
1. Introduction
In the last few years, the incidence of tuberculosis has 
dramatically increased. The global statistics from the 
World Health Organization (WHO) indicate that today 
approximately one third of the human population is 
infected by Mycobacterium tuberculosis and around 
8 million people die from tuberculosis every year [1]. 
M. tuberculosis, the causative agent of tuberculosis, 
is a persistent pathogen microorganism. Although 
tuberculosis itself is a disease mainly caused by the 
microorganism M. tuberculosis, in some cases it can 
be caused by other Mycobacterium species such as 
M. fortuitum, M. smegmatis and M. avium-intracellulare 
complex [2-4]. Tuberculosis can be treated with 
chemotherapy. The most commonly used antitubercular 
agents in tuberculosis therapy belong to three common 

classes: first-line antitubercular drugs (isoniazid, 
ethambutol, pyrazinamide, rifampicin, streptomycin), 
second-line antitubercular drugs (aminoglycosides: 
amikacin, kanamycin; polypeptides: capreomycin; 
quinolones: ciprofloxacin, levofloxacin, moxifloxacin; 
thioamides: ethionamide; p-aminosalicylic acid), and 
third-line antitubercular drugs (rifabutin, clarithromycin, 
linezolide) [5]. Nevertheless, the whole treatment is quite 
long taking approximately 6-9 months. The durability 
of the treatment as well as the toxicity and the poor 
patient compliance, are risk factors which frequently 
lead to selection of drug resistant and very often deadly 
multi-drug resistant strains. This increasing problem of 
multi-drug resistant strains is the major challenge for 
the investigation and design of novel drug candidates 
which are not only active against stable drug resistant 
mycobacteria, but also shorten the length of therapy [6]. 
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A quantitative structure-activity relationship (QSAR) study on a set of 66 structurally-similar 6-fluoroquinolones was performed 
using a large pool of theoretical molecular descriptors. Ab initio geometry optimizations were carried out to reproduce 
the geometrical and electronic structure parameters. The resulting molecular structures were confirmed to be minima via harmonic frequency 
calculations. Obtained atomic charges, HOMO and LUMO energies, orbital electron densities, dipole moment, energy and many other
properties served as quantum-chemical descriptors. A multiple linear regression (MLR) technique was applied to generate a linear model 
for predicting the biological activity, Minimal Inhibitory Concentration (MIC), treated as negative decade logarithm, (pMIC). The heuristic 
method was used to optimize the model parameters and select the most significant descriptors. The model was tested internally using the 
CV LOO procedure on the training set and validated against the external validation set. The result (Q2

ext = 0.7393), which was obtained on 
an external, previously excluded validation data set, shows the predictive performances of this model (R2

tr = 0.7416, Q2
tr = 0.6613) 

in establishing (Q)SAR of 6-fluoroquinolones. This validated model could be proficiently used to design new 6-fluoroquinolones with 
possible higher activity.
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In the search for new therapeutic targets and new anti-
tubercular agents, fluoroquinolones which are a family 
of broad-spectrum antibiotics are particularly interesting. 
They originate from the nalidixic acid which is the parent 
of the group. The majority of quinolones in clinical use 
belong to the subset of 6-fluoroquinolones, which have 
an F atom attached to the main ring scaffold, typically at 
the 6-position (Fig. 1). 

According to structure-activity relationship (SAR) 
studies, the main scaffold, i.e., the 1,4-dihydro-4-oxo-
3-pyridinecarboxylic acid moiety, is essential for anti-
mycobacterial activity [7-9]. Substitutions at position 2 
of the annulated ring system greatly reduce activity (a 
measure of the physiological response which a drug 
produces) and potency (a measure of a range of effective 
doses in selected and not totally specified situations) 
[10], but positions 5, 6, 7 (especially), and position 8 
of the fused ring system may be substituted with good 
effect. These substitutions will result in increasing the 
anti-mycobacterial activity and potency. The substitution 
with the F atom at position 6 is very important and also 
will result in significantly enhanced anti-mycobacterial 
activity. Position 1 of the main ring system, can also 
be substituted (small alkyl substituents such as methyl, 
ethyl, and especially cyclopropyl are known to enhance 
the potency and efficiency of 6-fluoroquinolones). 
These substitutions will result in increased activity and 
metabolic stability of the drug due to steric bulk. Ring 
fusions at the positions (1,8), (5,6), (6,7) and (7,8) are 
also very important and can significantly increase the 
activity [11].

One of the well established molecular targets of 
antitubercular agents in mycobacteria is DNA gyrase. 
It is a unique bacterial type II topoisomerase enzyme 
responsible for the catalysis of the process of introduction 
of negative supercoils into the double-stranded DNA 
molecule using the free energy that comes from the 
hydrolysis of ATP [12]. This bacterial enzyme consists 
of two major subunits, GyrA and GyrB which form the 
functional heterodimer A2B2.

The GyrA subunit is responsible for the process of 
DNA breakage and reunion, where GyrB is also involved. 
Another closely related bacterial enzyme is type IV 
topoisomerase that also forms a heterodimer [13]. 
Both enzymes are involved in the process of controlling 
the topological state of DNA molecules. The gyrase is 
required for initiation of the process of DNA replication 
and elongation, while topoisomerase IV is responsible 
for relaxation of DNA [14,15]. 

Fluoroquinolones are the only inhibitors of gyrase/
topoisomerase IV. They instantly inhibit the process 
of DNA synthesis in mycobacteria through a cleavage 
of the nascent mycobacterial DNA molecule in the 

complex formed between the DNA gyrase and type IV 
topoisomerase, resulting in topological perturbation and 
bacterial cell death [16]. These synthetic compounds 
belong to the class of GyrA/ParC inhibitors [17].

The present study involves structure-activity 
relationships and development of predictive models 
using the MLR method and a comprehensive set of 
calculated theoretical molecular descriptors which could 
subsequently be used for prediction of the biological 
activity of novel unknown 6-fluoroquinolone analogs.

The main goal of the presented study was to develop 
a robust QSAR model based on a set of structuraly 
similar 6-fluoroquinolones, which can be further used to 
estimate the activities of novel compounds. 

2. Experimental procedure

2.1. Data set
The biological assay data used in our study were 
obtained from classical in vitro tests for inhibitory 
activity against M. tuberculosis. The data we used was 
extracted from an online structural database [18]. The 
constructed dataset is named TBCData and consists 
of 66 fluoroquinolone analogs and their corresponding 
activity values MIC (µg mL-1). There are several 
searching criteria for extracting the needed data. These 
fluoroquinolones were collected using the search criteria 
‘fluoroquinolones’ in the NIAID (National Institute of 
Allergy and Infection Diseases) therapeutics database 
[18]. The search procedure employed, resulted in 
listing of all available 6-fluoroquinolone analogs (total 
856 records). Detailed visual inspection of the listed 
compounds shows that not every structure in the 
fluoroquinolone’s database has a measured MIC value. 
Although the majority of the fluoroquinolones provided 
are presented as electroneutral forms, there are also 
some compounds that exist as charged forms, salt forms, 
and double/triple forms. These limitations (missing MIC 
values and descriptors computing limitation of non-
individualistic forms (charged forms, salts, double/triple 
forms)) resulted in construction of a final dataset of a 
total of 66 single molecule compounds.

Figure 1. Generic structure of 6-fluoroquinolones.
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The detailed investigation of in vitro tests used for 
MIC determination, showed a uniformity in performing 
the test (all details are available in Supporting Information 
in Supplemental Table 1). In other words, it is a standard 
procedure (agar/broth-dilution turbidimetric method) 
where a temperature of 37oC for incubation (growth) of 
the microorganisms, the 7H(9,10,11) agar for preparing 
the suspension/broth, as well as the chemicals used 
as supplements (glycerol and albumin-dextrose-
catalase) are used in all tests. This in vitro procedure 
is in accordance with the CLSI international standards 
for susceptibility testing, i.e., a standard named M24-A 
that describes the method in detail (media, inoculum, 
incubation, etc.) [19].

The MIC values of the collected fluoroquinolones 
are in the range from 0.003 to 256.0 µg mL-1. 
According to SAR analysis, each structure in the 
dataset has 1,4-dihydro-4-oxo-3-pyridinecarboxylic 
acid moiety and F atom substitution at the position 6 
in the main scaffold which are believed to be essential 
for anti-mycobacterial activity (Fig. 1). Some of the 
compounds in the TBCData do not correspond to 
the group of classical 6-fluoroquinolones because 
of the fusion of a third ring system to the bicyclic 1,4-
dihydro-4-oxo-3-pyridinecarboxylic acid moiety. These 
fluoroquinolone structures have MIC values in the range 
(0.9-64.0 µg mL-1). The chemical structures of the 
compounds and the related biological activity values are 
available in the Supporting information (Supplemental 
Table 2). The collection of the compounds and the 
activity values was performed using Microsoft Excel and 
the specifically integrated toolbox for ChemBioOffice 
Ultra 2008 (v.11.0) [20]. This method of collecting 
data is suitable for generating the structure database 
input file format (*.sdf), which is subsequently used for 
simultaneous calculation of the molecular descriptors in 
the DRAGON software package [21]. The activity values 
MIC (µg mL-1) were converted into pMIC (-log10(MIC)) 
values, and used in the CODESSA software package for 
multiple linear regression (MLR) analysis [22,23]. 

2.2. Geometry  optimization and calculation of  
       quantum-chemical descriptors
The molecular structures previously collected were in 
2D format (ChemBioOffice 2D sketch (*.mol)). Using 
the MOLDEN software package [24] each structure 
was subsequently re-sketched in a 3D environment, 
checked by visual inspection in order to ensure that the 
3D geometry is correct, and saved as GAUSSIAN03 
input file format (*.com) for geometry optimization. 
The ab initio geometry optimization calculations for 
the dataset of investigated compounds were carried 
out using the Gaussian03 suite of programs [25]. The 

Hartree-Fock-Roothaan method [26] and split-valence 
double-zeta (6-31G(d,p)) basis set with polarization 
functions on heavy atoms and hydrogens [27] were 
applied to reproduce the geometrical and electronic 
structure parameters. Resulting molecular structures 
were confirmed to be minima via harmonic frequency 
calculations. Population analysis was performed by 
application of Mulliken [28] and Merz-Kollman [29] 
schemes. The correct 3D geometry of the compounds is 
very important to find a possible relationship between the 
electronic properties of the compounds (rendered from 
quantum-chemical calculations) and their macroscopic 
properties (pMIC) [30] as well as for subsequent 
calculation of 2D/3D molecular descriptors using the 
DRAGON software package [21].

Obtained atomic charges, highest occupied and 
lowest unoccupied molecular orbital energies (εHOMO and 
εLUMO), orbital electron densities, total dipole moment, 
polarizability, energy (∆E = εHOMO - εLUMO) and many other 
properties served as quantum-chemical descriptors for 
further MLR analysis.

2.3. Calculation of 2D/3D descriptors
For calculation of the 2D/3D molecular descriptors for 
each compound of the training/validation sets obtained, 
we used the DRAGON [21] software package. 

Using the MinoSuite’s [31] integrated part DragCOD 
v2.0, an in-house developed software application, we 
made a conversion of the DRAGON’s list of calculated 
molecular descriptors (*.txt output format) into a 
CODESSA descriptor input file (*.txt input format). The 
rest of the descriptors (orbital energies (εHOMO and εLUMO), 
total dipole moment, polarizability, and Mulliken atomic 
charges) used in the multiple linear regression analysis, 
were extracted from each optimized structure (training/
validation set) obtained by Gaussian03 (*.log files) using 
the MinoSuite’s [31] integrated tool GaussExtractor 
v3.0. 

The final pool of the calculated 2D/3D/QC theoretical 
molecular descriptors (1718), which were considered for 
further calculations, can be separated into nine classes: 
topological descriptors, electrostatic descriptors, Randic 
molecular profiles, geometrical descriptors, RDF 
descriptors (Radial Distribution Function descriptors, 
i.e., molecular descriptors obtained by radial basis 
functions centered on different interatomic distances 
(from 0.5 to 15.5Å)), 3D-MoRSE descriptors (3D 
Molecule Representation of Structures based on 
Electron diffraction derived from infrared spectra 
simulation using a generalized scattering function), 
WHIM descriptors (Weighted Holistic Invariant Molecular 
descriptors, based on the statistical indices calculated 
on the projections of atoms along principal axes. These 
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descriptors are obtained utilizing a Principal Components 
Analysis on the centered Cartesian coordinates of 
a molecule by using a weighted covariance matrix 
obtained from different weighting schemes for the 
atoms), GETAWAY descriptors (GEometry, Topology, 
and Atom-Weights AssemblY; molecular descriptors 
derived from the Molecular Influence Matrix (MIM)) and 
quantum-chemical descriptors. After the calculation, all 
descriptors were analyzed using the CODESSA software 
with the pre-integrated Heuristic algorithm, which is a 
suitable option for selection of most important molecular 
descriptors [22,23]. 

2.4. Development  of a Quantitative Structure- 
       Activity Relationships Model
In order to construct a QSAR model, the compounds 
must be represented by molecular descriptors. Initially 
we divided our dataset TBCData into a training and 
an external validation set using the random dividing 
approach. This division procedure resulted in 51 
compounds in the training set, and the rest previously 
excluded 15 compounds in the external validation set. 
The descriptor selection procedure runs in several 
steps. First, the following selection algorithm was used 
for calculating the one-parameter correlation equations 
between descriptors and activity and eliminating all 
descriptors that do not fulfill the criteria below [23]:

(1) The F-test’s value for the one-parameter 
correlation with the descriptor is below 1.00.

(2) The squared correlation coefficient of the one-
parameter equation is less than R2

min (in our case 
R2

min = 0.1).
(3) The parameter’s t-value is less than t1 (where 

R2
min and t1=1.5).
(4) The descriptor is highly inter-correlated (above 

rfull, where rfull=0.99), with another descriptor and this 
other descriptor has a higher squared correlation 
coefficient in the one-parameter equations based on 
these descriptors.

The number of retained descriptors (Supporting 
Information, Supplemental Table 3) is 13 for models 2D 
and 3D, 14 for 3D and 3D+QC, 15 for 2D+QC, 21 for 
2D+3D and 2D+3D+QC. With the remaining descriptors 
after each inter-correlation and one-parameter 
calculation, all possible two- and more-parameter 
linear models were calculated (R2

tr, Q2
tr). The squared 

correlation coefficient of the models (R2
tr, correlation 

between the observed and predicted activity values) was 
calculated employing the pre-integrated CODESSA’s 
equation (Eq. 1) [32]:
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where Ntr is the total number of training set objects, xtr 
are experimental (pMICexp ) values, and ytr are predicted 
(pMICpred) values. All the models were internally validated 
using the cross-validation leave-one-out procedure (CV 
LOO, Q2

tr) using the equation (Eq. 2) [33]:
                                                                              

     
                 (2)

where Ntr is the total number of training set objects; yi,exp 
and yi,pred are the experimental and predicted values, 
respectively; exp,iy is the average response value of the 
training set.

The assessment of the model expansion and selection 
of the smallest optimal number of molecular descriptors 
was performed employing the “breaking point” rule, i.e., 
a simple Cartesian plot which shows how the squared 
correlation coefficient of the model (R2

tr) is changing as a 
function of the number of molecular descriptors involved 
in the modeling procedure. Namely, if the enhancement 
between the models with n and (n + 1) descriptors is 
insignificant, then the optimal model will be the one with 
n descriptors [34-37]. Initially we constructed several 
linear models with up to nine descriptors (“breaking 
point” rule, Fig. 2), of which only the models with 2, 3, 
4, and 5 descriptors were presented (improvement in 
model development until the one point, i.e., the breaking 
point (5 descriptors, the optimal model)). The Heuristic 
selection algorithm resulted in five best descriptors, 
which were subsequently used for testing the predictive 
performances using the previously excluded validation 
set objects (Eq. 3) [38]:

                                                                                         

                 (3)

where Next is the total number of external validation 
set objects; yi,exp and yi,pred are the experimental and 
predicted values, respectively; exp,iy is the average 
response value of the external validation set.
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2.5. Applicability domain
According to OECD QSAR Validation Principles, a QSAR 
model is usable in the boundaries of its applicability 
domain [39]. The applicability domain of a (Q)SAR 
model is defined as physico-chemical, structural, or 
biological space, knowledge or information on which 
the training set of the model has been developed, and 
for which it is applicable to make predictions for new 
compounds [40,41]. It should be described in terms of 
molecular descriptors of the model which are the most 
relevant parameters. The activity predictions can be 
made only within the domain’s boundaries. Therefore, 
the applicability domain can be defined as a theoretical 
region in the space represented by the model’s 
descriptors and the response (predicted activity values) 
in which a (Q)SAR model gives reliable outcome.

The applicability domain of the investigated 
6-fluoroquinolones (five-descriptor MLR model, 
Table 1c, Supporting Information Supplemental 
Table 4) was calculated using the leverage approach [42]. 
The scatter plot defined by standardized residuals as a 
function of the leverage (Williams plot) was employed 
to assess and visualize the quality of the predictions. 
The leverage is defined as a compound’s distance from 
the centroid of X. Mathematically, the leverage (hi) of 
a given compound in the multidimensional descriptor 
space, can be calculated as (Eq. 4):

( ) iii xXXxh 1TT −
=                                                   (4)

where xi is the descriptor vector of the compound under 
investigation, whereas the X is the descriptor matrix 
rendered from the descriptor values of the training 
set [43]. According to Eriksson et al. [44], the cut-off 
leverage value (h*) is defined as (Eq. 5):

( )
n

ph 13* +
=                                                           (5)

where n is the number of compounds in the training 
set (51), while p is the number of descriptors used 
for modeling (5) [45]. In our model the cut-off value is 
h* = 0.353 (Eq. 5). Eriksson et al., proposed that 
the prediction for compounds with (hi > h* ) can be 
considered as unreliable, and vice-versa. A value of 
3 for standardized reziduals in the Williams plot is 
frequently used as a limit (cut-off value) for accepting 
predictions (3.0 standard deviation units, ± 3.0σ). The 
compounds that lie in this region cover 99% of the 
normally distributed data [40].

3. Results and discussion

3.1. Assessment  of  the calculated theoretical  
       molecular descriptors
Quantitative structure-activity relationships (QSAR) 
which have been examined to rationalize the biological 
activity values of structurally-similar 6-fluoroquinolone 
analogs as well as to design novel compounds with 
possible enhanced activity are well documented 
[46-51]. In order to construct a reliable QSAR model 
in a statistical manner, first the compounds must be 
represented by molecular descriptors [52], and second, 
a good selection algorithm is needed for selection of 
the most important molecular descriptors from the large 
multi-descriptor space. 

The main goal of our study is to approximate the 
mechanism of anti-mycobacterial activity in this series 
of known fluoroquinolones using a comprehensive set of 
theoretical molecular descriptors (2D/3D/QC) as well as 
to build a robust and statistically significant model which 
could subsequently be used to design new potential 
drug candidates, with possible better activity. 

One of the most important steps in QSAR modeling 
is to define the number of independent variables in 
the model equation obtained. In this way the over-
parameterization of the mathematical model as well 
as the chance correlation between the molecular 
descriptors is avoided [53]. 

Since we start our modeling procedure with a pool 
of 1718 theoretical molecular descriptors, a possibility 
exists to encounter a chance correlation in a case where 
the number of examined variables is higher than the 
number of observations. 

Initially we investigated seven different cases 
employing the classical MLR method and all possible 
combinations of the calculated theoretical molecular 
descriptors (2D, 3D, QC, 2D+3D, 2D+QC, 3D+QC, 
and 2D+3D+QC) and selected the model which not 
only has the highest coefficient of correlation (R2

tr), but 
also good and acceptable predictive performances. 

Figure 2. Breaking point rule for determination of optimal 
number of descriptors (R2

tr of the models vs. number 
of descriptors).
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These results are presented in Supporting Information 
in Supplemental Table 3 (models) and Supplemental 
Table 4 (predictions). Supplemental Table 3 shows seven 
different cases (all possible combinations of molecular 
descriptors) where we examined four models (with 2, 3, 
4, and 5 descriptors) for each case separately (total 28 
linear models). 

The analysis of 5-descriptor models for each case, 
shows that six out of seven models are good (case 1, 
case 2, case 4, case 5, case 6, and case 7) according to 
the R2

tr values (R2
tr > 0.7). According to the R2

tr values, 
one would say that 5-descriptor models built with 2D 
(case 1, R2

tr = 0.7894), 2D+3D (case 4, R2
tr = 0.7623), 

2D+QC (case 5, R2
tr = 0.7942), and 2D+3D+QC (case 

7, R2
tr = 0.7623) descriptors are better than the model 

built only with 3D (case 2, R2
tr = 0.7417) or 3D+QC (case 

6, R2
tr = 0.7417) descriptors (highlighted in green). The 

linear plots (pMICexperimental vs. pMIC predicted for training/
validation set) represented in the Supporting Information 
in (Supplemental Fig. 1) show better fitting for case 2 
(only 3D descriptors) and case 6 (3D+QC descriptors) 
in comparison with the other cases. The R2

tr values of 
these two models as well as the molecular descriptors 
selected by the Heuristic algorithm are the same. 

This result apparently shows the domination, i.e., 
significance, of the 3D descriptors over QC descriptors 
(Tables 1abc) and therefore selection of the best 
5-descriptor linear model (Table 1c). The MLR analysis 
between QC descriptors alone (494) and the inhibitory 
activity (Supplemental Table 3, case 3) shows that the 
descriptor combination of εHOMO and Total Dipole Moment 
(TDM) was the most important for elucidating the activity 
(50.74% of the variation). This observation clearly 
indicates that quantum-chemical descriptors alone were 
not sufficient for explanation of pMIC variation. Therefore 
the additional pool of 682 3D DRAGON descriptors was 
used in order to enhance the linear model as well as to 
explain the structural diversity of the fluoroquinolones 
used. 

3.2. Model development
As presented in Table 1c, the number of examinations 
(column 3, number of examinations is 51 (training 
set)) is enough for screening the number of retained 
descriptors (column 4: number of descriptors 14) in 
order to keep the probability of encountering a chance 
correlation with R2 > 0.8 at the 1% level or less [53].  The 
modeling procedure is based on the breaking point rule 

Table 1. 

a) MLR models obtained by employing only 3D molecular descriptors (Supporting Information Supplemental Table 3, case 2).

ID Dataset Tr.Str. D.No./D.Re. Params. R2
tr F s2 Q2

tr Descriptors involved

2 TBCData 51 682/14

2 0.5317 27.24 0.8042 0.4807 Mor21p Mor09u    

3 0.6014 23.63 0.6991 0.5424 Mor21m Mor09u HOMT   

4 0.6982 26.62 0.5406 0.6290 Mor21m Mor09u HOMT Mor16e  

5 0.7416 25.83 0.4733 0.6613 Mor21p Mor09u HOMT Mor16e R2p+

b) MLR models obtained by employing only QC molecular descriptors (Supporting Information Supplemental Table 3, case 3).

ID Dataset Tr.Str. D.No./D.Re. Params. R2
tr F s2 Q2

tr Descriptors involved

3 TBCData 51 494/14

2 0.2394 7.56 1.3060 0.1133 HOMO13 HOMO5

3 0.2574 5.43 1.3021 0.1057 HOMO13 HOMO5 TDM

4 0.2574 5.43 1.3021 0.1057 HOMO13 HOMO5 TDM /

5 0.2574 5.43 1.3021 0.1057 HOMO13 HOMO5 TDM / /

c) MLR models obtained by employing a combination of 3D+QC molecular descriptors (Supporting Information Supplemental Table 3, case 6).

ID Dataset Tr.Str. D.No./D.Re. Params. R2
tr F s2 Q2

tr Descriptors involved

6 TBCData 51 1176/14

2 0.5317 27.24 0.8042 0.4807 Mor21p Mor09u    

3 0.6014 23.63 0.6991 0.5424 Mor21m Mor09u HOMT   

4 0.6982 26.62 0.5406 0.6290 Mor21m Mor09u HOMT Mor16e  

5 0.7416 25.83 0.4733 0.6613 Mor21p Mor09u HOMT Mor16e R2p+

Linear models obtained by CODESSA (ID, Case number; Tr. Str., Number of structures in the training set; D. No., Starting pool of 
molecular descriptors; D.Re. number of descriptors retained from the starting pool; Params., Parameters used in heuristic option; R2

tr, 
squared coefficient of correlation for the training set; Q2

tr, the predictive squared correlation coefficient). Statistically significant molecular 
descriptors are highlighted. 
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(the slope change). This rule shows the enhancement 
threshold of correlation coefficient (R2

tr) over the number 
of descriptors in each model.

Initially we developed preliminary linear models 
with up to 9 descriptors and found that the threshold, 
i.e., the maximal enhancement of R2

tr was when the 
number of descriptors is equal to five (optimal number 
of descriptors, the breaking point, Fig. 2) [34-37].

The heuristic algorithm implemented in modeling, 
results in a five-descriptor model which can be described 
with the following QSAR equation (Eq. 6):

pMIC = – 0.94 – 3.575Mor21p – 1.118Mor09u –        
–1.3883Mor16e + 0.263HOMT – 52.91R2p+ 
Ntr = 51; R2

tr = 0.7416; Q2
tr = 0.6613; 

s = 0.4733; F = 25.83,                                                 (6)

where Ntr is the number of examinations (compounds 
included into the training set used for modeling), R2

tr 
is the squared coefficient of correlation, Q2

tr is the 
predictive squared correlation coefficient, s is the 
standard deviation, and F is the Fisher value. Following 
the frequency analysis of the descriptors involved in 
our models (Table 1c), the most important molecular 
descriptors for establishing a quantitative relationship 
between the molecular structure and activity can be 
visually determined. 

According to this postulate as well as the five-
descriptor model equation described above, the five most 
frequent and relevant molecular descriptors for activity 
are: Mor21p, Mor09u, Mor16e, HOMT and R2p+. The 
parameters Mor21p, Mor09u, Mor16e, and R2p+ belong 
to the class of electrostatic and electro-topological 
descriptors (3D-MoRSE-signal 21/weighted by atomic 
polarizabilities, 3D-MoRSE-signal 09/unweighted, 
3D-MoRSE-signal 16/weighted by atomic Sanderson 
electronegativities, R maximal autocorrelation of lag 
2/weighted by atomic polarizabilities (3D-GETAWAY 
descriptor), respectively) whereas the HOMT parameter 
(HOMA-total; Harmonic Oscillator Model of Aromaticity 
Index) belongs to the class of geometrical descriptors.

3.3. Mechanistic interpretation
The electrostatic descriptors listed above are of 
significant importance for activity and indicate that 
in vitro/in vivo anti-mycobacterial activity against 
M. tuberculosis is strongly dependent on the electrostatic 
and aromaticity properties of the properly substituted 
main 6-fluoroquinolone scaffold. 

These parameters also corroborate with findings in 
the literature that position 6 of the F atom in the main 
quinolone core which is present in all inhibitors of this 
study is of significant importance for accommodation of 

the inhibitor into the active binding site and suggests that 
a possible establishment of an electrostatic interaction 
between the F atom and the target (possible inter-
molecular electrostatic interactions with the amino acid 
residues of the GyrA subunit active site) [54-57] may 
result in increased stability of the fluoroquinolone binding 
to the complex [58]. The importance of the Mor09u and 
R2p+ parameters (pure electrostatic descriptors) for 
anti-mycobacterial activity also suggests that possible 
intermolecular electrostatic interactions between the 
carbonyl and carboxyl groups of the main quinolone 
core and the corresponding amino acid residues of the 
active site within the GyrA subunit are responsible for 
tight binding. The recently published crystal structure of 
the complex levofloxacin with GyrA fully substantiates 
this notion [56]. It has to be clearly pointed out that 
the molecular descriptors selected by the Heuristic 
procedure are an interpolation of various structural 
features introduced in the 6-fluoroquinolone scaffold 
by substituents with implicit electrostatic properties. 
For example, in vitro/in vivo anti-mycobacterial activity 
against M. tuberculosis appears to be dependent 
also on the electronegativity of the O atom (sp2) of 
the carboxyl and carbonyl group of the main core 
substituents (Fig. 1).

On the other hand, HOMT is also an important 
molecular descriptor indicating the importance of 
aromaticity of the main 6-fluoroquinolone scaffold (the 
annulated pyridone system) for activity as well as the 
optimal basicity for better intestinal permeability after 
possible oral administration. At the molecular level, the 
correct 3D geometry (molecular shape) of the ligand is 
one of the important factors for good accommodation 
into the binding pocket as well as for establishing good 
interactions with the surrounding amino acid residues 
and forming a more stable complex. The aromaticity 
of the main scaffold is also of significant importance 
for establishing π-π stacking interactions between the 
main 6-fluoroquinolone scaffold and the planar aromatic 
systems of the bacterial DNA [56]. This relationship 
is also suggested in our QSAR equation through the 
importance of the HOMT parameter that belongs to the 
group of 3D geometrical descriptors.

According to the values obtained for the R2
tr and Q2

tr, 
one can observe the good predictive performances of our 
five-descriptor linear model. As mentioned previously, the 
predictive power of our five-descriptor QSAR model [59] 
was observed using an external, previously excluded 
validation data set (Fig. 3). The results of the validation 
set predictions (Q2

ext = 0.7393) that was obtained on the 
basis of the best (five-descriptor) training set model as 
well as the numerical values for each of the selected 
descriptors are shown in Table 2.
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Table 2. 

ID pMICexp pMICpred Mor21p Mor09u Mor16e HOMT R2p+

Training set

2 0.5229 0.8875 -0.477 0.038 -0.461 4.021 0.029

3 -0.5441 -0.1400 -0.564 0.069 -0.408 -0.250 0.031

4 1.0000 0.0902 -0.517 -0.215 -0.339 -0.182 0.028

5 -0.1461 -0.0990 -0.505 0.084 -0.407 -0.229 0.026

6 -0.5052 -0.1297 -0.624 0.145 -0.284 -0.250 0.030

7 1.3010 1.3320 -0.600 -0.570 -0.819 -0.229 0.030

8 0.3010 0.4930 -0.716 -0.053 -0.624 -0.361 0.037

9 -0.2041 -0.2781 -0.428 -0.005 -0.284 0.206 0.025

11 -0.3010 -1.8846 -0.187 -0.120 0.559 3.343 0.035

12 0.3010 0.6400 -0.581 -0.586 -0.641 -0.322 0.037

13 0.6021 -0.2269 -0.330 0.591 0.029 5.711 0.024

14 2.0000 1.7479 -0.854 -0.707 -0.045 -0.206 0.022

15 1.5086 0.3169 -0.650 -0.263 -0.449 -0.504 0.035

16 2.0000 1.5034 -0.444 -0.825 -0.040 3.958 0.022

18 2.3979 2.4936 -0.971 -0.856 -0.199 -0.206 0.023

19 -0.3010 -0.4755 -0.323 -0.612 0.256 3.564 0.037

20 -1.0969 -0.5191 -0.506 1.543 -0.398 4.604 0.027

21 0.1079 0.2678 -0.573 0.915 -0.260 4.544 0.026

23 0.9031 1.0072 -0.450 -0.621 0.260 4.038 0.020

24 2.5229 1.8796 -0.767 -1.032 -0.137 -0.389 0.022

25 0.6021 0.3867 -0.846 -0.374 0.019 -0.100 0.039

26 1.7959 2.0591 -0.664 -0.991 0.242 3.261 0.019

27 0.2218 -0.3768 -0.708 0.442 0.147 -0.202 0.023

28 0.4089 -0.8549 -0.302 0.039 -0.365 -0.112 0.027

30 1.5229 1.7064 -0.731 -0.532 -0.465 0.036 0.023

31 -0.5052 0.1537 -0.314 -1.024 -0.170 4.090 0.047

32 -2.3010 -0.9789 -0.367 -0.395 0.356 -0.310 0.023

33 -2.1004 -2.7446 -0.616 2.257 0.104 0.336 0.027

34 0.1079 0.4046 -0.439 0.043 -0.664 -0.155 0.020

36 0.9031 0.6620 -0.925 0.556 -0.051 0.036 0.022

37 0.8069 0.4884 -0.539 -0.794 -0.507 -0.504 0.037

38 0.4089 0.1632 -0.268 -0.982 0.442 4.740 0.030

39 -1.2041 0.1212 -0.366 -0.299 -0.131 3.530 0.032

41 2.2218 1.4623 -0.641 -0.787 -0.342 -0.304 0.022

43 2.2218 1.5336 -0.627 -0.780 -0.329 -0.147 0.020

44 2.5229 2.1496 -0.974 -0.722 -0.011 -0.194 0.022

The experimental vs. predicted activity values (pMIC) and numerical values of the descriptors (3D+QC) involved in the modeling 
procedure.
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The applicability domain (AD) of the five-descriptor 
linear model previously selected (Williams plot) was 
assessed utilizing the well known leverage approach 
(Fig. 4). Training set objects (51 compounds with 
experimental activity values) used in the model 
development are presented as solid dots, whereas the 

external validation set objects (15 compounds) as  solid 
rectangles labeled with the corresponding number (ID 
signature).

The analysis of AD for the training set objects shows 
that only one compound labeled with (ID33) signature 
can be identified as a typical X-outlier (h > h* = 0.353). 

ContinuedTable 2.

ID pMICexp pMICpred Mor21p Mor09u Mor16e HOMT R2p+

Training set

The experimental vs. predicted activity values (pMIC) and numerical values of the descriptors (3D+QC) involved in the 
modeling procedure.

46 1.8861 1.4446 -0.758 -0.428 -0.258 -0.194 0.021

47 2.2218 1.7312 -0.726 -0.596 -0.419 -0.233 0.021

50 1.2219 0.6336 -0.853 0.690 -0.368 -0.197 0.022

51 0.6990 1.4933 -0.759 0.204 -0.838 -0.197 0.022

53 0.1079 0.7245 -0.823 0.191 -0.109 -0.197 0.022

54 -0.1931 0.8958 -0.767 0.143 -0.376 -0.197 0.023

55 0.4089 0.8823 -0.842 0.169 -0.156 -0.197 0.022

56 1.0000 1.0215 -0.838 -0.527 -0.005 0.036 0.031

58 1.0000 1.3341 -0.801 -0.446 -0.483 -0.250 0.032

60 2.5229 2.4969 -0.971 -0.859 -0.199 -0.206 0.023

61 1.6021 1.7003 -0.731 -0.529 -0.463 0.036 0.023

62 0.4089 0.4705 -0.689 0.895 -0.876 -0.197 0.023

63 -1.8062 -0.8973 -0.413 -0.220 0.344 0.055 0.023

64 -1.8062 -0.5435 -0.519 -0.318 0.441 0.055 0.023

66 -2.1072 -1.4587 -0.384 -0.502 0.458 -0.471 0.032

External validation set

1 -0.4771 -0.4820 -0.604 0.086 0.042 -0.250 0.028

10 0.3010 0.1498 -0.719 0.653 -0.283 0.076 0.022

17 0.0458 0.6802 -0.626 -0.210 -0.420 -0.229 0.026

22 0.1079 0.1644 -0.377 0.366 -0.135 4.538 0.023

29 0.3010 -0.1131 -0.531 -0.310 -0.423 -0.584 0.035

35 -1.8062 -0.3000 -0.432 -0.124 -0.213 0.139 0.026

40 2.2218 2.7892 -0.949 -0.973 -0.382 -0.246 0.023

42 1.8861 2.0438 -0.802 -0.619 -0.385 -0.197 0.020

45 2.5229 2.4392 -0.914 -0.485 -0.545 -0.290 0.021

48 1.6021 0.9918 -0.852 0.497 -0.397 -0.197 0.020

49 1.5229 0.4146 -0.877 1.287 -0.591 -0.197 0.021

52 0.4089 1.3753 -0.741 0.016 -0.648 -0.197 0.022

57 1.0000 1.1112 -0.768 -0.687 -0.137 -0.048 0.031

59 0.6990 0.0733 -0.514 0.776 -0.953 -0.040 0.024

65 -2.4082 -1.5143 -0.302 -0.341 0.115 -0.493 0.033
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Surprisingly, the pMIC prediction for this compound 
was quite good as presented in Table 2. On the other 
hand, seven compounds from the external validation 
set (ID22, ID29, ID40, ID49, ID57, ID59, and ID65) 
are typical X-outliers with h > h*. Only one compound 
from the external validation set with signature (ID1) 
can be identified as a typical Y-outlier if the cut-off 
value for standard deviation is ±2.0σ. The predicted 
activity values for the compounds signed as (ID1, 
ID22, ID40, and ID57) are good, whereas the rest of 
the compounds identified as outliers (ID29, ID49, and 
ID65) are poorly predicted. The structural investigation 
of these compounds shows that compounds (ID29 
and ID65) have an o, p-difluoroaromatic moiety 
attached into position 1 of the main 6-fluoroquinolone 
scaffold, whereas the compound (ID49) has a chirally-
modified 2-fluorocyclopropyl moiety. According to the 
accepted SAR rules for 6-fluoroquinolone antibiotics, 
the substitutions in position 1 of the main quinolone 
core with smaller alkyl substituents (methyl, ethyl, and 
especially cyclopropyl) will greatly enhance the anti-
mycobacterial activity [11]. Since the compounds (ID29) 
and (ID65) have attached a significantly larger group 
than the substituents proposed, we suggest that these 
structural changes induce lower activity. The MIC value 

of the compound (ID65) is 256 µg mL-1. In addition, these 
two compounds are structural analogs of tosufloxacin 
(photocytotoxic and photohaemolytic agent) in which 
the presence of the o, p-dihalogenated aromatic 
ring system at position 1 increases the probability of 
emerging possible photocytotoxic/photohaemolytic 
adverse effects [60]. Compound (ID49), a chiral analog 
of ciprofloxacin, has a predicted activity value that is 
too low. Apparently, the five-descriptor (3D+QC) model 
cannot adjust the prediction of chiral/achiral substituted 
fluoroquinolones at position 1.

4. Conclusion
A quantitative structure-activity relationships (QSAR) 
study on a set of 66 structurally-similar 6-fluoroquinolone 
analogs was performed using a comprehensive set of 
theoretical molecular descriptors. The MLR method 
was employed for the construction of a robust model 
for prediction of the inhibitory activity (pMIC) against 
M. tuberculosis. The robustness and the predictive 
ability of the model were verified using a method for 
internal validation (cross-validation leave-one-out). The 
predictive power of the model was tested through the 
extrapolation of the model over the external previously 
excluded validation data set [59]. The result obtained in 
this study (Q2

ext = 0.7393) suggests that QSAR models 
utilizing calculated theoretical molecular descriptors 
can be successfully used for the design of novel 
6-fluoroquinolone analogs with possible higher anti-
mycobacterial activity. Furthermore, the selected most 
frequent theoretical molecular descriptors describe some 
of the crucial inter-molecular interactions between the 
6-fluoroquinolones and the GyrA subunit and DNA [56]: 
π-π stacking interaction of the main 6-fluoroquinolone 
scaffold and the planar aromatic systems of the bacterial 
DNA, as well as possible electrostatic interactions with 
the amino acid residues of the GyrA subunit active site.
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Figure 3. The experimental vs. predicted  pMIC values using MLR 
method.

Figure 4. Graphical representation (Williams plot) of the five-
descriptor MLR model's applicability domain (AD) 
together with external validation set objects.
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