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Abstract: The numerical simulation of the internal motions of a molecule undergoing a unimolecular reaction on an assumed potential energy
surface requires the step-by-step solution of a set of simultaneous differential equations. After several thousand time steps, due
to differences in the handling of rounding errors in different computing systems, the situation often arises that no two computing
machines will give the same result for a given trajectory, even when running the identical algorithm.

Such effects are demonstrated for a simple unimolecular isomerisation reaction. In general, it is only when reliance is placed on
the integration of a single trajectory, rather than on an ensemble of similar trajectories, that conclusions may be unreliable. Moreover,
under certain conditions, small molecules may show signs of chaotic internal motions; conversely, but for a different reason, large
molecules may exhibit non-statistical characteristics rather than RRKM behaviour.

The rounding error problem, in a slightly different guise, has come to be dubbed the “butterfly effect” in popular culture, and the
original proposition is re-examined using 16- and 32-decimal precision arithmetic.
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1. Introduction

Classical trajectory simulations of the internal motions of
single molecules on theoretically-constructed potential
energy surfaces have played an important réle in
understanding some aspects of unimolecular reaction
processes. The implicit assumption is that as the reacting
molecule is in a “high” energy state, the correspondence
principle ensures that the computed behaviour will
approximate the true quantum solution, provided that
such issues as barrier penetration, zero-point energy,
curve crossing, etc. (which have to be dealt with by other
means) can be neglected.

However, when the lifetime of the reacting molecule
is far greater than a vibrational period, thus using millions
of integration steps before completion, numerical
rounding errors occurring at each individual step in the
integration will cause any trajectory to deviate from
the “true” classical path. Because rounding errors are
handled differently in various hardware architectures
and/or software applications, the same trajectory may
yield different outcomes when run on different computing
systems. As an example, for a specific low-energy
trajectory in the isomerisation reaction NCNC — NCCN
studied on five different machines, three gave similar
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lifetimes close to 3.3 ps, but the other two gave values of
233 ps and 728 ps; yet for ensembles of trajectories, all
machines gave average lifetimes of 125 ps + 5% [1].
The reason why, despite these large divergences,
ensemble averages on different systems agree, more-
or-less, is straightforward. In practice, using 16-decimal
precision arithmetic, the resulting divergences begin to
show up between 10 000 and 20 000 steps, i.e., between
1 and 2 ps when using a typical 0.1 fs step length. In this
particular case, with 4 atoms, there are 24 independent
variables (12 spatial coordinates and 12 components
of momentum) with the chance of a 1-bit rounding error
in any or all of them at each 0.1 fs time step. All five
trajectories started from the same set of coordinates and
momenta’, but because of the random nature of these
errors, began to differ gradually from each other in an
unpredictable manner; moreover, within each ensembile,
given sufficient time, the configurations will become truly
random, regardless of whether the initial configurations
were random or regular. It is not clear at what stage we
can assume this randomness to be perfect, but it was
sooner than 125 ps in this example [1], i.e., somewhat in
excess of a million time steps. The common occurrence
of random-gap law behaviour in decay from such
ensembles [1-3], i.e., the RRKM requirement, usually

'Likewise, the same potential energy surface and Fortran code [1], but the respective machines, MIPS RC3240, SPARC 1000,
home-built, IBM RS/6000 [1], each used a different Fortran compiler; these old machines no longer exist,

is not possible.
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gives confidence that decay rates calculated in this
manner provide a reasonable classical approximation of
the reaction process.

This reasoning implies that a single resultis valueless
unless it forms part of an ensemble of trajectories whose
mean value has a real interpretation. However, some
conclusions about unimolecular reaction behaviour
derive not from ensemble studies, but from examination
of individual trajectories, and it is the purpose of this
Communication to examine some such cases, to
illustrate the general patterns of behaviour caused by
rounding errors in such simulations, and to note their
ubiquity in other fields of endeavour.

2. Computational procedure

The algorithm used was simply a fourth-order Runge—
Kutta start-up procedure followed by a fifth-order
Adams—Mouton predictor-corrector [4]. It has been
used over the past 20 years to study dissociation and
relaxation in ethane, and isomerisations in hydrogen
isocyanide, isocyanogen and methyl isocyanide. In most
of these studies, a standard time step of 0.1 fs was used,
whence the results appeared to be satisfactory. Similar
procedures [5] and similar step lengths [5,6] have been
used in other molecular dynamic simulations, also with
apparently satisfactory results.

The present review is confined to the reaction NCCN
< NCNC in the J=0 state, using an 870-point MP2/6-
31G* potential energy surface [1,7]. For a given value
of the energy, trajectories were started from the normal
internuclear configuration of either NCCN or NCNC
with quasi-random momenta assigned to each of the
12 degrees of freedom. A portable random number
generator (rani.for [4]) was used throughout so that
trajectory #n, whether run on different machines, or
else on the same machine with different compilers,
always commenced from, ostensibly, the same set of
momenta.

As an example of the effects of cumulative rounding
errors in simulations of this kind, Fig. 1 shows results
for the same Fortran F77 algorithm run on two different
computers, one an Intel processor, the other an AMD
64-bit processor running in 32-bit mode, and of the
same F77 compiled module run on these two different
machines. For each of the three 1000-point ensembles,
population decay obeyed the random-gap law, with
the same slopes and with the roughly 200 trajectories
having lifetimes below 2.5 ps being identical; also, due
to the randomness of the initial conditions, there was no
incubation period.

3. The classic butterfly effect

The idea of the “butterfly effect” stems from an accidental
observation by Edward Lorenz [8] in 1963: an integration
similar to those discussed here, but related to weather
prediction, carried out in 6-decimal place precision, was
restarted part-way through; however, the variables were
re-read into the computer to only 3 decimal places,
whence the subsequent path of the integration was
quite different from the same calculation run without
interruption. Following a whimsical talk by Lorenz a
decade later [9], this numerical inconsistency became
inflated into environmental folklore [10], and even into a
motion picture [11].

Subsequently, during the development and testing
of the numerical procedures described above [12], we
found a similar result, except that the intermediate data
were printed out to 16 decimal places and when these
same numbers were read back into the same algorithm,
the results differed from those of a calculation that had
proceeded without interruption.

The effect was first examined using double precision
(real*8 Fortran) arithmetic. There are two possible
causes for the new paths taken after interruption to be
different: one, the truncation and/or rounding errors of
the output and input routines; two, a mismatch between
the new sequence of variables created on start-up and
those that would have been generated if the integration
had just been allowed to proceed.

The present calculations were severely constrained
by the difference in timings between a conventional
double precision implementation of Fortran and the
available quadruple precision version. Hence, rather
short-lived trajectories had to be chosen for this phase
of this study, i.e., the isomerisation of NCNC at an
energy E above its v=0 state of 18 361 cm, with an
average lifetime of 1.8 ps [7]. For this case, an ordinary
2 GHz desktop machine would complete 1000 real*8
trajectories in 50 minutes, whereas the DEC 3000-500
V6.2-1H2 real*16 emulation took about 10 minutes per
picosecond, a speed ratio of about 360. Thus, quadruple
precision trajectories were usually run in small batches,
or else singly when using shorter time steps.

To test the first possibility, at 5 fs (i.e., 50 steps
of 0.1 fs) the 12 components of momenta and the
12 values of the coordinates were printed out to 16
decimal places, then re-read immediately to overwrite
the existing values, whence the integration was left to
continue. Out of an ensemble of 1000 trajectories, 191
lifetimes were changed by 0.1 fs or more beyond about
3 ps, growing to as much as a factor two, larger or
smaller, at longer times.
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Figure 1. Comparison of lifetimes (1), in ps, for an ensemble of 1000 trajectories representing the isomerisation of NCCN — NCNC at an energy
of 18 361 cm". Horizontal axes: lifetimes calculated using an Intel 80386 processor with Fortran version 2.2.5. Vertical axes: lifetimes
calculated using an AMD Athlon 64-bit proceesor in 32-bit mode, (a) with Fortran version 2.6.9, (b) with Fortran version 2.2.5.
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Figure 2. Comparison of lifetimes (), in ps, for an ensemble of 1000 trajectories representing the isomerisation of NCNC — NCCN at an energy
of 18 361 cm". Horizontal axes: uninterrupted calculation. Vertical axes: (a) simple output and re-input at 5 fs, (b) output at 5 fs followed

by full restart.

For the second option, after re-reading the positions
and momenta, a new integration was begun, using the
Runge—Kutta procedure for the first four steps. Now,
there were 380 differences in the lifetimes, of magnitudes
between one-fifth and a factor of five, with onset at
around 2 ps. These results are shown in Fig. 2.

In other words, truncation errors of 1 in the 16th
place of positions and momenta are sufficient to cause
divergence in the lifetimes after about 30 000 time
steps, On the other hand, the mismatches between the
new sequence of numbers generated by the Runge—
Kutta module and those that would have been created
otherwise are slightly more significant, leading to
divergences as early as around 20 000 time steps.

The same two experiments were repeated using
quadruple precision arithmetic, with the positions and

momenta being printed out at 5 fs to 32 decimal places.
For reasons already mentioned, the ensembles were
limited to 100 trajectories instead of 1000. On simply
re-reading these values, there were only differences in
the 3 longest trajectories with (unperturbed value first)
11.2 —» 8.4 ps, 9.5 — 9.8 ps, and 9.6 — 9.7 ps. One
can surmise that if a lower energy could have been
used, where the lifetimes are of the order of 1 ns, or
more, every trajectory for which the new input did not
replicate the original values exactly would diverge from
the original.

Alternatively, invoking the integration upon restart
caused major differences: all 35 lifetimes longer than
1.5 ps were changed, sometimes by factors of two
or three in either direction. There were too few points
with which to make illustrative graphs similar to those

=1]
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Table 1. Results for three selected trajectories after integration and
return to zero time, 3 ps in each direction, using real*16
arithmetic: numbers of crossings in each direction, final
angles, and energy conservation for various step lengths?.

step/fs crossings Angles® AE/E
#27 0.1000 7,6 139 28 1.1x10°
0.0500 2,1 155 15 9.3x10°
0.0100 9,10 69 160 5.9x10"
0.0050 55 150 157 5.1x1078
0.0010 2,2 179 179 1.0x107°
0.0005 2,2 180 180 3.2x107®
#35 0.100 6,7 27 144 5.6x107
0.050 54 44 121 1.2x10%
0.010 55 114 177 1.8x1078
0.005 55 167 136 2.5x107°
0.001 55 180 180 1.6x107®
#55 0.100 4,3 23 126 1.9x10°
0.050 10,10 155 103 5.5%x10°
0.010 6,6 136 127 7.9x10
0.005 6,6 153 167 2.5%x107"
0.001 6,6 180 180 1.0x107®

aThese data represent approximately 380 hours of DEC 3000-500 CPU
time.

in Fig. 2. Furthermore, the mean lifetime for the ensemble
of 1000 real*8 trajectories was 1.8 ps, as expected, and
for the smaller ensemble of 100 trajectories, 1.7 ps in
either real*8 or real*16 arithmetic .

The popular notion of the butterfly effect [9-11], that
the flap of a butterfly’s wings in some remote place
could set off a tornado or a hurricane in and around the
Gulf of Mexico is clearly apocryphal. At low (butterfly)
altitudes, the vortex wakes of a large aircraft, which can
sometimes destroy a smaller plane flying too closely
behind [13] normally dissipate due to natural atmospheric
turbulence within a few minutes [14].

4. Estimating accuracy

A simple way to assess the reliability of an integration
of this kind is to reverse the direction at some time t
and see whether the original configuration is restored at
time 2t. In order to examine trajectories with and without
reactive crossings, all of these calculations were started
with the four atoms in the NCCN configuration, for which
the mean lifetime at 18 361 cm™ is 15.3 ps [7], and in
batches of 100. Trajectories were integrated either up
to 1 ps or 3 ps, at which point all the components of
momenta were reversed in sign and a new integration
was launched in the opposite direction. In a previous
exercise [15], we had used the departure of the final
kinetic (or potential) energy from its initial value as the
criterion for failure to return, but this difference does not

impart much insight. Hence, for this exploratory survey,
return to origin was arbitrarily taken to be both angles
within half a degree of linear and the rms differences of
all six interatomic distances from normal within 10 A; in
fact, simple failure of the two angles to achieve linearity
usually gives a clear enough picture.

In real*4 arithmetic (8 decimal places) with a step
length of 0.1 fs, after reversal at 1 ps, 67 out of 100
trajectories met these criteria. At 3 ps, no trajectories
returned to the origin, even when the step length was
reduced to 0.001 fs, and calculations at this level of
precision were abandoned.

In real*8 arithmetic, also with a step length
of 0.1 fs, 98 trajectories returned to linear after
reversal at 1 ps, but only 9 after reversal at 3 ps.
The following is a list of successful returns after reversal
at 3 ps with the corresponding time step in parentheses:
9 (0.1 fs); 33 (0.05 fs); 64 (0.02 fs); 80 (0.01 fs);
83 (0.005fs); 80 (0.001 fs). This reduction in success rate
at 0.001 fs, together with the fact that many more
trajectories exhibted crossings and recrossings than in
the preceding set (17 versus 8) suggests that further
step-length reduction would be counterproductive, due
to accumulation of rounding errors; moreover, the mean
values of the energy conservation AE/E degraded from
9.6x10"2 at 0.01 fs to 1.3x10""" and then to 2.6x10" for
0.005 and 0.001 fs time steps, respectively.

In this light, a previous diagram [15] representing
the return to origin for a set of HNC trajectories, done
with 0.1 fs time steps, was of little value except as an
example of inconsistent results from the same algorithm
on the same machine with different versions of the
Fortran compiler.

Next, a series of 100 trajectories in real*16 arithmetic,
reversing at 3 ps, was run with a 0.1 fs time step, taking
1 h 5 min per trajectory. The results were very little better
than those of the real*8 calculations, 10 returns instead
of 9; all of the successful returns exhibited no crossings
(i.e., reaction NCCN — NCNC). Crossings were
observed in about 25% of the trajectories, sometimes
balanced but more often with different numbers of
crossings on the forward and return paths. Somewhat
unexpectedly, the energy conservation for these 100
trajectories averaged 2.0x10%, exactly the same as for
the real*8 calculations.

With the available computing facilities, to repeat
these calculations at a time step of 0.001 fs would take
around 10 000 hours, and clearly be impracticable.
Consequently, using a clue from the above observations,
that only trajectories exhibiting no crossings returned to
the origin, it was decided to examine a small selection
showing multiple recrossings at all step lengths in
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Table 2. Crossing properties for the three selected trajectories:
given are times t from the origin, in ps, the arrows indicating
direction of integration, with corresponding energies
in kcal mol”, and their differences oE.

# & step/fs crossing times and energies
#27 t= 0.340 2041 2660 2861 2.953
0.005 — | 83.392 71321 73.125 85.768 75.354
« | 83.050 71.331 73.131 85.775 75.374
SE 0.342 0.010 0.006 0.007 0.020
0.001 — | 83.397 71.326
— | 83.426 71.328
SE 0.029 0.002
0.0005 83.397 71.326
«— | 83.400 71.327
SE 0.003  0.001
#35 t=1] 0568 0940 1030 1285 1.358
0.01 — | 70.474 70.387 78951 71.387 70.809
«— | 70.954 70.412 78956 71.401 70.822
SE 0.480 0.025 0.004 0.014 0.013
0.005 — | 70.465 70.387 78951 71.386 70.809
«— | 70.454 70.400 78.954 71.394 70.816
oE 0.011 0.013 0.003 0.008  0.007
0.001 — | 70.460 70.387 78953 71391 70.815
«— | 70.459 70.390 78.954 71.392 70.816
SE 0.001  0.003 0.001 0.001 0.001
#55 t= 0.689 1.052 1119 1.234 1.409 1.527
0.01 — | 69.553 65.248 67.552 76.534 75.359 82.145
«— | 69.540 65.254 67.560 76.535 75.369 82.123
SE 0.013 0.006 0.008 0.001 0.010 0.022
0.005 — | 69.553 65.251 67.552 76.535 75.360 82.121
« | 69.547 65.254 67.556 76.535 75.365 82.110
SE 0.006 0.003 0.004 0.000 0.005 0.011
0.001 — | 69.549 65.253 67.554 76.535 75.360 82.121
« | 69.548 65.254 67.555 76.535 75.361 82.119
SoE 0.001  0.001 0.001 0.000 0.001 0.002

real*8 arithmetic. Three trajectories at an energy
of 18 361 cm™, #27, #35, and #55 were chosen, and
the results of this series of calculations are shown in
Table 12.

For the standard time step of 0.1 fs, all three
trajectories exhibit different numbers of crossings in
the two directions. However, by the time the step length
is sufficiently short for their numbers to be equal, the
times at which the crossings occur agree to the nearest
fs in both directions. Nevertheless, the configuration
did not converge to being linear until the step length
was reduced, in two cases, to 0.001 fs whence the

conservation of energy had improved by 10 orders
of magnitude, or 0.0005 fs in the other, with an even
greater improvement in energy conservation; here,
linearity means both angles within 0.05 degrees of 180.

Table 2 analyses the convergence of the crossing
energies as the step length is reduced; only data for
the three shortest step lengths are shown here, since
when the number of crossings is not the same, the
energies cannot match; the two energy values for each
particular crossing should only be equal in the limit, as
the numbers given are for the first time after crossing the
barrier in either direction. Of the three cases, #55 is the
best behaved: at 0.01 fs step length, the energy of the
final return crossing is beginning to differ slightly, but as
the steps are shortened to 0.005 and then to 0.001 fs, a
clean convergence of both the angles and the crossing
energies occurs. The same is true for trajectory #35,
except that the final two crossing energies on the return
trip at 0.01 fs step length are rather poor; however,
the final convergence of energies and angles is quite
acceptable. Trajectory #27 is the least tractable of the
three, requiring a step length of 5x10+ fs before the final
angles and the forward/reverse crossing energies agree
convincingly.

5. Old results revisited

In view of the preceding discussion, some earlier
conclusions, dependent in part on single-trajectory
behaviour may need re-appraisal; on the other hand,
examination of the internal motions of individual
trajectories, or the behaviour of pairs with closely
adjacent starting points, can yield useful diagnostics.
Below are three such cases for which sufficient data are
still available.

5.1 Rotational disintegration of highly excited

ethane molecules

Two studies examining the break-up of quasi-
bound states of the ethane molecule as a function of
K-rotational quantum number and of total internal energy
E depended principally on the behaviour of individual
trajectories [16,17], without consideration that the onset
of computational chaos may have been a contributory
factor. Fortunately, monotonic behaviour of trajectories
leading to rupture with small changes in either K or E
were found [12]; hence, within the limitations of the
model potential, the conclusions are probably safe.

2In retrospect, it would have been slightly more economical to avoid the use of a new Runge—Kutta process, simply by continuing the forward integra-
tion several steps beyond the intended reflection point and then reversing this whole stored extra sequence of positions and momenta in order to

launch the Adams—Mouton sequence back towards the origin.
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5.2 Black-body radiation and randomisation
Figs. 1 and 2 of this paper are very similar to one in [2]
which claimed to support the proposition [18] that black-
body radiation was capable of affecting the internal
motions of a reacting molecule.

In those calculations, and others like them [19], a
sinusoidal perturbation of appropriate strength and
frequency was imposed on the reacting molecule, either
ethane [19] or methyl isocyanide [2], causing significant
departures from the unperturbed trajectories. Again,
no clear distinction was made between molecular and
computational chaos, but the the imposed frequency
could readily be extracted from Fourier transforms of
the molecular motions, so it seemed reasonable to infer
that the presence of black-body radiation would cause
randomisation of the internal energy when the densities
of states were sufficiently high.

However, the issue was settled soon afterwards
with evidence that dissociation caused by black-body
radiation can be detected in a mass spectrometer [20].

9.3 Recrossings and transition state theory

In calculations on the isomerisation of methyl isocyanide
[2] and of cyanogen extending into the nanosecond
range [7], as well as others of shorter duration
[21-24], recrossings were found to occur on time scales
of less than 1 ps. For the NCCN < NCNC reaction
at 18 361 cm™, recrossings (defined as a transition there-
and-back within 0.2 ps [7]) were quite common, and in
an ensemble lasting a total 40 ns, were often bunched
together; likewise for ensembles at other energies
lasting in excess of 300 ns. However, only about half the
transitions were preceded by a gap longer than 0.2 ps,
and were therefore true reactive processes, so that the
transition state transmission coefficient k should tend
towards 0.5 instead of 1, as usually assumed.

Table 3. Comparison of isomerisation lifetime ratios with the

corresponding state-density ratios for the reactions NCNC
<> NCCN and CH,NC « CH,CN at various energies®

energy/cm-! P(E)c/ P(E) TondTae ratio

NCNC < NCCN (1000 trajectories)

13814 16.2 13.9 1.16
15528 13.1 11.6 1.13
18 361 9.7 8.5 1.14
20809 7.8 7.5 1.04
26 055 55 4.5 1.22
CH,NC ~ CH,CN (100 trajectories)
25019 7.3 0.53 137
33 085 4.8 0.55 8.7
41150 3.6 0.44 8.2

asee Table Il of [27] and Table 1 of [7], the latter using a newer NCCN «>

Although the existence of “basins” in the vicinity of
the NCCN <« NCNC transition state that might cause
such recrossings had been ruled out [7], the extreme
variability of any individual trajectory to rounding errors
(c.f. Tables 1 and 2), makes it necessary to exclude the
possibility that recrossings might occur by accident in
this sensitive region of the potential energy surface.
Table 2 shows two examples of multiple recrossings: in
trajectory #35 there are 4 crossings (2 recrossings) within
0.418 ps, and in trajectory #55, there are 5 crossings
within 0.475 ps. This shows that multiple crossings on
the sub-picosecond time scale are not an artefact, but
persist as the calculations approach convergence.

6. Non-RRKM systems

It becomes clear that a small molecule, whose internal
motions should be regular, could experience random
variations if followed for a very long time, rather as
happens for calculated trajectories of planets and
asteroids in the solar system [25], and in similar studies
noted elsewhere [19]. This would be most likely at
energies just above the reaction threshold where the
rate is slow, as in the case of the HNC isomerisation
reaction, already mentioned above [15]. Plots of
population decay are definitely not random-gap (i.e., not
first order) but even with only a 1 ps forward path, many
trajectories failed to return to the origin after reversal.
So long after the original work, there is no way to know
whether these failures represented true chaotic motion,
or simply the onset of computational chaos rather earlier
than we have found in the present study.

Conversely, examples exist of trajectory calculations
in which the complete volume of phase space cannot
be accessed, even though the molecules are sufficiently
large for conventional RRKM behaviour to be expected.
Relevant data [7] from simulations of isomerisation of
NCNC and of CH,NC are collected in Table 3. For a
molecule exhibiting statistical behaviour, the densities
of states and lifetimes should obey microscopic
reversibility, i.e.,

p(E)CN / TCN = p(E)NC / TNC

where 7 is the lifetime and p(E) is the density of states
at energy E. Thus, the numbers in columns 2 and 3 of
the table should be equal. For the former reaction, this is
seen to be reasonably true; one does not expect to find
the ratios to be exactly one since the densities of states
are harmonic oscillator approximations, they were only
reported originally to two significant figures, and NCNC
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may or may not be a borderline large molecule, and not
ideally statistical in the RRKM sense.

On the other hand, Table 3 shows that the CH,NC
forward and reverse reaction rates fail badly to conform to
microscopic reversibility. As discussed before [7,26,27],
using the Sumpter and Thompson potential energy
surface [28], these rates obey the random-gap law [2]
but are about a factor of 20 too slow [26], indicating that
a large portion of phase space is inaccessible.

Another example is the simulation of the CH_-O-O-
N-O radical thermal dissociation [29] into CH,O + NO,,.
This system, containing 5 heavy atoms in a single chain,
and with 5 stretch or bend frequencies below 500 cm™,
would be expected to exhibit random-gap behaviour
more perfectly than in the 4-atom NCNC: however,
the population depletion of the original ensemble of
trajectories [29] resembles very closely that found for
the triatomic HNC molecule [15].

These two examples of apparent non-RRKM
behaviour in “large” molecules share one factor in
common — both use potential energy surfaces containing
switching functions. We have speculated on several
occasions [7,26,27] that the presence of these artefacts
may be the cause of hidden bottlenecks in the CH,NC
case, leading to imperfect ergodic behaviour, and the
same may be true in the case of this nitroso radical.
We should not abandon one of the cornerstones of
unimolecular reaction theory [30,31] until this possibility
has been eliminated.

7. General comments

Given a sufficiently large ensemble of trajectories,
simulations of this kind are generally expected to give
acceptable estimates of reaction rates as long as the
potential energy surface is reliable and quantal effects
are unimportant. For short lifetimes, e.g. the 1.8 ps
case above, taking fewer than 20 000 time steps, an
ensemble of 100 cases yields a result within 5%,
whereas if the lifetime is much longer, e.g. 125 ps with
more than a million time steps, ensembles as few as
30 give acceptable results [1] because the onset of
computational chaos mimics the randomisation due
to black-body radiation and/or long-range interactions
[32]. Nor do the integrations require sufficient precision
to return each individual trajectory to the origin upon
reversal [5], again because, if energy and angular
momentum remain conserved, the cumulative effect
of rounding errors helps to achieve and maintain a
truly randomised ensemble, in conformity with RRKM
theory.

However, deductions made from the examination of
single trajectory behaviour require extra consideration.
Of the three cases re-analysed here, only case (c)
requires further corroboration. There is no doubt that
for this particular model there are multiple recrossings
on the sub-picosecond time scale, as shown
in Tables 1 and 2. However, there is still the possibility
of an undetected flaw in the potential energy surface
and certainty about this particular proposition requires
analogous simulations for different reactions, and/or
demonstration that the similar calculations by others
[21-24] (with time steps of 1.2 fs [21] and 0.2 fs [24]
where specified) can survive re-examination with longer
word lengths and shorter time steps, and preferably with
extension to longer time periods.

The main difficulty is that, as formulated, in a
hypothetical field-free space, the model trajectory will
always follow the same unique path on any machine if
the step length is sufficiently small and the word length
sufficiently large; this would appear to echo Lorenz’s
final remark in his classic 1964 paper [33] about “using
the most powerful computing machine available”. In
Fig. 2a, a minuscule perturbation (1 + nd), where n is
a small integer (usually 1) and 6 corresponds to a 1-bit
difference, is applied to one, or a few, of the 24 variables
in the calculation, yielding vastly different outcomes: it
simply means that failure to return to the origin after
reversal is only a signal of chaotic motion within the
molecule if, and only if, the onset of computational chaos
has been ruled out.

There have been many studies of the distinction
between true chaotic motion and computational
chaos, i.e., the appearance of chaos due to imperfect
representation of numbers in the calculation; in the main,
they have concentrated on relatively simple analytic
functions [34-37], unlike the present multi-dimensional
problem, but also including variation of word length
[35]. Likewise, the progression from regular to chaotic
behaviour of the internal motions in isolated molecules,
including unimolecular reaction processes, has been
studied extensively [38,39]. As noted before [2], it is
possible to extract an effective Lyapunov constant from
the envelope within which points such as shown in Fig. 1
lie, but being really a composite of 24 distinct divergence
rates, only to provide a very coarse-grained description
of the onset of chaotic motions.

Other single trajectory calculations could include
geological studies, both back or forward in time, such as
the isolation of nuclear waste, where the models run “over
periods from decades to more than millions of years” [40]
and, perhaps also climate behaviour: for example, one
computer model [41] uses a time step of 7.5 minutes for
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some aspects of the calculation, but a million of them is
only about 15 years. Million-step calculations of this sort
should be subjected to both step-length and word-length
variation before acceptance. Furthermore, as Tables 1
and 2 show, conservation is an important criterion, but
in these multifaceted studies it may be difficult to choose
which variable(s) to monitor.
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