherapy. The most commonly used antitubercular
agents in tuberculosis therapy belong to three common

* E-mail: nikola.minovski@Aki.si

classes: first-line antitubercular drugs (isoniazid,
ethambutol, pyrazinamide, rifampicin, streptomycin),
second-line antitubercular drugs (aminoglycosides:
amikacin, kanamycin; polypeptides: capreomycin;
quinolones: ciprofloxacin, levofloxacin, moxifloxacin;
thioamides: ethionamide; p-aminosalicylic acid), and
third-line antitubercular drugs (rifabutin, clarithromycin,
linezolide) [5]. Nevertheless, the whole treatment is quite
long taking approximately 6-9 months. The durability
of the treatment as well as the toxicity and the poor
patient compliance, are risk factors which frequently
lead to selection of drug resistant and very often deadly
multi-drug resistant strains. This increasing problem of
multi-drug resistant strains is the major challenge for
the investigation and design of novel drug candidates
which are not only active against stable drug resistant
mycobacteria, but also shorten the length of therapy [6].
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In the search for new therapeutic targets and new anti-
tubercular agents, fluoroquinolones which are a family
of broad-spectrum antibiotics are particularly interesting.
They originate from the nalidixic acid which is the parent
of the group. The majority of quinolones in clinical use
belong to the subset of 6-fluoroquinolones, which have
an F atom attached to the main ring scaffold, typically at
the 6-position (Fig. 1).

According to structure-activity relationship (SAR)
studies, the main scaffold, i.e., the 1,4-dihydro-4-oxo-
3-pyridinecarboxylic acid moiety, is essential for anti-
mycobacterial activity [7-9]. Substitutions at position 2
of the annulated ring system greatly reduce activity (a
measure of the physiological response which a drug
produces) and potency (a measure of a range of effective
doses in selected and not totally specified situations)
[10], but positions 5, 6, 7 (especially), and position 8
of the fused ring system may be substituted with good
effect. These substitutions will result in increasing the
anti-mycobacterial activity and potency. The substitution
with the F atom at position 6 is very important and also
will result in significantly enhanced anti-mycobacterial
activity. Position 1 of the main ring system, can also
be substituted (small alkyl substituents such as methyl,
ethyl, and especially cyclopropyl are known to enhance
the potency and efficiency of 6-fluoroquinolones).
These substitutions will result in increased activity and
metabolic stability of the drug due to steric bulk. Ring
fusions at the positions (1,8), (5,6), (6,7) and (7,8) are
also very important and can significantly increase the
activity [11].

One of the well established molecular targets of
antitubercular agents in mycobacteria is DNA gyrase.
It is a unique bacterial type Il topoisomerase enzyme
responsible for the catalysis of the process of introduction
of negative supercoils into the double-stranded DNA
molecule using the free energy that comes from the
hydrolysis of ATP [12]. This bacterial enzyme consists
of two major subunits, GyrA and GyrB which form the
functional heterodimer A B,,.

The GyrA subunit is responsible for the process of
DNA breakage and reunion, where GyrB is also involved.
Another closely related bacterial enzyme is type IV
topoisomerase that also forms a heterodimer [13].
Both enzymes are involved in the process of controlling
the topological state of DNA molecules. The gyrase is
required for initiation of the process of DNA replication
and elongation, while topoisomerase |V is responsible
for relaxation of DNA [14,15].

Fluoroquinolones are the only inhibitors of gyrase/
topoisomerase |IV. They instantly inhibit the process
of DNA synthesis in mycobacteria through a cleavage
of the nascent mycobacterial DNA molecule in the

R1 = usually cyclopropyl
R2 = heterosystem
X=N,C

Fluoroquinolones

Figure 1. Generic structure of 6-fluoroquinolones.

complex formed between the DNA gyrase and type IV
topoisomerase, resulting in topological perturbation and
bacterial cell death [16]. These synthetic compounds
belong to the class of GyrA/ParC inhibitors [17].

The present study involves structure-activity
relationships and development of predictive models
using the MLR method and a comprehensive set of
calculated theoretical molecular descriptors which could
subsequently be used for prediction of the biological
activity of novel unknown 6-fluoroquinolone analogs.

The main goal of the presented study was to develop
a robust QSAR model based on a set of structuraly
similar 6-fluoroquinolones, which can be further used to
estimate the activities of novel compounds.

2. Experimental procedure

2.1. Data set

The biological assay data used in our study were
obtained from classical in vitro tests for inhibitory
activity against M. tuberculosis. The data we used was
extracted from an online structural database [18]. The
constructed dataset is named TBCData and consists
of 66 fluoroquinolone analogs and their corresponding
activity values MIC (ug mL"). There are several
searching criteria for extracting the needed data. These
fluoroquinolones were collected using the search criteria
‘fluoroquinolones’ in the NIAID (National Institute of
Allergy and Infection Diseases) therapeutics database
[18]. The search procedure employed, resulted in
listing of all available 6-fluoroquinolone analogs (total
856 records). Detailed visual inspection of the listed
compounds shows that not every structure in the
fluoroquinolone’s database has a measured MIC value.
Although the majority of the fluoroquinolones provided
are presented as electroneutral forms, there are also
some compounds that exist as charged forms, salt forms,
and double/triple forms. These limitations (missing MIC
values and descriptors computing limitation of non-
individualistic forms (charged forms, salts, double/triple
forms)) resulted in construction of a final dataset of a
total of 66 single molecule compounds.



N.Minovski et al.

The detailed investigation of in vitro tests used for
MIC determination, showed a uniformity in performing
the test (all details are available in Supporting Information
in Supplemental Table 1). In other words, it is a standard
procedure (agar/broth-dilution turbidimetric method)
where a temperature of 37°C for incubation (growth) of
the microorganisms, the 7H(9,10,11) agar for preparing
the suspension/broth, as well as the chemicals used
as supplements (glycerol and albumin-dextrose-
catalase) are used in all tests. This in vitro procedure
is in accordance with the CLSI international standards
for susceptibility testing, i.e., a standard named M24-A
that describes the method in detail (media, inoculum,
incubation, etc.) [19].

The MIC values of the collected fluoroquinolones
are in the range from 0.003 to 256.0 pg mL".
According to SAR analysis, each structure in the
dataset has 1,4-dihydro-4-oxo-3-pyridinecarboxylic
acid moiety and F atom substitution at the position 6
in the main scaffold which are believed to be essential
for anti-mycobacterial activity (Fig. 1). Some of the
compounds in the TBCData do not correspond to
the group of classical 6-fluoroquinolones because
of the fusion of a third ring system to the bicyclic 1,4-
dihydro-4-oxo-3-pyridinecarboxylic acid moiety. These
fluoroquinolone structures have MIC values in the range
(0.9-64.0 uyg mL"). The chemical structures of the
compounds and the related biological activity values are
available in the Supporting information (Supplemental
Table 2). The collection of the compounds and the
activity values was performed using Microsoft Excel and
the specifically integrated toolbox for ChemBioOffice
Ultra 2008 (v.11.0) [20]. This method of collecting
data is suitable for generating the structure database
input file format (*.sdf), which is subsequently used for
simultaneous calculation of the molecular descriptors in
the DRAGON software package [21]. The activity values
MIC (ug mL") were converted into pMIC (-log, (MIC))
values, and used in the CODESSA software package for
multiple linear regression (MLR) analysis [22,23].

2.2. Geometry optimization and calculation of

quantum-chemical descriptors
The molecular structures previously collected were in
2D format (ChemBioOffice 2D sketch (*.mol)). Using
the MOLDEN software package [24] each structure
was subsequently re-sketched in a 3D environment,
checked by visual inspection in order to ensure that the
3D geometry is correct, and saved as GAUSSIANO3
input file format (*.com) for geometry optimization.
The ab initio geometry optimization calculations for
the dataset of investigated compounds were carried
out using the Gaussian03 suite of programs [25]. The

Hartree-Fock-Roothaan method [26] and split-valence
double-zeta (6-31G(d,p)) basis set with polarization
functions on heavy atoms and hydrogens [27] were
applied to reproduce the geometrical and electronic
structure parameters. Resulting molecular structures
were confirmed to be minima via harmonic frequency
calculations. Population analysis was performed by
application of Mulliken [28] and Merz-Kollman [29]
schemes. The correct 3D geometry of the compounds is
very important to find a possible relationship between the
electronic properties of the compounds (rendered from
quantum-chemical calculations) and their macroscopic
properties (pMIC) [30] as well as for subsequent
calculation of 2D/3D molecular descriptors using the
DRAGON software package [21].

Obtained atomic charges, highest occupied and
lowest unoccupied molecular orbital energies (&, and
£ uuo)» Orbital electron densities, total dipole moment,
polarizability, energy (AE = €,,,,,c - € uuo) @Nd many other
properties served as quantum-chemical descriptors for
further MLR analysis.

2.3. Calculation of 2D/3D descriptors

For calculation of the 2D/3D molecular descriptors for
each compound of the training/validation sets obtained,
we used the DRAGON [21] software package.

Using the MinoSuite’s [31] integrated part DragCOD
v2.0, an in-house developed software application, we
made a conversion of the DRAGON’s list of calculated
molecular descriptors (*.txt output format) into a
CODESSA descriptor input file (*.txt input format). The
rest of the descriptors (orbital energies (¢, and £ 0);
total dipole moment, polarizability, and Mulliken atomic
charges) used in the multiple linear regression analysis,
were extracted from each optimized structure (training/
validation set) obtained by Gaussian03 (*.log files) using
the MinoSuite’s [31] integrated tool GaussExtractor
v3.0.

The final pool of the calculated 2D/3D/QC theoretical
molecular descriptors (1718), which were considered for
further calculations, can be separated into nine classes:
topological descriptors, electrostatic descriptors, Randic
molecular profiles, geometrical descriptors, RDF
descriptors (Radial Distribution Function descriptors,
i.e., molecular descriptors obtained by radial basis
functions centered on different interatomic distances
(from 0.5 to 15.5A)), 3D-MoRSE descriptors (3D
Molecule Representation of Structures based on
Electron diffraction derived from infrared spectra
simulation using a generalized scattering function),
WHIM descriptors (Weighted Holistic Invariant Molecular
descriptors, based on the statistical indices calculated
on the projections of atoms along principal axes. These
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descriptors are obtained utilizing a Principal Components
Analysis on the centered Cartesian coordinates of
a molecule by using a weighted covariance matrix
obtained from different weighting schemes for the
atoms), GETAWAY descriptors (GEometry, Topology,
and Atom-Weights AssemblY; molecular descriptors
derived from the Molecular Influence Matrix (MIM)) and
quantum-chemical descriptors. After the calculation, all
descriptors were analyzed using the CODESSA software
with the pre-integrated Heuristic algorithm, which is a
suitable option for selection of most important molecular
descriptors [22,23].

2.4. Development of a Quantitative Structure-
Activity Relationships Model

In order to construct a QSAR model, the compounds
must be represented by molecular descriptors. Initially
we divided our dataset TBCData into a training and
an external validation set using the random dividing
approach. This division procedure resulted in 51
compounds in the training set, and the rest previously
excluded 15 compounds in the external validation set.
The descriptor selection procedure runs in several
steps. First, the following selection algorithm was used
for calculating the one-parameter correlation equations
between descriptors and activity and eliminating all
descriptors that do not fulfill the criteria below [23]:

(1) The F-test's value for the one-parameter
correlation with the descriptor is below 1.00.

(2) The squared correlation coefficient of the one-
parameter equation is less than R? _ (in our case
Re . =0.1).

(3) The parameter’s t-value is less than t1 (where
R2 . and t1=1.5).

(4) The descriptor is highly inter-correlated (above
r.,» where r, =0.99), with another descriptor and this
other descriptor has a higher squared correlation
coefficient in the one-parameter equations based on
these descriptors.

The number of retained descriptors (Supporting
Information, Supplemental Table 3) is 13 for models 2D
and 3D, 14 for 3D and 3D+QC, 15 for 2D+QC, 21 for
2D+3D and 2D+3D+QC. With the remaining descriptors
after each inter-correlation and one-parameter
calculation, all possible two- and more-parameter
linear models were calculated (R?,, Q). The squared
correlation coefficient of the models (R?,, correlation
between the observed and predicted activity values) was
calculated employing the pre-integrated CODESSA's
equation (Eq. 1) [32]:

min

N, N, N,
Nr Z'xr Vi _[zxr J[Zyr J
i=1 i=1 i=1
N, N, 2 N, N, 2
erxrz_(zxrj eryrz_(zer
i=1 i=1 i=1 i=1

where N, is the total number of training set objects, x,
are experimental (pMICeXp) values, and y, are predicted
(PMIC ) values. All the models were internally validated
using the cross-validation leave-one-out procedure (CV
LOO, @) using the equation (Eq. 2) [33]:

Ner

Z(yi,cxp . yf,prea‘)z

0 =1-2! )

i Ny .
Z (Vi,exp - yi,exp )’
i=1

where N, is the total number of training set objects; y,
and y, ., are_the experimental and predicted values,
respectively; Viexp is the average response value of the
training set.

The assessmentofthe model expansionand selection
of the smallest optimal number of molecular descriptors
was performed employing the “breaking point” rule, i.e.,
a simple Cartesian plot which shows how the squared
correlation coefficient of the model (R?,) is changing as a
function of the number of molecular descriptors involved
in the modeling procedure. Namely, if the enhancement
between the models with n and (n + 1) descriptors is
insignificant, then the optimal model will be the one with
n descriptors [34-37]. Initially we constructed several
linear models with up to nine descriptors (“breaking
point” rule, Fig. 2), of which only the models with 2, 3,
4, and 5 descriptors were presented (improvement in
model development until the one point, i.e., the breaking
point (5 descriptors, the optimal model)). The Heuristic
selection algorithm resulted in five best descriptors,
which were subsequently used for testing the predictive
performances using the previously excluded validation
set objects (Eq. 3) [38]:

Next

‘Zl: (yi,exp - y!‘,.vmd)z
~ e ;
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r
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where N_, is the total number of external validation

t
set objects; y.__ and Y, preq @r€ the experimental and

iexp

predicted values, respectively; ), is the average
response value of the external validation set.
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2.5. Applicability domain

According to OECD QSAR Validation Principles, a QSAR
model is usable in the boundaries of its applicability
domain [39]. The applicability domain of a (Q)SAR
model is defined as physico-chemical, structural, or
biological space, knowledge or information on which
the training set of the model has been developed, and
for which it is applicable to make predictions for new
compounds [40,41]. It should be described in terms of
molecular descriptors of the model which are the most
relevant parameters. The activity predictions can be
made only within the domain’s boundaries. Therefore,
the applicability domain can be defined as a theoretical
region in the space represented by the model's
descriptors and the response (predicted activity values)
in which a (Q)SAR model gives reliable outcome.

The applicability domain of the investigated
6-fluoroquinolones  (five-descriptor MLR  model,
Table 1c, Supporting Information Supplemental
Table 4) was calculated using the leverage approach [42].
The scatter plot defined by standardized residuals as a
function of the leverage (Williams plot) was employed
to assess and visualize the quality of the predictions.
The leverage is defined as a compound’s distance from
the centroid of X. Mathematically, the leverage (h) of
a given compound in the multidimensional descriptor
space, can be calculated as (Eq. 4):

h=x"(X"x)'x, )

where x; is the descriptor vector of the compound under
investigation, whereas the X is the descriptor matrix
rendered from the descriptor values of the training
set [43]. According to Eriksson et al. [44], the cut-off
leverage value (h") is defined as (Eq. 5):

o 3(p+1) )
n

Breaking point rule

1.00
0.95
0.90
0.85 -
0.80
075

R2

0.70 L]
0.65
0.60
0.55

0.50

2 2 4 5 & 7 8 5
Number of descriptors
Figure 2. Breaking point rule for determination of optimal

number of descriptors (R?, of the models vs. number
of descriptors).

where n is the number of compounds in the training
set (51), while p is the number of descriptors used
for modeling (5) [45]. In our model the cut-off value is
h” = 0.353 (Eq. 5). Eriksson et al., proposed that
the prediction for compounds with (h, > h" ) can be
considered as unreliable, and vice-versa. A value of
3 for standardized reziduals in the Williams plot is
frequently used as a limit (cut-off value) for accepting
predictions (3.0 standard deviation units, = 3.00). The
compounds that lie in this region cover 99% of the
normally distributed data [40].

3. Results and discussion

3.1. Assessment of the calculated theoretical

molecular descriptors

Quantitative structure-activity relationships (QSAR)
which have been examined to rationalize the biological
activity values of structurally-similar 6-fluoroquinolone
analogs as well as to design novel compounds with
possible enhanced activity are well documented
[46-51]. In order to construct a reliable QSAR model
in a statistical manner, first the compounds must be
represented by molecular descriptors [52], and second,
a good selection algorithm is needed for selection of
the most important molecular descriptors from the large
multi-descriptor space.

The main goal of our study is to approximate the
mechanism of anti-mycobacterial activity in this series
of known fluoroquinolones using a comprehensive set of
theoretical molecular descriptors (2D/3D/QC) as well as
to build a robust and statistically significant model which
could subsequently be used to design new potential
drug candidates, with possible better activity.

One of the most important steps in QSAR modeling
is to define the number of independent variables in
the model equation obtained. In this way the over-
parameterization of the mathematical model as well
as the chance correlation between the molecular
descriptors is avoided [53].

Since we start our modeling procedure with a pool
of 1718 theoretical molecular descriptors, a possibility
exists to encounter a chance correlation in a case where
the number of examined variables is higher than the
number of observations.

Initially we investigated seven different cases
employing the classical MLR method and all possible
combinations of the calculated theoretical molecular
descriptors (2D, 3D, QC, 2D+3D, 2D+QC, 3D+QC,
and 2D+3D+QC) and selected the model which not
only has the highest coefficient of correlation (R?,), but
also good and acceptable predictive performances.
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Table 1. Linear models obtained by CODESSA (ID, Case number; Tr. Str, Number of structures in the training set; D. No., Starting pool of

molecular descriptors; D.Re. number of descriptors retained from the starting pool; Params., Parameters used in heuristic option; R?

squared coefficient of correlation for the training set; Q?
descriptors are highlighted.

[&

r

the predictive squared correlation coefficient). Statistically significant molecular

a) MLR models obtained by employing only 3D molecular descriptors (Supporting Information Supplemental Table 3, case 2).

ID | Dataset Tr.Str. D.No./D.Re. Params. R? F s? Qz, Descriptors involved
2 0.5317 27.24 0.8042 0.4807 Mor21p  Mor09u
3 0.6014 23.63 0.6991 0.5424 Mor21m  Mor09u  HOMT
2 TBCData 51 682/14
4 0.6982 26.62 0.5406 0.6290 Mor21m Mor09u  HOMT  Mor16e
5 0.7416 25.83 0.4733 0.6613 Mor21p  Mor09u  HOMT Mor16e  R2p+
b) MLR models obtained by employing only QC molecular descriptors (Supporting Information Supplemental Table 3, case 3).
ID [Dataset Tr.Str. D.No./D.Re. Params. R? F s? Q?, Descriptors involved
2 0.2394 7.56 1.3060 0.1133 HOMO13 HOMO5
3 0.2574 543 1.3021 0.1057 HOMO13 HOMO5 TDM
3 | TBCData 51 494/14
4 02574 543 1.3021 0.1057 HOMO13 HOMO5 TDM /
5 0.2574 543 1.3021 0.1057 HOMO13 HOMO5  TDM / /

¢) MLR models obtained by employing a combination of 3D+QC molecular descriptors (Supporting Information Supplemental Table 3, case 6).

ID |[Dataset Tr.Str. D.No./D.Re. Params. R?, F s? Qz, Descriptors involved
2 0.5317 27.24 0.8042 0.4807 Mor21p  Mor0O9u
3 0.6014 23.63 0.6991 05424 Mor21m  Mor09u  HOMT
6 | TBCData 51 1176/14
4 0.6982 26.62 0.5406 0.6290 Mor21m  Mor09u HOMT  Mor16e
5 0.7416 2583 0.4733 06613 Mor21p  Mor09u HOMT  Mori6e  R2p+

These results are presented in Supporting Information
in Supplemental Table 3 (models) and Supplemental
Table 4 (predictions). Supplemental Table 3 shows seven
different cases (all possible combinations of molecular
descriptors) where we examined four models (with 2, 3,
4, and 5 descriptors) for each case separately (total 28
linear models).

The analysis of 5-descriptor models for each case,
shows that six out of seven models are good (case 1,
case 2, case 4, case 5, case 6, and case 7) according to
the R?, values (R? > 0.7). According to the R? values,
one would say that 5-descriptor models built with 2D
(case 1, R?, = 0.7894), 2D+3D (case 4, R?, = 0.7623),
2D+QC (case 5, R?, = 0.7942), and 2D+3D+QC (case
7, thr = 0.7623) descriptors are better than the model
built only with 3D (case 2, R?, = 0.7417) or 3D+QC (case
6, R?, = 0.7417) descriptors (highlighted in green). The
linear plots (pMIC_ . ..., VS. PMIC ., for training/
validation set) represented in the Supporting Information
in (Supplemental Fig. 1) show better fitting for case 2
(only 3D descriptors) and case 6 (3D+QC descriptors)
in comparison with the other cases. The R?_values of
these two models as well as the molecular descriptors
selected by the Heuristic algorithm are the same.

This result apparently shows the domination, i.e.,
significance, of the 3D descriptors over QC descriptors
(Tables 1abc) and therefore selection of the best
5-descriptor linear model (Table 1c¢). The MLR analysis
between QC descriptors alone (494) and the inhibitory
activity (Supplemental Table 3, case 3) shows that the
descriptor combination of €, and Total Dipole Moment
(TDM) was the most important for elucidating the activity
(560.74% of the variation). This observation clearly
indicates that quantum-chemical descriptors alone were
not sufficient for explanation of pMIC variation. Therefore
the additional pool of 682 3D DRAGON descriptors was
used in order to enhance the linear model as well as to
explain the structural diversity of the fluoroquinolones
used.

3.2. Model development

As presented in Table 1c, the number of examinations
(column 3, number of examinations is 51 (training
set)) is enough for screening the number of retained
descriptors (column 4: number of descriptors 14) in
order to keep the probability of encountering a chance
correlation with R?> 0.8 at the 1% level or less [53]. The
modeling procedure is based on the breaking point rule
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(the slope change). This rule shows the enhancement
threshold of correlation coefficient (R?,) over the number
of descriptors in each model.

Initially we developed preliminary linear models
with up to 9 descriptors and found that the threshold,
i.e., the maximal enhancement of R?_ was when the
number of descriptors is equal to five (optimal number
of descriptors, the breaking point, Fig. 2) [34-37].

The heuristic algorithm implemented in modeling,
results in a five-descriptor model which can be described
with the following QSAR equation (Eg. 6):

pMIC = — 0.94 — 3.575Mor21p — 1.118Mor09u —
~1.3883Mor16e + 0.263HOMT — 52.91R2p*

N, =51; R?, = 0.7416; Q= 0.6613;

s=0.4733; F = 25.83, (6)

where N_is the number of examinations (compounds
included into the training set used for modeling), R?,
is the squared coefficient of correlation, Q? is the
predictive squared correlation coefficient, s is the
standard deviation, and F is the Fisher value. Following
the frequency analysis of the descriptors involved in
our models (Table 1c), the most important molecular
descriptors for establishing a quantitative relationship
between the molecular structure and activity can be
visually determined.

According to this postulate as well as the five-
descriptor model equation described above, the five most
frequent and relevant molecular descriptors for activity
are: Mor21p, MorO9u, Mor16e, HOMT and R2p*. The
parameters Mor21p, Mor09u, Mor16e, and R2p* belong
to the class of electrostatic and electro-topological
descriptors (3D-MoRSE-signal 21/weighted by atomic
polarizabilities, = 3D-MoRSE-signal  09/unweighted,
3D-MoRSE-signal 16/weighted by atomic Sanderson
electronegativities, R maximal autocorrelation of lag
2/weighted by atomic polarizabilities (3D-GETAWAY
descriptor), respectively) whereas the HOMT parameter
(HOMA-total; Harmonic Oscillator Model of Aromaticity
Index) belongs to the class of geometrical descriptors.

3.3. Mechanistic interpretation

The electrostatic descriptors listed above are of
significant importance for activity and indicate that
in vitrolin vivo anti-mycobacterial activity against
M. tuberculosis is strongly dependent on the electrostatic
and aromaticity properties of the properly substituted
main 6-fluoroquinolone scaffold.

These parameters also corroborate with findings in
the literature that position 6 of the F atom in the main
quinolone core which is present in all inhibitors of this
study is of significant importance for accommodation of

the inhibitor into the active binding site and suggests that
a possible establishment of an electrostatic interaction
between the F atom and the target (possible inter-
molecular electrostatic interactions with the amino acid
residues of the GyrA subunit active site) [54-57] may
resultin increased stability of the fluoroquinolone binding
to the complex [58]. The importance of the Mor09u and
R2p* parameters (pure electrostatic descriptors) for
anti-mycobacterial activity also suggests that possible
intermolecular electrostatic interactions between the
carbonyl and carboxyl groups of the main quinolone
core and the corresponding amino acid residues of the
active site within the GyrA subunit are responsible for
tight binding. The recently published crystal structure of
the complex levofloxacin with GyrA fully substantiates
this notion [56]. It has to be clearly pointed out that
the molecular descriptors selected by the Heuristic
procedure are an interpolation of various structural
features introduced in the 6-fluoroquinolone scaffold
by substituents with implicit electrostatic properties.
For example, in vitrolin vivo anti-mycobacterial activity
against M. tuberculosis appears to be dependent
also on the electronegativity of the O atom (sp?) of
the carboxyl and carbonyl group of the main core
substituents (Fig. 1).

On the other hand, HOMT is also an important
molecular descriptor indicating the importance of
aromaticity of the main 6-fluoroquinolone scaffold (the
annulated pyridone system) for activity as well as the
optimal basicity for better intestinal permeability after
possible oral administration. At the molecular level, the
correct 3D geometry (molecular shape) of the ligand is
one of the important factors for good accommodation
into the binding pocket as well as for establishing good
interactions with the surrounding amino acid residues
and forming a more stable complex. The aromaticity
of the main scaffold is also of significant importance
for establishing -1 stacking interactions between the
main 6-fluoroquinolone scaffold and the planar aromatic
systems of the bacterial DNA [56]. This relationship
is also suggested in our QSAR equation through the
importance of the HOMT parameter that belongs to the
group of 3D geometrical descriptors.

According to the values obtained for the R?_and Q?,,
one can observe the good predictive performances of our
five-descriptor linear model. As mentioned previously, the
predictive power of our five-descriptor QSAR model [59]
was observed using an external, previously excluded
validation data set (Fig. 3). The results of the validation
set predictions (@2_, = 0.7393) that was obtained on the
basis of the best (five-descriptor) training set model as
well as the numerical values for each of the selected
descriptors are shown in Table 2.
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Table 2. The experimental vs. predicted activity values (pMIC) and numerical values of the descriptors (3D+QC) involved in the modeling

procedure.

ID pMIC,_ pMIC_ _, Mor21p Moro9u Mor1i6e HOMT R2p*
Training set

2 0.5229 0.8875 -0.477 0.038 -0.461 4.021 0.029
3 -0.5441 -0.1400 -0.564 0.069 -0.408 -0.250 0.031

4 1.0000 0.0902 -0.517 -0.215 -0.339 -0.182 0.028
5 -0.1461 -0.0990 -0.505 0.084 -0.407 -0.229 0.026
6 -0.5052 -0.1297 -0.624 0.145 -0.284 -0.250 0.030
7 1.3010 1.3320 -0.600 -0.570 -0.819 -0.229 0.030
8 0.3010 0.4930 -0.716 -0.053 -0.624 -0.361 0.037
9 -0.2041 -0.2781 -0.428 -0.005 -0.284 0.206 0.025
11 -0.3010 -1.8846 -0.187 -0.120 0.559 3.343 0.0385
12 0.3010 0.6400 -0.581 -0.586 -0.641 -0.322 0.037
13 0.6021 -0.2269 -0.330 0.591 0.029 5711 0.024
14 2.0000 1.7479 -0.854 -0.707 -0.045 -0.206 0.022
15 1.5086 0.3169 -0.650 -0.263 -0.449 -0.504 0.035
16 2.0000 1.5034 -0.444 -0.825 -0.040 3.958 0.022
18 2.3979 2.4936 -0.971 -0.856 -0.199 -0.206 0.023
19 -0.3010 -0.4755 -0.323 -0.612 0.256 3.564 0.037
20 -1.0969 -0.5191 -0.506 1.543 -0.398 4.604 0.027
21 0.1079 0.2678 -0.573 0.915 -0.260 4.544 0.026
23 0.9031 1.0072 -0.450 -0.621 0.260 4.038 0.020
24 2.56229 1.8796 -0.767 -1.032 -0.137 -0.389 0.022
25 0.6021 0.3867 -0.846 -0.374 0.019 -0.100 0.039
26 1.7959 2.0591 -0.664 -0.991 0.242 3.261 0.019
27 0.2218 -0.3768 -0.708 0.442 0.147 -0.202 0.023
28 0.4089 -0.8549 -0.302 0.039 -0.365 -0.112 0.027
30 1.5229 1.7064 -0.731 -0.632 -0.465 0.036 0.023
31 -0.5052 0.1537 -0.314 -1.024 -0.170 4.090 0.047
32 -2.3010 -0.9789 -0.367 -0.395 0.356 -0.310 0.023
33 -2.1004 -2.7446 -0.616 2.257 0.104 0.336 0.027
34 0.1079 0.4046 -0.439 0.043 -0.664 -0.155 0.020
36 0.9031 0.6620 -0.925 0.556 -0.051 0.036 0.022
37 0.8069 0.4884 -0.539 -0.794 -0.507 -0.504 0.037
38 0.4089 0.1632 -0.268 -0.982 0.442 4.740 0.030
39 -1.2041 0.1212 -0.366 -0.299 -0.131 3.530 0.032
41 22218 1.4623 -0.641 -0.787 -0.342 -0.304 0.022
43 2.2218 1.56336 -0.627 -0.780 -0.329 -0.147 0.020
44 2.56229 2.1496 -0.974 -0.722 -0.011 -0.194 0.022
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Continued i
modeling procedure.

Table 2. The experimental vs. predicted activity values (pMIC) and numerical values of the descriptors (3D+QC) involved in the

ID pMIC_ pMIC Mor21p MorOSu Mor16e HOMT R2p+
Training set

46 1.8861 1.4446 -0.758 -0.428 -0.258 -0.194 0.021
47 2.2218 1.7312 -0.726 -0.596 -0.419 -0.233 0.021
50 1.2219 0.6336 -0.853 0.690 -0.368 -0.197 0.022
51 0.6990 1.4933 -0.759 0.204 -0.838 -0.197 0.022
53 0.1079 0.7245 -0.823 0.191 -0.109 -0.197 0.022
54 -0.1931 0.8958 -0.767 0.143 -0.376 -0.197 0.023
55 0.4089 0.8823 -0.842 0.169 -0.156 -0.197 0.022
56 1.0000 1.0215 -0.838 -0.5627 -0.005 0.036 0.031
58 1.0000 1.3341 -0.801 -0.446 -0.483 -0.250 0.032
60 2.56229 2.4969 -0.971 -0.859 -0.199 -0.206 0.023
61 1.6021 1.7003 -0.731 -0.529 -0.463 0.036 0.023
62 0.4089 0.4705 -0.689 0.895 -0.876 -0.197 0.023
63 -1.8062 -0.8973 -0.413 -0.220 0.344 0.055 0.023
64 -1.8062 -0.5435 -0.519 -0.318 0.441 0.055 0.023
66 -2.1072 -1.4587 -0.384 -0.502 0.458 -0.471 0.032
External validation set

1 -0.4771 -0.4820 -0.604 0.086 0.042 -0.250 0.028
10 0.3010 0.1498 -0.719 0.653 -0.283 0.076 0.022
17 0.0458 0.6802 -0.626 -0.210 -0.420 -0.229 0.026
22 0.1079 0.1644 -0.377 0.366 -0.135 4.538 0.023
29 0.3010 -0.1131 -0.531 -0.310 -0.423 -0.584 0.035
35 -1.8062 -0.3000 -0.432 -0.124 -0.213 0.139 0.026
40 2.2218 2.7892 -0.949 -0.973 -0.382 -0.246 0.023
42 1.8861 2.0438 -0.802 -0.619 -0.385 -0.197 0.020
45 2.5229 2.4392 -0.914 -0.485 -0.545 -0.290 0.021
48 1.6021 0.9918 -0.852 0.497 -0.397 -0.197 0.020
49 1.6229 0.4146 -0.877 1.287 -0.591 -0.197 0.021
52 0.4089 1.3753 -0.741 0.016 -0.648 -0.197 0.022
57 1.0000 1.1112 -0.768 -0.687 -0.137 -0.048 0.031
59 0.6990 0.0733 -0.514 0.776 -0.953 -0.040 0.024
65 -2.4082 -1.5143 -0.302 -0.341 0.115 -0.493 0.033

The applicability domain (AD) of the five-descriptor
linear model previously selected (Williams plot) was
assessed utilizing the well known leverage approach
(Fig. 4). Training set objects (51 compounds with
experimental activity values) used in the model
development are presented as solid dots, whereas the

external validation set objects (15 compounds) as solid
rectangles labeled with the corresponding number (ID
signature).

The analysis of AD for the training set objects shows
that only one compound labeled with (ID33) signature
can be identified as a typical X-outlier (h > h" = 0.353).
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Figure 3. The experimental vs. predicted pMIC values using MLR
method.
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Figure 4. Graphical representation (Williams plot) of the five-
descriptor MLR model's applicability domain (AD)
together with external validation set objects.

Surprisingly, the pMIC prediction for this compound

was quite good as presented in Table 2. On the other

hand, seven compounds from the external validation
set (ID22, 1D29, 1D40, 1D49, ID57, ID59, and ID65)
are typical X-outliers with h > h. Only one compound
from the external validation set with signature (ID1)
can be identified as a typical Y-outlier if the cut-off
value for standard deviation is +2.00. The predicted
activity values for the compounds signed as (ID1,

ID22, ID40, and ID57) are good, whereas the rest of

the compounds identified as outliers (ID29, ID49, and

ID65) are poorly predicted. The structural investigation

of these compounds shows that compounds (ID29

and ID65) have an o, p-difluoroaromatic moiety
attached into position 1 of the main 6-fluoroquinolone
scaffold, whereas the compound (ID49) has a chirally-
modified 2-fluorocyclopropyl moiety. According to the
accepted SAR rules for 6-fluoroquinolone antibiotics,
the substitutions in position 1 of the main quinolone
core with smaller alkyl substituents (methyl, ethyl, and
especially cyclopropyl) will greatly enhance the anti-
mycobacterial activity [11]. Since the compounds (ID29)
and (ID65) have attached a significantly larger group
than the substituents proposed, we suggest that these
structural changes induce lower activity. The MIC value

of the compound (ID65) is 256 ug mL™. In addition, these
two compounds are structural analogs of tosufloxacin
(photocytotoxic and photohaemolytic agent) in which
the presence of the o, p-dihalogenated aromatic
ring system at position 1 increases the probability of
emerging possible photocytotoxic/photohaemolytic
adverse effects [60]. Compound (ID49), a chiral analog
of ciprofloxacin, has a predicted activity value that is
too low. Apparently, the five-descriptor (3D+QC) model
cannot adjust the prediction of chiral/achiral substituted
fluoroquinolones at position 1.

4. Conclusion

A quantitative structure-activity relationships (QSAR)
study on a set of 66 structurally-similar 6-fluoroquinolone
analogs was performed using a comprehensive set of
theoretical molecular descriptors. The MLR method
was employed for the construction of a robust model
for prediction of the inhibitory activity (oMIC) against
M. tuberculosis. The robustness and the predictive
ability of the model were verified using a method for
internal validation (cross-validation leave-one-out). The
predictive power of the model was tested through the
extrapolation of the model over the external previously
excluded validation data set [59]. The result obtained in
this study (@2_, = 0.7393) suggests that QSAR models
utilizing calculated theoretical molecular descriptors
can be successfully used for the design of novel
6-fluoroquinolone analogs with possible higher anti-
mycobacterial activity. Furthermore, the selected most
frequent theoretical molecular descriptors describe some
of the crucial inter-molecular interactions between the
6-fluoroquinolones and the GyrA subunit and DNA [56]:
-1 stacking interaction of the main 6-fluoroquinolone
scaffold and the planar aromatic systems of the bacterial
DNA, as well as possible electrostatic interactions with
the amino acid residues of the GyrA subunit active site.
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