
1. Introduction 
The search for exact solutions of the radial Schrödinger 
equation (SE) in some physical potential models 
has been an important research area since the birth 
of quantum mechanics. Unfortunately, the rigorous 
solutions are known only for a few simple cases. One 
of the reasons for the lack of explicit expression for the 
eigenfunctions and energy eigenstates is the presence 
of the centrifugal term 2/1 r  in the corresponding SE. 
The Hulthén potential is here a good example. The radial 
SE has an exact solution only for the states with zero 
angular momentum. Since its introduction in 1942 [1] 
quite a lot of methods [2] have been developed to find 
a rigorous solution for 0=l  states. However, when the 
centrifugal term is taken into account, the corresponding 
SE can no longer be solved in a closed form and it is 
necessary to resort to approximate methods. Over the 
last few decades several schemes have been used to 
calculate the energy spectrum. The main idea of these 
schemes relies on using different approximations of the 
centrifugal term. In 1976 Greene and Aldrich [3] have 
proposed a method for approximating the centrifugal 
term by means of . Using their 
approximation scheme some authors obtained analytically 
the arbitrary l -wave bound [4] and scattering states [5] 

of the Hulthén potential. However, it should be noted that 
this approximation is valid only for small values of the 
screening parameter d. For large values of d it breaks 
down leading to substantial errors in energy eigenvalues.  
A new approximation scheme for the centrifugal term 
in the form  has been proposed 
by Jia et al. [6], where , and  w 
is an adjustable parameter. Their results are in good 
agreement with those obtained by other methods 
but also in the small screening d regime.  Recently 
Ikhdair [7] proposed an alternative approximation 
scheme based on the expansion of the centrifugal 
term in a series of exponentials depending on the 
internuclear separation r  and keeping terms up to 
second order , where 0d  is the 
shifting parameter. Although the differences in both 
approximations are small the energy spectrum obtained 
by Ikhdair coincides better with those obtained by 
numerical integration, especially for high screening d 
values. 

It is worth mentioning here that apart from different 
approximation schemes, a variety of analytical methods 
have been developed to find the expressions for 
the energy eigenvalues and the wave functions in a 
closed form. Aguilera-Navarro et al. [8] investigated 
this potential using variational methods. The Nikiforov-
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Uvarov (NU) method has been applied in Ikhdair and 
Sever paper [9], and the asymptotic iteration method 
(AIM) in Bayrak et al. paper [10]. Gönül et al. [11] used 
a supersymmetric quantum mechanics method. By 
using exact quantization rule (EQR) Qiang et al. [4d] 
have developed another alternative method. Finally, 
Tang and Chan [12] proposed in their letter the shifted 

N/1  expansion method. All results obtained by these 
methods have been compared with those obtained by 
other approximate methods and the energy spectra 
together with the radial wavefunction have been given 
in an explicit and closed form.

The aim of this work is to give an analytical solution of 
the Hulthén potential using an improved approximation 
scheme of the centrifugal term proposed by Badawi et al. 
[13]. Their method is based on the use of the centrifugal 
term in a form formally homogeneous to the original 
potential to keep the factorizability of the corresponding 
SE. Taking the centrifugal term as 
                                                                                    

(1)                                                               ,

where ic  parameters can be determined as a function 
of the specific potential parameters, they showed that 
direct factorization becomes possible for potentials like 
Morse-Pekeris, Rosen-Morse, Manning-Rosen or Tietz. 
The same scheme has been used by Lu [14] or Ikhdair 
and Sever [15] for the empirical potential introduced 
by Schiöberg [16]. As we mentioned above, a similar 
expansion has been applied for Hulthén potential by Jia 
and collaborators [6] but with w taken as an adjustable 
parameter. The expansion (Eq. 1) has been also 
applied by Ikhdair and Sever [17] to the Manning-Rosen 
potential. 

Although Eq. 1 has proved its power and efficiency 
when compared with Greene and Aldrich approximation, 
it does not always lead to the solution in a closed 
form. For the Hulthén potential considered here we 
propose a modified approximation scheme similar to 
this introduced by Lu [14] but where the ic coefficients 
are to be determined as a function of the potential 
parameter depending on the quantum state considered. 
In order to get these coefficients we start with finding 
the l-dependent minimum of the effective potential 
by solving numerically a transcendental equation 

. Next, by expanding a new exponential 
variable in a Taylor’s series about l-dependent 
minimum, truncating this series after the second term 
and comparing it with Eq. 1 we obtain the l-dependent 

ic  parameters. Using expansion (Eq. 1) for given ic  
parameters  we solve the corresponding SE in terms of 
the generalized hypergeometric function.

In order to verify the accuracy of our approximation 
scheme, the results are compared with those obtained 
by numerical integration [18], NU [7], quasi-analytical 
(QA) [6], EQR [4d] and AIM [10] methods published 
within the last few years.

The rest of this paper is organized as follows. In the 
next section we present the bound state solutions and the 
normalized radial wave functions of the Hulthén potential 
with an improved approximation of the centrifugal term. 
In section 3 our results are  presented  and compared 
with those of numerical integration and those obtained 
by the other methods. Finally, in section 4 we give some 
concluding remarks.

2. 

The Hulthén potential we examine in this paper is defined 
as , where Z , e  and d are the atomic 
number, electric charge and the screening parameter, 
respectively. The radial part of the Schrödinger equation  
for the relative motion of two particles interacting via 
Hulthén potential can be written as

                            
(2)

                                                        ,

where m is the reduced mass and the ( )rVeff  is the 
effective potential, which is defined as the sum of the 
generalized Hulthén potential ( )rVH  and the centrifugal 
term  depending on the quantum 
number l .

Making the standard change ( ) ( )rurrR 1−=  and 
inserting it into Eq. 2 we obtain

.
                                     

 (3)                      

Because Eq. 3 cannot be solved analytically due to the 
centrifugal term, we have to use a proper approximation 
of  this term.  Unlike the common approximation used for 
the first time in Greene and Aldrich work, here we applied 
an improved approximation  Scheme 1.   Insertion 
of Eq. 1 and the generalized Hulthén potential ( )rVH  
into Eq. 3 allows us to obtain

,
                              

(4)

where

                                                                                    (5)

and where  is a dimensionless variable.
As we will show, Eq. 5 is integrable under the 

exchange of variables xez −= . After introducing this 
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new variable we can rearrange Eq. 5 as

,
   

(6)                     

where we used the dimensionless parameters given by

.
      

(7)

Considering the boundary conditions and bearing in 
mind that Eq. 6 has two regular singularities at 0=z  
and 1=z , we take the trial solution of Eq. 6 in the form

                                            
(8)

By substituting Eq. 8 into Eq. 6 we get the following 
second-order homogeneous differential equation

                                                                                     (9)
                                      

only when we make the following choice for
                    

                                                                                   (10)

Eq. 9 corresponds to the well-know hypergeometric 
equation 

    
(11)

whose solution is the generalized hypergeometric 
function [19]

                                             (12)

By comparing Eq. 11 with Eq. 9 we can immediately 
write the parameters in Eq. 11 as

                                                                           (13a)

             (13b)

             
(13c)

Considering the boundary condition, i.e., )(zf  tending 
to finite value when 0→z , the allowed solution is 

                       (14)

where ( ) ( )
( )a

kaa k Γ
+Γ

=  denotes the Pochhammer symbol. 
To avoid a divergent behaviour of the hypergeometric 
series in Eq. 14, the function ( )zf  must be reduced to 
a polynomial of degree rn . It can be accomplished by 
restricting the values of the parameter rna −= , where 

,...2,1,0=rn , which  leads to a finite series expansion 

in Eq. 14 for rnk ,...,2,1,0= .  Substitution of  Eq. 13a 
into rna −=  gives us the allowed energy spectra for the 
Hulthén potential   , which 
can be further written as

         
(15)

with the aid of Eq. 7.
Using  we can rewrite 

Eq. 13b as , and hence the general solution 
of Eq. 6 as follows

  (16)

where lnr
N  is the normalization constant. This constant 

can be calculated from the normalization condition 

                            (17)

Putting the wave function of Eq. 16 into Eq. 17 and 
using the following formula [20]

              (18) 

we can obtain the analytical expression of normalization 
constant

               (19)

Before we use Eq. 15 to get the energy eigenvalues 
we have to obtain the coefficients 0c , 1c  and 2c . 
Following the well-known approach we can treat these 
coefficients as an adjustable parameters. However 
here, we will show how to get them as a function of the 
specific potential parameters. We start with rewriting the 
equation xez −=  as

             
(20)

where lzzz −=∆ , and lz  is the l-dependent minimum 
of ( )leff zV . 

Bearing in mind that the energy eigenvalues are 
mainly determined by the behaviour of the effective 
potential in the region near the l-dependent minimum, 
we expand the centrifugal term in Eq. 20 around the 
l-dependent minimum. It is obvious that  for the effective 
potential considered here we can get only approximate 

lz   by solving numerically the following equation  
. Hence, expanding the right-hand side of 

Eq. 20 in a series around 0=∆z  to the second order 
we get
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Table 1. 

State d Present Numerical [18] NU [7] QA. [6] EQR [4d] AIM [10]

2p 0.025 0.1127604 0.1127605 0.1127611 0.1126344 0.1128125 0.1128125

 0.05 0.1010420 0.1010425 0.1010442 0.1009128 0.1012500 0.1012500

 0.075 0.0898453 0.0898478 0.0898495 0.0898350 0.0903125 0.0903125

 0.1 0.0791717 0.0791794 0.0791769 0.0794011 0.0800000 0.0800000

 0.15 0.0594007 0.0594415 0.0593981 0.0604650 0.0612500 0.0612500

 0.2 0.0417491 0.0418860 0.0417078 0.0441045 0.0450000 0.0450000

 0.25 0.0262466 0.0266111 0.0261059 0.0303195 0.0312500 0.0312500

 0.3 0.0129347 0.0137900 0.0125925 0.0191101 0.0200000 0.0200000

 0.35 0.0018698 0.0037931 0.0011675 0.0104763 0.0112500 0.0112500

3p 0.025 0.0437066 0.0437069 0.0437072 0.0436848 0.0437590 0.0437590

 0.05 0.0331602 0.0331645 0.0331623 0.0332390 0.0333681 0.0333681

 0.075 0.0239173 0.0239397 0.0239207 0.0242183 0.0243837 0.0243837

 0.1 0.0159798 0.0160537 0.0159825 0.0166227 0.0168056 0.0168056

 0.15 0.0040316 0.0044663 0.0040162 0.0057067 0.0058681 0.0058681

3d 0.025 0.0436028 0.0436030 0.0436044 0.0435371 0.0437587 0.0437587

 0.05 0.0327495 0.0327532 0.0327508 0.0329817 0.0333681 0.0333681

 0.075 0.0230109 0.0230307 0.0229948 0.0238893 0.0243837 0.0243837

 0.1 0.0144147 0.0144842 0.0143364 0.0162600 0.0168055 0.0168055

 0.15 0.0008528 0.0013966 0.0003124 0.0053907 0.0058681 0.0058681

4p 0.025 0.0199480 0.0199489 0.0199486 0.0199625 0.0200000 0.0200000

 0.05 0.0110422 0.0110582 0.0110442 0.0111938 0.0112500 0.0112500

 0.075 0.0045340 0.0046219 0.0045370 0.0049439 0.0050000 0.0050000

 0.1 0.0004252 0.0007550 0.0004269 0.0012128 0.0012500 0.0012500

4d 0.025 0.0198444 0.0198462 0.0198457 0.0198877 0.0200000 0.0200000

 0.05 0.0106355 0.0106674 0.0106327 0.0110819 0.0112500 0.0112500

 0.075 0.0036479 0.0038345 0.0036111 0.0048327 0.0050000 0.0050000

4f 0.025 0.0196903 0.0196911 0.0196914 0.0197756 0.0200000 0.0200000

 0.05 0.0100463 0.0100620 0.0100154 0.0109150 0.0112500 0.0112500

 0.075 0.0024452 0.0025563 0.0022222 0.0046682 0.0050000 0.0050000

5p 0.025 0.0094011 0.0094036 0.0094017 0.0094325 0.0094531 0.0094531

 0.05 0.0026047 0.0026490 0.0026067 0.0027900 0.0028125 0.0028125

5d 0.025 0.0092977 0.0093037 0.0092988 0.0093914 0.0094531 0.0094531

 0.05 0.0022001 0.0023131 0.0021952 0.0027454 0.0028125 0.0028125

5f 0.025 0.0091451 0.0091521 0.0091445 0.0093298 0.0094531 0.0094531

 0.05 0.0016381 0.0017835 0.0015779 0.0026791 0.0028125 0.0028125

5g 0.025 0.0089441 0.0089465 0.0089387 0.0092480 0.0094531 0.0094531

 0.05 0.0009496 0.0010159 0.0007549 0.0025920 0.0028125 0.0028125

6p 0.025 0.0041493 0.0041548 0.0041500 0.0041899 0.0042014 0.0042014

6d 0.025 0.0040460 0.0040606 0.0040471 0.0041671 0.0042014 0.0042014

6f 0.025 0.0038945 0.0039168 0.0038927 0.0042014 0.0042014 0.0042014

6g 0.025 0.0036996 0.0037201 0.0036870 0.0040876 0.0042014 0.0042014

The bound state energy eigenvalues (- E nl) of the Hulthén potential as a function the screening parameter d for 2p, 3p,3d, 4p, 4d, 4f, 5p, 
5d, 5f, 5g, 6p, 6d, 6f and  6g states in atomic units ( )1=== em

 and 1=Z .
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               (21)

On the other hand, if we write the approximation 
from Eq. 1 used for the centrifugal term as

                        
(22)

and expand it also in a Taylor series around 0=∆z  to 
the second order we get

               (23)
                   

By equating terms of like powers of in Eqs. 21 and 
23 we obtain 

              
(24)

 

3. Results and Discussion
To proceed with our improved approximation scheme 
we start with plotting the effective potential ( )xVeff  for 
different  angular momentum quantum numbers l . As 
shown in Fig. 1, the minimum point of ( )xVeff  for 0=l
is a singular point. It exists only for 0≠l states and it 
increases considerably as the angular momentum 
increases. At this same time the well depth decreases 

as the angular momentum increases. Because the 
standard approximation is based on the expansion of the 
centrifugal term in a series around 0x , it is obvious that 
it could be valid only for the potential with a singularity 
point 00 ≠x , and accurate for values of x  close 
to 0x , i.e., for low angular momentum energy states. 
Here we used the only possible and more accurate 
form of expansion around l -dependent equilibrium point 

ll zx ≡ . Allowing lx  to differ from 0x  we get a significant 
increase in the accuracy of the resulting expansion, 
because it allows variation of the equilibrium point for 
the angular momentum state considered.  

To show the accuracy of this approximation scheme, 
we calculated the energy eigenvalues for arbitrary 
quantum numbers n = nr + l + 1 and l  for different values 
of the screening parameter d. The results are given  in 
Table 1 and compared with those obtained by using other 
methods. As follows from the table, the accuracy of our 
results is the same  or even better then that provided 
by  the other methods. The relative errors  
for the majority of  eigenvalues are less than 1% , and 
are up to ∼10 times better than the best estimations 
provided by [7] for some eigenvalues.

The differences between various methods become 
more apparent for large values of d parameters and 
appear due to the approximation of the centrifugal 
term, which simply means that the better the accuracy 
in calculating energy eigenvalues the better the 
approximation of the centrifugal term, and hence the 
whole model.

4. Conclusions 
It is well known that the Hulthén potential is one of the 
important exponential model potential, and it has been a 
subject of interest in many fields of physics and chemistry. 
In this work, we have obtained the energy eigenvalues 
and normalized eigenfunctions of the Hulthén potential 
using the proposed improved approximation scheme of 
the centrifugal term. The main results of this paper are 
the explicit and closed form expressions for the energy 
eigenvalues and the normalized wave functions. The 
method presented in this paper is a systematic one and 
in many cases more accurate than the other ones. As 
can be expected  this approximation scheme can be 
successfully applied not only for the potential considered 
here but also for the other exponential-type potentials.

Figure 1. The effective Hulthén potential for 0=l , 1=l  and 2=l  
angular momentum quantum numbers. The parameters 
are in atomic units ( )1=== em

 with 1=Z  and 
d=0.075.
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