
1. Introduction
Classical trajectory simulations of the internal motions of 
single molecules on theoretically-constructed potential 
energy surfaces have played an important rôle in 
understanding some aspects of unimolecular reaction 
processes. The implicit assumption is that as the reacting 
molecule is in a “high” energy state, the correspondence 
principle ensures that the computed behaviour will 
approximate the true quantum solution, provided that 
such issues as barrier penetration, zero-point energy, 
curve crossing, etc. (which have to be dealt with by other 
means) can be neglected.

However, when the lifetime of the reacting molecule 
is far greater than a vibrational period, thus using millions 
of integration steps before completion, numerical 
rounding errors occurring at each individual step in the 
integration will cause any trajectory to deviate from 
the “true” classical path. Because rounding errors are 
handled differently in various hardware architectures 
and/or software applications, the same trajectory may 
yield different outcomes when run on different computing 
systems. As an example, for a specific low-energy 
trajectory in the isomerisation reaction NCNC → NCCN 
studied on five different machines, three gave similar 

lifetimes close to 3.3 ps, but the other two gave values of 
233 ps and 728 ps; yet for ensembles of trajectories, all 
machines gave average lifetimes of 125 ps ± 5% [1].

The reason why, despite these large divergences, 
ensemble averages on different systems agree, more-
or-less, is straightforward. In practice, using 16-decimal 
precision arithmetic, the resulting divergences begin to 
show up between 10 000 and 20 000 steps, i.e., between 
1 and 2 ps when using a typical 0.1 fs step length. In this 
particular case, with 4 atoms, there are 24 independent 
variables (12 spatial coordinates and 12 components 
of momentum) with the chance of a 1-bit rounding error 
in any or all of them at each 0.1 fs time step. All five 
trajectories started from the same set of coordinates and 
momenta1,  but because of the random nature of these 
errors, began to differ gradually from each other in an 
unpredictable manner; moreover, within each ensemble, 
given sufficient time, the configurations will become truly 
random, regardless of whether the initial configurations 
were random or regular. It is not clear at what stage we 
can assume this randomness to be perfect, but it was 
sooner than 125 ps in this example [1], i.e., somewhat in 
excess of a million time steps. The common occurrence 
of random-gap law behaviour in decay from such 
ensembles [1-3], i.e., the RRKM requirement, usually 

Central European Journal of Chemistry 

* E-mail: huw@yorku.ca
1Likewise, the same potential energy surface and Fortran code [1], but the respective machines, MIPS RC3240, SPARC 1000, 

 home-built, IBM RS/6000 [1], each used a different Fortran compiler; these old machines no longer exist, 
 is not possible.

Department of Chemistry, York University, Toronto, Canada M3J 1P3  

Huw O. Pritchard*

On the classical simulation of unimolecular 
reaction processes  

Invited Review

Abstract:  

   

 

       © Versita Sp. z o.o.

Received 1 February 2011; Accepted 11 May 2011

Keywords: Recrossings • Transition state • Non-RRKM processes • Potential energy surfaces • Computational chaos 

The numerical simulation of the internal motions of a molecule undergoing a unimolecular reaction on an assumed potential energy 
surface requires the step-by-step solution of a set of simultaneous differential equations. After several thousand time steps, due 
to differences in the handling of rounding errors in different computing systems, the situation often arises that no two computing 
machines will give the same result for a given trajectory, even when running the identical algorithm.

Such effects are demonstrated for a simple unimolecular isomerisation reaction. In general, it is only when reliance is placed on 
the integration of a single trajectory, rather than on an ensemble of similar trajectories, that conclusions may be unreliable. Moreover, 
under certain conditions, small molecules may show signs of chaotic internal motions; conversely, but for a different reason, large 
molecules may exhibit non-statistical characteristics rather than RRKM behaviour.

The rounding error problem, in a slightly different guise, has come to be dubbed the “butterfly effect” in popular culture, and the 
original proposition is re-examined using 16- and 32-decimal precision arithmetic. 
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gives confidence that decay rates calculated in this 
manner provide a reasonable classical approximation of 
the reaction process.

This reasoning implies that a single result is valueless 
unless it forms part of an ensemble of trajectories whose 
mean value has a real interpretation. However, some 
conclusions about unimolecular reaction behaviour 
derive not from ensemble studies, but from examination 
of individual trajectories, and it is the purpose of this 
Communication to examine some such cases, to 
illustrate the general patterns of behaviour caused by 
rounding errors in such simulations, and to note their 
ubiquity in other fields of endeavour.

2. Computational procedure
The algorithm used was simply a fourth-order Runge–
Kutta start-up procedure followed by a fifth-order 
Adams–Mouton predictor-corrector [4]. It has been 
used over the past 20 years to study dissociation and 
relaxation in ethane, and isomerisations in hydrogen 
isocyanide, isocyanogen and methyl isocyanide. In most 
of these studies, a standard time step of 0.1 fs was used, 
whence the results appeared to be satisfactory. Similar 
procedures [5] and similar step lengths [5,6] have been 
used in other molecular dynamic simulations, also with 
apparently satisfactory results.

The present review is confined to the reaction NCCN 
↔ NCNC in the J=0 state, using an 870-point MP2/6-
31G* potential energy surface [1,7]. For a given value 
of the energy, trajectories were started from the normal 
internuclear configuration of either NCCN or NCNC 
with quasi-random momenta assigned to each of the 
12 degrees of freedom. A portable random number 
generator (ran1.for [4]) was used throughout so that 
trajectory #n, whether run on different machines, or 
else on the same machine with different compilers, 
always commenced from, ostensibly, the same set of 
momenta.

As an example of the effects of cumulative rounding 
errors in simulations of this kind, Fig. 1 shows results 
for the same Fortran F77 algorithm run on two different 
computers, one an Intel processor, the other an AMD 
64-bit processor running in 32-bit mode, and of the 
same F77 compiled module run on these two different 
machines. For each of the three 1000-point ensembles, 
population decay obeyed the random-gap law, with 
the same slopes and with the roughly 200 trajectories 
having lifetimes below 2.5 ps being identical; also, due 
to the randomness of the initial conditions, there was no 
incubation period.

3. The classic butterfly effect

The idea of the “butterfly effect” stems from an accidental 
observation by Edward Lorenz [8] in 1963: an integration 
similar to those discussed here, but related to weather 
prediction, carried out in 6-decimal place precision, was 
restarted part-way through; however, the variables were 
re-read into the computer to only 3 decimal places, 
whence the subsequent path of the integration was 
quite different from the same calculation run without 
interruption. Following a whimsical talk by Lorenz a 
decade later [9], this numerical inconsistency became 
inflated into environmental folklore [10], and even into a 
motion picture [11].

Subsequently, during the development and testing 
of the numerical procedures described above [12], we 
found a similar result, except that the intermediate data 
were printed out to 16 decimal places and when these 
same numbers were read back into the same algorithm, 
the results differed from those of a calculation that had 
proceeded without interruption.

The effect was first examined using double precision 
(real*8 Fortran) arithmetic. There are two possible 
causes for the new paths taken after interruption to be 
different: one, the truncation and/or rounding errors of 
the output and input routines; two, a mismatch between 
the new sequence of variables created on start-up and 
those that would have been generated if the integration 
had just been allowed to proceed.

The present calculations were severely constrained 
by the difference in timings between a conventional 
double precision implementation of Fortran and the 
available quadruple precision version. Hence, rather 
short-lived trajectories had to be chosen for this phase 
of this study, i.e., the isomerisation of NCNC at an 
energy E above its v=0 state of 18 361 cm-1, with an 
average lifetime of 1.8 ps [7]. For this case, an ordinary 
2 GHz desktop machine would complete 1000 real*8 
trajectories in 50 minutes, whereas the DEC 3000-500 
V6.2-1H2 real*16 emulation took about 10 minutes per 
picosecond, a speed ratio of about 360. Thus, quadruple 
precision trajectories were usually run in small batches, 
or else singly when using shorter time steps.

To test the first possibility, at 5 fs (i.e., 50 steps 
of 0.1 fs) the 12 components of momenta and the 
12 values of the coordinates were printed out to 16 
decimal places, then re-read immediately to overwrite 
the existing values, whence the integration was left to 
continue. Out of an ensemble of 1000 trajectories, 191 
lifetimes were changed by 0.1 fs or more beyond about 
3 ps, growing to as much as a factor two, larger or 
smaller, at longer times.
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For the second option, after re-reading the positions 
and momenta, a new integration was begun, using the 
Runge–Kutta procedure for the first four steps. Now, 
there were 380 differences in the lifetimes, of magnitudes 
between one-fifth and a factor of five, with onset at 
around 2 ps. These results are shown in Fig. 2.

In other words, truncation errors of 1 in the 16th 
place of positions and momenta are sufficient to cause 
divergence in the lifetimes after about 30 000 time 
steps, On the other hand, the mismatches between the 
new sequence of numbers generated by the Runge–
Kutta module and those that would have been created 
otherwise are slightly more significant, leading to 
divergences as early as around 20 000 time steps.

The same two experiments were repeated using 
quadruple precision arithmetic, with the positions and 

momenta being printed out at 5 fs to 32 decimal places. 
For reasons already mentioned, the ensembles were 
limited to 100 trajectories instead of 1000. On simply 
re-reading these values, there were only differences in 
the 3 longest trajectories with (unperturbed value first) 
11.2 → 8.4 ps, 9.5 → 9.8 ps, and 9.6 → 9.7 ps. One 
can surmise that if a lower energy could have been 
used, where the lifetimes are of the order of 1 ns, or 
more, every trajectory for which the new input did not 
replicate the original values exactly would diverge from 
the original.

Alternatively, invoking the integration upon restart 
caused major differences: all 35 lifetimes longer than 
1.5 ps were changed, sometimes by factors of two 
or three in either direction. There were too few points 
with which to make illustrative graphs similar to those 

Figure 1. Comparison of lifetimes (τ), in ps, for an ensemble of 1000 trajectories representing the isomerisation of NCCN → NCNC at an energy 
of 18 361 cm-1. Horizontal axes: lifetimes calculated using an Intel 80386 processor with Fortran version 2.2.5. Vertical axes: lifetimes 
calculated using an AMD Athlon 64-bit proceesor in 32-bit mode, (a) with Fortran version 2.6.9, (b) with Fortran version 2.2.5.

Figure 2. Comparison of lifetimes (τ), in ps, for an ensemble of 1000 trajectories representing the isomerisation of NCNC → NCCN at an energy 
of 18 361 cm-1. Horizontal axes: uninterrupted calculation. Vertical axes: (a) simple output and re-input at 5 fs, (b) output at 5 fs followed 
by full restart.
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in Fig. 2. Furthermore, the mean lifetime for the ensemble 
of 1000 real*8 trajectories was 1.8 ps, as expected, and 
for the smaller ensemble of 100 trajectories, 1.7 ps in 
either real*8 or real*16 arithmetic .

The popular notion of the butterfly effect [9-11], that 
the flap of a butterfly’s wings in some remote place 
could set off a tornado or a hurricane in and around the 
Gulf of Mexico is clearly apocryphal. At low (butterfly) 
altitudes, the vortex wakes of a large aircraft, which can 
sometimes destroy a smaller plane flying too closely 
behind [13] normally dissipate due to natural atmospheric 
turbulence within a few minutes [14].

4. Estimating accuracy

A simple way to assess the reliability of an integration 
of this kind is to reverse the direction at some time t 
and see whether the original configuration is restored at 
time 2t. In order to examine trajectories with and without 
reactive crossings, all of these calculations were started 
with the four atoms in the NCCN configuration, for which 
the mean lifetime at 18 361 cm-1 is 15.3 ps [7], and in 
batches of 100. Trajectories were integrated either up 
to 1 ps or 3 ps, at which point all the components of 
momenta were reversed in sign and a new integration 
was launched in the opposite direction. In a previous 
exercise [15], we had used the departure of the final 
kinetic (or potential) energy from its initial value as the 
criterion for failure to return, but this difference does not 

impart much insight. Hence, for this exploratory survey, 
return to origin was arbitrarily taken to be both angles 
within half a degree of linear and the rms differences of 
all six interatomic distances from normal within 10-5 Å; in 
fact, simple failure of the two angles to achieve linearity 
usually gives a clear enough picture.

In real*4 arithmetic (8 decimal places) with a step 
length of 0.1 fs, after reversal at 1 ps, 67 out of 100 
trajectories met these criteria. At 3 ps, no trajectories 
returned to the origin, even when the step length was 
reduced to 0.001 fs, and calculations at this level of 
precision were abandoned.

In real*8 arithmetic, also with a step length 
of 0.1 fs, 98 trajectories returned to linear after 
reversal at 1 ps, but only 9 after reversal at 3 ps. 
The following is a list of successful returns after reversal 
at 3 ps with the corresponding time step in parentheses: 
9 (0.1 fs); 33 (0.05 fs); 64 (0.02 fs); 80 (0.01 fs); 
83 (0.005 fs); 80 (0.001 fs). This reduction in success rate 
at 0.001 fs, together with the fact that many more 
trajectories exhibted crossings and recrossings than in 
the preceding set (17 versus 8) suggests that further 
step-length reduction would be counterproductive, due 
to accumulation of rounding errors; moreover, the mean 
values of the energy conservation ΔE/E degraded from 
9.6×10-12 at 0.01 fs to 1.3×10-11 and then to 2.6×10-11 for 
0.005 and 0.001 fs time steps, respectively.

In this light, a previous diagram [15] representing 
the return to origin for a set of HNC trajectories, done 
with 0.1 fs time steps, was of little value except as an 
example of inconsistent results from the same algorithm 
on the same machine with different versions of the 
Fortran compiler.

Next, a series of 100 trajectories in real*16 arithmetic, 
reversing at 3 ps, was run with a 0.1 fs time step, taking 
1 h 5 min per trajectory. The results were very little better 
than those of the real*8 calculations, 10 returns instead 
of 9; all of the successful returns exhibited no crossings 
(i.e., reaction NCCN → NCNC). Crossings were 
observed in about 25% of the trajectories, sometimes 
balanced but more often with different numbers of 
crossings on the forward and return paths. Somewhat 
unexpectedly, the energy conservation for these 100 
trajectories averaged 2.0×10-6, exactly the same as for 
the real*8 calculations.

With the available computing facilities, to repeat 
these calculations at a time step of 0.001 fs would take 
around 10 000 hours, and clearly be impracticable. 
Consequently, using a clue from the above observations, 
that only trajectories exhibiting no crossings returned to 
the origin, it was decided to examine a small selection 
showing multiple recrossings at all step lengths in 

Table 1. 

 
 step/fs crossings Anglesb ΔE/E

#27 0.1000  7, 6     139  28 1.1×10-6

0.0500 2, 1     155  15 9.3×10-9

0.0100  9, 10  69   160 5.9×10-14

0.0050 5, 5 150  157 5.1×10-16

0.0010 2, 2 179  179 1.0×10-16

0.0005 2, 2 180  180 3.2×10-18

#35 0.100  6, 7   27  144 5.6×10-7

0.050 5, 4   44  121 1.2×10-8

0.010 5, 5 114  177 1.8×10-13

0.005 5, 5 167  136 2.5×10-16

0.001 5, 5 180  180 1.6×10-16

#55 0.100  4, 3   23  126 1.9×10-6

0.050 10, 10 155  103 5.5×10-9

0.010 6, 6 136  127 7.9×10-14

0.005 6, 6 153  167 2.5×10-15

0.001 6, 6 180  180 1.0×10-16

aThese data represent approximately 380 hours of DEC 3000-500 CPU 
time. 
bAn angle ≤70º  denotes either CNCN or NCNC as the final configuration.  

Results for three selected trajectories after integration and 
return to zero time, 3 ps in each direction, using real*16 
arithmetic: numbers of crossings in each direction, final 
angles, and energy conservation for various step lengthsa.
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real*8 arithmetic. Three trajectories at an energy 
of 18 361 cm-1, #27, #35, and #55 were chosen, and 
the results of this series of calculations are shown in 
Table 12.

 For the standard time step of 0.1 fs, all three 
trajectories exhibit different numbers of crossings in 
the two directions. However, by the time the step length 
is sufficiently short for their numbers to be equal, the 
times at which the crossings occur agree to the nearest 
fs in both directions. Nevertheless, the configuration 
did not converge to being linear until the step length 
was reduced, in two cases, to 0.001 fs whence the 

conservation of energy had improved by 10 orders 
of magnitude, or 0.0005 fs in the other, with an even 
greater improvement in energy conservation; here, 
linearity means both angles within 0.05 degrees of 180.

Table 2 analyses the convergence of the crossing 
energies as the step length is reduced; only data for 
the three shortest step lengths are shown here, since 
when the number of crossings is not the same, the 
energies cannot match; the two energy values for each 
particular crossing should only be equal in the limit, as 
the numbers given are for the first time after crossing the 
barrier in either direction. Of the three cases, #55 is the 
best behaved: at 0.01 fs step length, the energy of the 
final return crossing is beginning to differ slightly, but as 
the steps are shortened to 0.005 and then to 0.001 fs, a 
clean convergence of both the angles and the crossing 
energies occurs. The same is true for trajectory #35, 
except that the final two crossing energies on the return 
trip at 0.01 fs step length are rather poor; however, 
the final convergence of energies and angles is quite 
acceptable. Trajectory #27 is the least tractable of the 
three, requiring a step length of 5×10-4 fs before the final 
angles and the forward/reverse crossing energies agree 
convincingly.

5. Old results revisited

In view of the preceding discussion, some earlier 
conclusions, dependent in part on single-trajectory 
behaviour may need re-appraisal; on the other hand, 
examination of the internal motions of individual 
trajectories, or the behaviour of pairs with closely 
adjacent starting points, can yield useful diagnostics. 
Below are three such cases for which sufficient data are 
still available. 

5.1 Rotational disintegration of highly excited 
ethane molecules 
Two studies examining the break-up of quasi-
bound states of the ethane molecule as a function of 
K-rotational quantum number and of total internal energy 
E depended principally on the behaviour of individual 
trajectories [16,17], without consideration that the onset 
of computational chaos may have been a contributory 
factor. Fortunately, monotonic behaviour of trajectories 
leading to rupture with small changes in either K or E 
were found [12]; hence, within the limitations of the 
model potential, the conclusions are probably safe. 

2In retrospect, it would have been slightly more economical to avoid the use of a new Runge–Kutta process, simply by continuing the forward integra-
tion several steps beyond the intended reflection point and then reversing this whole stored extra sequence of positions and momenta in order to 
launch the Adams–Mouton sequence back towards the origin.

Table 2. 
 

# & step/fs crossing times and energies

#27 t =  0.340  2.041  2.660  2.861  2.953
0.005 → 83.392 71.321 73.125 85.768 75.354

← 83.050 71.331 73.131 85.775 75.374
δE   0.342  0.010  0.006  0.007  0.020

0.001 → 83.397 71.326
← 83.426 71.328

δE   0.029  0.002

0.0005 → 83.397 71.326
← 83.400 71.327

δE   0.003  0.001
#35 t =  0.568  0.940  1.030  1.285  1.358
0.01 → 70.474 70.387 78.951 71.387 70.809

← 70.954 70.412 78.956 71.401 70.822
δE   0.480  0.025  0.004  0.014  0.013

0.005 → 70.465 70.387 78.951 71.386 70.809
← 70.454 70.400 78.954 71.394 70.816

δE   0.011  0.013  0.003  0.008  0.007

0.001 → 70.460 70.387 78.953 71.391 70.815
← 70.459 70.390 78.954 71.392 70.816

δE   0.001  0.003  0.001  0.001  0.001
#55 t =  0.689  1.052  1.119  1.234  1.409  1.527
0.01 → 69.553 65.248 67.552 76.534 75.359 82.145

← 69.540 65.254 67.560 76.535 75.369 82.123
δE   0.013  0.006  0.008  0.001  0.010  0.022

0.005 → 69.553 65.251 67.552 76.535 75.360 82.121
← 69.547 65.254 67.556 76.535 75.365 82.110

δE   0.006  0.003  0.004  0.000  0.005  0.011

0.001 → 69.549 65.253 67.554 76.535 75.360 82.121
← 69.548 65.254 67.555 76.535 75.361 82.119

δE   0.001  0.001  0.001  0.000  0.001  0.002

Crossing properties for the three selected trajectories: 
given are times t from the origin, in ps, the arrows indicating 
direction of integration, with corresponding energies 
in kcal mol-1, and their differences δE. 
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5.2 Black-body radiation and randomisation 
Figs. 1 and 2 of this paper are very similar to one in [2] 
which claimed to support the proposition [18] that black-
body radiation was capable of affecting the internal 
motions of a reacting molecule.

In those calculations, and others like them [19], a 
sinusoidal perturbation of appropriate strength and 
frequency was imposed on the reacting molecule, either 
ethane [19] or methyl isocyanide [2], causing significant 
departures from the unperturbed trajectories. Again, 
no clear distinction was made between molecular and 
computational chaos, but the the imposed frequency 
could readily be extracted from Fourier transforms of 
the molecular motions, so it seemed reasonable to infer 
that the presence of black-body radiation would cause 
randomisation of the internal energy when the densities 
of states were sufficiently high.

However, the issue was settled soon afterwards 
with evidence that dissociation caused by black-body 
radiation can be detected in a mass spectrometer [20]. 

5.3 Recrossings and transition state theory 
In calculations on the isomerisation of methyl isocyanide 
[2] and of cyanogen extending into the nanosecond 
range [7], as well as others of shorter duration 
[21-24], recrossings were found to occur on time scales 
of less than 1 ps. For the NCCN ↔ NCNC reaction 
at 18 361 cm-1, recrossings (defined as a transition there-
and-back within 0.2 ps [7]) were quite common, and in 
an ensemble lasting a total 40 ns, were often bunched 
together; likewise for ensembles at other energies 
lasting in excess of 300 ns. However, only about half the 
transitions were preceded by a gap longer than 0.2 ps, 
and were therefore true reactive processes, so that the 
transition state transmission coefficient κ should tend 
towards 0.5 instead of 1, as usually assumed.

Although the existence of “basins” in the vicinity of 
the NCCN  ↔ NCNC transition state that might cause 
such recrossings had been ruled out [7], the extreme 
variability of any individual trajectory to rounding errors 
(c.f. Tables 1 and 2), makes it necessary to exclude the 
possibility that recrossings might occur by accident in 
this sensitive region of the potential energy surface. 
Table 2 shows two examples of multiple recrossings: in 
trajectory #35 there are 4 crossings (2 recrossings) within 
0.418 ps, and in trajectory #55, there are 5 crossings 
within 0.475 ps. This shows that multiple crossings on 
the sub-picosecond time scale are not an artefact, but 
persist as the calculations approach convergence.

6. Non-RRKM systems

It becomes clear that a small molecule, whose internal 
motions should be regular, could experience random 
variations if followed for a very long time, rather as 
happens for calculated trajectories of planets and 
asteroids in the solar system [25], and in similar studies 
noted elsewhere [19]. This would be most likely at 
energies just above the reaction threshold where the 
rate is slow, as in the case of the HNC isomerisation 
reaction, already mentioned above [15]. Plots of 
population decay are definitely not random-gap (i.e., not 
first order) but even with only a 1 ps forward path, many 
trajectories failed to return to the origin after reversal. 
So long after the original work, there is no way to know 
whether these failures represented true chaotic motion, 
or simply the onset of computational chaos rather earlier 
than we have found in the present study.

Conversely, examples exist of trajectory calculations 
in which the complete volume of phase space cannot 
be accessed, even though the molecules are sufficiently 
large for conventional RRKM behaviour to be expected. 
Relevant data [7] from simulations of isomerisation of 
NCNC and of CH3NC are collected in Table 3. For a 
molecule exhibiting statistical behaviour, the densities 
of states and lifetimes should obey microscopic 
reversibility, i.e., 

ρ(E)CN / τCN = ρ(E)NC / τNC

where τ is the lifetime and ρ(E) is the density of states 
at energy E. Thus, the numbers in columns 2 and 3 of 
the table should be equal. For the former reaction, this is 
seen to be reasonably true; one does not expect to find 
the ratios to be exactly one since the densities of states 
are harmonic oscillator approximations, they were only 
reported originally to two significant figures, and NCNC 

Table 3. 

energy/cm-1 ρ(E)CN/ ρ(E)NC τCN/τNC ratio

NCNC  ↔  NCCN (1000 trajectories)

13 814 16.2 13.9 1.16
15 528 13.1 11.6 1.13
18 361  9.7  8.5 1.14
20 809  7.8  7.5 1.04
26 055  5.5  4.5 1.22

CH3NC  ↔  CH3CN (100 trajectories)
25 019  7.3 0.53 13.7
33 085  4.8 0.55  8.7
41 150  3.6 0.44  8.2

asee Table II of [27] and Table 1 of [7], the latter using a newer NCCN  ↔  
NCNC potential energy surface, for full details. 

Comparison of isomerisation lifetime ratios with the 
corresponding state-density ratios for the reactions NCNC  
↔  NCCN and CH3NC  ↔  CH3CN at various energiesa
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may or may not be a borderline large molecule, and not 
ideally statistical in the RRKM sense.

On the other hand, Table 3 shows that the CH3NC 
forward and reverse reaction rates fail badly to conform to 
microscopic reversibility. As discussed before [7,26,27], 
using the Sumpter and Thompson potential energy 
surface [28], these rates obey the random-gap law [2] 
but are about a factor of 20 too slow [26], indicating that 
a large portion of phase space is inaccessible.

Another example is the simulation of the CH3-O-O-
N-O radical thermal dissociation [29] into CH3O + NO2. 
This system, containing 5 heavy atoms in a single chain, 
and with 5 stretch or bend frequencies below 500 cm-1, 
would be expected to exhibit random-gap behaviour 
more perfectly than in the 4-atom NCNC: however, 
the population depletion of the original ensemble of 
trajectories [29] resembles very closely that found for 
the triatomic HNC molecule [15].

These two examples of apparent non-RRKM 
behaviour in “large” molecules share one factor in 
common – both use potential energy surfaces containing 
switching functions. We have speculated on several 
occasions [7,26,27] that the presence of these artefacts 
may be the cause of hidden bottlenecks in the CH3NC 
case, leading to imperfect ergodic behaviour, and the 
same may be true in the case of this nitroso radical. 
We should not abandon one of the cornerstones of 
unimolecular reaction theory [30,31] until this possibility 
has been eliminated.

7. General comments

Given a sufficiently large ensemble of trajectories, 
simulations of this kind are generally expected to give 
acceptable estimates of reaction rates as long as the 
potential energy surface is reliable and quantal effects 
are unimportant. For short lifetimes, e.g. the 1.8 ps 
case above, taking fewer than 20 000 time steps, an 
ensemble of 100 cases yields a result within 5%, 
whereas if the lifetime is much longer, e.g. 125 ps with 
more than a million time steps, ensembles as few as 
30 give acceptable results [1] because the onset of 
computational chaos mimics the randomisation due 
to black-body radiation and/or long-range interactions 
[32]. Nor do the integrations require sufficient precision 
to return each individual trajectory to the origin upon 
reversal [5], again because, if energy and angular 
momentum remain conserved, the cumulative effect 
of rounding errors helps to achieve and maintain a 
truly randomised ensemble, in conformity with RRKM 
theory.

However, deductions made from the examination of 
single trajectory behaviour require extra consideration. 
Of the three cases re-analysed here, only case (c) 
requires further corroboration. There is no doubt that 
for this particular model there are multiple recrossings 
on the sub-picosecond time scale, as shown 
in Tables 1 and 2. However, there is still the possibility 
of an undetected flaw in the potential energy surface 
and certainty about this particular proposition requires 
analogous simulations for different reactions, and/or 
demonstration that the similar calculations by others 
[21-24] (with time steps of 1.2 fs [21] and 0.2 fs [24] 
where specified) can survive re-examination with longer 
word lengths and shorter time steps, and preferably with 
extension to longer time periods.

The main difficulty is that, as formulated, in a 
hypothetical field-free space, the model trajectory will 
always follow the same unique path on any machine if 
the step length is sufficiently small and the word length 
sufficiently large; this would appear to echo Lorenz’s 
final remark in his classic 1964 paper [33] about “using 
the most powerful computing machine available”. In 
Fig. 2a, a minuscule perturbation (1 ± nδ), where n is 
a small integer (usually 1) and δ corresponds to a 1-bit 
difference, is applied to one, or a few, of the 24 variables 
in the calculation, yielding vastly different outcomes: it 
simply means that failure to return to the origin after 
reversal is only a signal of chaotic motion within the 
molecule if, and only if, the onset of computational chaos 
has been ruled out.

There have been many studies of the distinction 
between true chaotic motion and computational 
chaos, i.e., the appearance of chaos due to imperfect 
representation of numbers in the calculation; in the main, 
they have concentrated on relatively simple analytic 
functions [34-37], unlike the present multi-dimensional 
problem, but also including variation of word length 
[35]. Likewise, the progression from regular to chaotic 
behaviour of the internal motions in isolated molecules, 
including unimolecular reaction processes, has been 
studied extensively [38,39]. As noted before [2], it is 
possible to extract an effective Lyapunov constant from 
the envelope within which points such as shown in Fig. 1 
lie, but being really a composite of 24 distinct divergence 
rates, only to provide a very coarse-grained description 
of the onset of chaotic motions.

Other single trajectory calculations could include 
geological studies, both back or forward in time, such as 
the isolation of nuclear waste, where the models run “over 
periods from decades to more than millions of years” [40] 
and, perhaps also climate behaviour: for example, one 
computer model [41] uses a time step of 7.5 minutes for 

759



On the classical simulation 
of unimolecular reaction processes  

some aspects of the calculation, but a million of them is 
only about 15 years. Million-step calculations of this sort 
should be subjected to both step-length and word-length 
variation before acceptance. Furthermore, as Tables 1 
and 2 show, conservation is an important criterion, but 
in these multifaceted studies it may be difficult to choose 
which variable(s) to monitor.
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