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Abstract: An approximate analytical solution of the radial Schrédinger equation for the generalized Hulthén potential is obtained by applying an
improved approximation of the centrifugal term. The bound state energy eigenvalues and the normalized eigenfunctions are given
in terms of hypergeometric polynomials. The results for arbitrary quantum numbers n_and / with different values of the screening
parameter & are compared with those obtained by the numerical method, asymptotic iteration, the Nikiforov-Uvarov method, the exact
quantization rule, and variational methods. The results obtained by the method proposed in this work are in a good agreement with

those obtained by other approximate methods.
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1. Introduction

The search for exact solutions of the radial Schrédinger
equation (SE) in some physical potential models
has been an important research area since the birth
of quantum mechanics. Unfortunately, the rigorous
solutions are known only for a few simple cases. One
of the reasons for the lack of explicit expression for the
eigenfunctions and energy eigenstates is the presence
of the centrifugal term 1/7* in the corresponding SE.
The Hulthén potential is here a good example. The radial
SE has an exact solution only for the states with zero
angular momentum. Since its introduction in 1942 [1]
quite a lot of methods [2] have been developed to find
a rigorous solution for / =0 states. However, when the
centrifugal term is taken into account, the corresponding
SE can no longer be solved in a closed form and it is
necessary to resort to approximate methods. Over the
last few decades several schemes have been used to
calculate the energy spectrum. The main idea of these
schemes relies on using different approximations of the
centrifugal term. In 1976 Greene and Aldrich [3] have
proposed a method for approximating the centrifugal
term by means of 1/r°~s%* /(1. Using their
approximation scheme some authors obtained analytically
the arbitrary /-wave bound [4] and scattering states [5]
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of the Hulthén potential. However, it should be noted that
this approximation is valid only for small values of the
screening parameter 6. For large values of § it breaks
down leading to substantial errors in energy eigenvalues.
A new approximation scheme for the centrifugal term
in the form 1/7 & 8%|wu(r)+ v*(r)| has been proposed
by Jia et al. [6], where U(r):e'ﬁf/(l_g'ff), and o
is an adjustable parameter. Their results are in good
agreement with those obtained by other methods
but also in the small screening 6 regime. Recently
Ikhdair [7] proposed an alternative approximation
scheme based on the expansion of the centrifugal
term in a series of exponentials depending on the
internuclear separation 7 and keeping terms up to
second order 1/7* ~ §%|d, + v() + v(r)], where d is the
shifting parameter. Although the differences in both
approximations are small the energy spectrum obtained
by lkhdair coincides better with those obtained by
numerical integration, especially for high screening &
values.

It is worth mentioning here that apart from different
approximation schemes, a variety of analytical methods
have been developed to find the expressions for
the energy eigenvalues and the wave functions in a
closed form. Aguilera-Navarro et al. [8] investigated
this potential using variational methods. The Nikiforov-
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Uvarov (NU) method has been applied in Ikhdair and
Sever paper [9], and the asymptotic iteration method
(AIM) in Bayrak et al. paper [10]. Gonul et al. [11] used
a supersymmetric quantum mechanics method. By
using exact quantization rule (EQR) Qiang et al. [4d]
have developed another alternative method. Finally,
Tang and Chan [12] proposed in their letter the shifted
1/ N expansion method. All results obtained by these
methods have been compared with those obtained by
other approximate methods and the energy spectra
together with the radial wavefunction have been given
in an explicit and closed form.

The aim of this work is to give an analytical solution of
the Hulthén potential using an improved approximation
scheme of the centrifugal term proposed by Badawi et al.
[13]. Their method is based on the use of the centrifugal
term in a form formally homogeneous to the original
potential to keep the factorizability of the corresponding
SE. Taking the centrifugal term as

1 1 ce " ce "
=—=cy+— 2 (1)

ort x° 1-e™* " (l—e_x)z,

where ¢; parameters can be determined as a function
of the specific potential parameters, they showed that
direct factorization becomes possible for potentials like
Morse-Pekeris, Rosen-Morse, Manning-Rosen or Tietz.
The same scheme has been used by Lu [14] or Ikhdair
and Sever [15] for the empirical potential introduced
by Schidberg [16]. As we mentioned above, a similar
expansion has been applied for Hulthén potential by Jia
and collaborators [6] but with » taken as an adjustable
parameter. The expansion (Eq. 1) has been also
applied by lkhdair and Sever [17] to the Manning-Rosen
potential.

Although Eq. 1 has proved its power and efficiency
when compared with Greene and Aldrich approximation,
it does not always lead to the solution in a closed
form. For the Hulthén potential considered here we
propose a modified approximation scheme similar to
this introduced by Lu [14] but where the C; coefficients
are to be determined as a function of the potential
parameter depending on the quantum state considered.
In order to get these coefficients we start with finding
the I-dependent minimum of the effective potential
by solving numerically a transcendental equation
dl;ﬁ (‘;-‘);'dr = 0. Next, by expanding a new exponential
variable in a Taylor's series about /-dependent
minimum, truncating this series after the second term
and comparing it with Eq. 1 we obtain the /-dependent
C; parameters. Using expansion (Eq. 1) for given ¢,
parameters we solve the corresponding SE in terms of
the generalized hypergeometric function.

In order to verify the accuracy of our approximation
scheme, the results are compared with those obtained
by numerical integration [18], NU [7], quasi-analytical
(QA) [6], EQR [4d] and AIM [10] methods published
within the last few years.

The rest of this paper is organized as follows. In the
next section we present the bound state solutions and the
normalized radial wave functions of the Hulthén potential
with an improved approximation of the centrifugal term.
In section 3 our results are presented and compared
with those of numerical integration and those obtained
by the other methods. Finally, in section 4 we give some
concluding remarks.

2. Bound state solutions of the Hulthén
potential for arbitrary /-states

The Hulthén potential we examine in this paper is defined
as r;,,n-»;zal_:;,, where Z, e and § are the atomic
number, electric charge and the screening parameter,
respectively. The radial part of the Schrodinger equation
for the relative motion of two particles interacting via
Hulthén potential can be written as

{i(‘:‘;z+?;]+ V;ﬁ(r)}R(rFER(r), (2)

where u is the reduced mass and the Veﬁ(r) is the
effective potential, which is defined as the sum of the
generalized HuIthénzpotentiaI Vy (r) and the centrifugal
term Vc(?'):M depending on the quantum
number ¢ .

Making the standard change R(r)=r"u(r) and

inserting it into Eq. 2 we obtain

{_ﬁd_ﬁp;ﬁ(r)]u(r)ﬂu(r). (3)

Se

B
2ur

24 dr?

Because Eq. 3 cannot be solved analytically due to the
centrifugal term, we have to use a proper approximation
of this term. Unlike the common approximation used for
the first time in Greene and Aldrich work, here we applied
an improved approximation Scheme 1. Insertion
of Eq. 1 and the generalized Hulthén potential V, (r)
into Eq. 3 allows us to obtain

{ ns? d*

2 +r;ﬁ(a:)}f(.x‘)Eu(,x‘), “

where

T‘;ﬂ(.\')szg -

x

, Se¥ .’U+1)T.'2=52{ ot e
+— o, +

1-¢ 2u 1-¢7" ! (l—g‘*f (5)

and where X = & 7" is a dimensionless variable.
As we will show, Eq. 5 is integrable under the
exchange of variables z=e¢". After introducing this
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new variable we can rearrange Eq. 5 as

d*u(z)  du(z az l+1l)e,z"+c
LA, ), {—1 =l A =0, @)
where we used the dimensionless parameters given by
2uE 27 e
2u ey
/12 :—W+l(l+l)cg, o= hzé‘ —l(l-&-l)cl. (7)

Considering the boundary conditions and bearing in
mind that Eq. 6 has two regular singularities at z=0
and z =1, we take the trial solution of Eq. 6 in the form

u(z)=z"1-z2)" f(2). ®)

By substituting Eq. 8 into Eq. 6 we get the following
second-order homogeneous differential equation

=(1 ,:)@(;'L [(2A+2B8+1):+ 2z+1]df7(")+
“ % ©)
+la—(as1)p]f(2)=0,

only when we make the following choice for

pe T A e+ (10)

Eq. 9 corresponds to the well-know hypergeometric
equation

2p(, -
z(lfz)ddf(;h [~(a+b+1)z+ c]#d—(h)fabf(z): o (1)
whose solution is the generalized hypergeometric
function [19]
f(z)=C - Flabez)+ G, -2 Fla- ”
fc+1,bfc+1;270;z). (12)
By comparing Eq. 11 with Eq. 9 we can immediately
write the parameters in Eq. 11 as

a=A+pB-Ja+ P+ p-p (13a)
b=A+f+Ja+ X+ [ -p (13b)
c=1+2A4. (13c)

Considering the boundary condition, i.e., f(2) tending
to finite value when z — 0, the allowed solution is

° (a)b), *

(z)=C, - Flabecz)=Y —H k= 14
flz)=C Rl g o, # (14)
where (al=r(“+k) denotes the Pochhammer symbol.

To avoid a divérgent behaviour of the hypergeometric
series in Eq. 14, the function f(Z must be reduced to
a polynomial of degree n,. It can be accomplished by
restricting the values of the parameter a =-n,, where
n =0,12,..., which leads to a finite series expansion

in Eq. 14 for £=0,1,2,...,n . Substitution of Eq. 13a
into a =—n, gives us the allowed energy spectra for the
Hulthén potential % = (i, + 2+ gf —a+ f— p* , which
can be further written as

2 a2 2
g, =M poes pertiapnf e |
2w (n.+p)
with the aid of Eq. 7.

Using i+ g —.Jor + A4 ﬁ2 — B =—n_We canrewrite
Eq. 13b as »=24+2p+1, and hence the general solution
of Eq. 6 as follows

u,,(z)=N,,z (10— z) JF(-n.24+28+n:1+22:z), (16)

z

where Nn,.z is the normalization constant. This constant
can be calculated from the normalization condition

1
(9_1j|u(:)
o

2

iy (17)

-
-

Putting the wave function of Eq. 16 into Eq. 17 and

using the following formula [20]
1

[#70- 2P E(-m.22+ 28+ n1+ 222 )f dz
0

(n,+ A)(n, +1)0(m, + 25T (2AN(2A+1)

(m,+ 2+ B, + 224122+ 28 +n,)’
we can obtain the analytical expression of normalization
constant

_ {5(;@ + A+ BI(n +22+1 024+ 28 +n,)
(n+ p0(n +10(n, + 2 02ANCA+1) |~ (19)

Before we use Eq. 15 to get the energy eigenvalues
we have to obtain the coefficients ¢,, ¢, and c,.
Following the well-known approach we can treat these
coefficients as an adjustable parameters. However
here, we will show how to get them as a function of the
specific potential parameters. We start with rewriting the
equation z=¢ " as

1 1 1

B In(z)’ - In(z, + Az (20)

(18)

12

X

where Az=z-z, and z, is the I-dependent minimum
of I/Q”~(Z,).

Bearing in mind that the energy eigenvalues are
mainly determined by the behaviour of the effective
potential in the region near the /-dependent minimum,
we expand the centrifugal term in Eq. 20 around the
I-dependent minimum. It is obvious that for the effective
potential considered here we can get only approximate
%I by solving numerically the following equation
dv,,(r)/dr=0. Hence, expanding the right-hand side of
Eq. 20 in a series around Az =0 to the second order
we get
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Table 1.The bound state energy eigenvalues (- £,) of the Hulthén potential as a function the screening parameter § for 2p, 3p,3d, 4p, 4d, 4f, 5p,
5d, 5f, 5g, 6p, 6d, 6f and 6g states in atomic units (h =m=e= 1) and Z =1.

State 3 Present Numerical [18] NU [7] QA. [6] EQR [4d] AIM [10]
2p 0.025 0.1127604 0.1127605 0.1127611 0.1126344 0.1128125 0.1128125
0.05 0.1010420 0.1010425 0.1010442 0.1009128 0.1012500 0.1012500

0.075 0.0898453 0.0898478 0.0898495 0.0898350 0.0903125 0.0903125

0.1 0.0791717 0.0791794 0.0791769 0.0794011 0.0800000 0.0800000

0.15 0.0594007 0.0594415 0.0593981 0.0604650 0.0612500 0.0612500

0.2 0.0417491 0.0418860 0.0417078 0.0441045 0.0450000 0.0450000

0.25 0.0262466 0.0266111 0.0261059 0.0303195 0.0312500 0.0312500

0.3 0.0129347 0.0137900 0.0125925 0.0191101 0.0200000 0.0200000

0.35 0.0018698 0.0037931 0.0011675 0.0104763 0.0112500 0.0112500

3p 0.025 0.0437066 0.0437069 0.0437072 0.0436848 0.0437590 0.0437590
0.05 0.0331602 0.0331645 0.0331623 0.0332390 0.0333681 0.0333681

0.075 0.0239173 0.0239397 0.0239207 0.0242183 0.0243837 0.0243837

0.1 0.0159798 0.0160537 0.0159825 0.0166227 0.0168056 0.0168056

0.15 0.0040316 0.0044663 0.0040162 0.0057067 0.0058681 0.0058681

3d 0.025 0.0436028 0.0436030 0.0436044 0.0435371 0.0437587 0.0437587
0.05 0.0327495 0.0327532 0.0327508 0.0329817 0.0333681 0.0333681

0.075 0.0230109 0.0230307 0.0229948 0.0238893 0.0243837 0.0243837

0.1 0.0144147 0.0144842 0.0143364 0.0162600 0.0168055 0.0168055

0.15 0.0008528 0.0013966 0.0003124 0.0053907 0.0058681 0.0058681

4p 0.025 0.0199480 0.0199489 0.0199486 0.0199625 0.0200000 0.0200000
0.05 0.0110422 0.0110582 0.0110442 0.0111938 0.0112500 0.0112500

0.075 0.0045340 0.0046219 0.0045370 0.0049439 0.0050000 0.0050000

0.1 0.0004252 0.0007550 0.0004269 0.0012128 0.0012500 0.0012500

4d 0.025 0.0198444 0.0198462 0.0198457 0.0198877 0.0200000 0.0200000
0.05 0.0106355 0.0106674 0.0106327 0.0110819 0.0112500 0.0112500

0.075 0.0036479 0.0038345 0.0036111 0.0048327 0.0050000 0.0050000

af 0.025 0.0196903 0.0196911 0.0196914 0.0197756 0.0200000 0.0200000
0.05 0.0100463 0.0100620 0.0100154 0.0109150 0.0112500 0.0112500

0.075 0.0024452 0.0025563 0.0022222 0.0046682 0.0050000 0.0050000

5p 0.025 0.0094011 0.0094036 0.0094017 0.0094325 0.0094531 0.0094531
0.05 0.0026047 0.0026490 0.0026067 0.0027900 0.0028125 0.0028125

5d 0.025 0.0092977 0.0093037 0.0092988 0.0093914 0.0094531 0.0094531
0.05 0.0022001 0.0023131 0.0021952 0.0027454 0.0028125 0.0028125

5f 0.025 0.0091451 0.0091521 0.0091445 0.0093298 0.0094531 0.0094531
0.05 0.0016381 0.0017835 0.0015779 0.0026791 0.0028125 0.0028125

59 0.025 0.0089441 0.0089465 0.0089387 0.0092480 0.0094531 0.0094531
0.05 0.0009496 0.0010159 0.0007549 0.0025920 0.0028125 0.0028125

6p 0.025 0.0041493 0.0041548 0.0041500 0.0041899 0.0042014 0.0042014
6d 0.025 0.0040460 0.0040606 0.0040471 0.0041671 0.0042014 0.0042014
6f 0.025 0.0038945 0.0039168 0.0038927 0.0042014 0.0042014 0.0042014
6g 0.025 0.0036996 0.0037201 0.0036870 0.0040876 0.0042014 0.0042014
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Figure 1. Theeffective Hulthén potentialfor /=0, /=1 and [ =2
angular momentum quantum numbers. The parameters
are in atomic units (h: m=e=1) with Z =1 and

6=0.075.
1 1 2 3+1In(z) |, , 3
—= - 7+ Az + O\Az 21
¥ In(z,f zln(z ) { 5 In(z, | ( ) (21)

On the other hand, if we write the approximation
from Eq. 1 used for the centrifugal term as
1 cl(z[ + /_\z) cz(zj + Az)2

P TR v A (22)

and expand it also in a Taylor series around Az =0 to
the second order we get

1 34 c, :.,2 {(202 -q ):1 + cl}
—_=c + + + Az +
PR 1-z (1-37 1-z7
(23)
+ {(262 *(;1):1 4346‘1 +& }A;z + O(A:g)_
-z

By equating terms of like powers of in Egs. 21 and
23 we obtain
P :f+2z;—3+ 3z -65,+3
* In(z, ) In(z, ¥ In(z, )
2z —6z,+4 6z —18z7 +185 -6
50z, ) 5 In(z,
3z} —122) +182F 122,43

2 n(z, )’

oq=-

(24)

3. Results and Discussion

To proceed with our improved approximation scheme
we start with plotting the effective potential Veﬁ(x) for
different angular momentum quantum numbers /. As
shown in Fig. 1, the minimum point of Veﬁ»(x) for [=0
is a singular point. It exists only for /= 0 states and it
increases considerably as the angular momentum
increases. At this same time the well depth decreases

as the angular momentum increases. Because the
standard approximation is based on the expansion of the
centrifugal term in a series around X, it is obvious that
it could be valid only for the potential with a singularity
point x,#0, and accurate for values of x close
to X, i.e., for low angular momentum energy states.
Here we used the only possible and more accurate
form of expansion around /-dependent equilibrium point
X, =z,. Allowing ¥, to differ from x, we get a significant
increase in the accuracy of the resulting expansion,
because it allows variation of the equilibrium point for
the angular momentum state considered.

To show the accuracy of this approximation scheme,
we calculated the energy eigenvalues for arbitrary
quantum numbers n=n +/+ 1 and / for different values
of the screening parameter 6. The results are given in
Table 1 and compared with those obtained by using other
methods. As follows from the table, the accuracy of our
results is the same or even better then that provided
by the other methods. The relative errors E(“""’g’){;f(’”"’j
for the majority of eigenvalues are less than 1% , an
are up to ~10 times better than the best estimations
provided by [7] for some eigenvalues.

The differences between various methods become
more apparent for large values of 6 parameters and
appear due to the approximation of the centrifugal
term, which simply means that the better the accuracy
in calculating energy eigenvalues the better the
approximation of the centrifugal term, and hence the
whole model.

4. Conclusions

It is well known that the Hulthén potential is one of the
important exponential model potential, and it has been a
subject of interestin many fields of physics and chemistry.
In this work, we have obtained the energy eigenvalues
and normalized eigenfunctions of the Hulthén potential
using the proposed improved approximation scheme of
the centrifugal term. The main results of this paper are
the explicit and closed form expressions for the energy
eigenvalues and the normalized wave functions. The
method presented in this paper is a systematic one and
in many cases more accurate than the other ones. As
can be expected this approximation scheme can be
successfully applied not only for the potential considered
here but also for the other exponential-type potentials.
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