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Abstract: An alternative procedure for the calculation of highly excited vibrational levels in SO formaldehyde was developed to apply to larger
molecules. It is based on a new set of symmetrized vibrational valence coordinates. The fully symmetrized vibrational kinetic energy
operator is derived in these coordinates using the Handy expression [Molec. Phys. 61, 207 (1987)]. The potential energy surface is
expressed as a fully symmetrized quartic expansion in the coordinates. We have performed ab initio electronic computations using
GAMESS to obtain all force constants of the SO formaldehyde quartic force field. Our large scale vibrational calculations are based
on a fully symmetrized vibrational basis set, in product form. The vibrational levels are calculated one by one using an artificial
intelligence search/selection procedure and subsequent Lanczos iteration, providing access to extremely high vibrational energies.
In this work special attention has been given to the CH stretch system by calculating the energies up to the fifth CH stretch overtone
at ~16000 cm', but the method has also been tested on two highly excited combination levels including other lower frequency

modes.
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1. Introduction

Formaldehyde is one of the most thoroughly
spectroscopically studied polyatomic molecules [1-6] and
has long served as a model for large scale vibrational
calculations [7-19]. Using a variety of techniques (IR,
stimulated emission pumping, dispersed fluorescence)
276 ground electronic state vibrational levels
(up to 12500 cm™) have been observed and assigned
[3-6]. Even higher CH stretch overtones have been
observed by photoacoustic spectroscopy and analyzed
theoretically [20].

There have been a number of ab initio determinations
of the S, ground electronic state equilibrium geometry
and force field [21-24], with the 1993 quartic force field
of Martin, Lee and Taylor (MLT) [23] achieving almost
spectroscopic precision. The first exact variational
calculation of vibrational levels in formaldehyde using
an exact analytical expression for the kinetic energy
[25] and the MLT quartic field was carried out by Carter,
Pinnavaia and Handy [11]. There have been numerous
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adjustments and refinements of the MLT quartic force field
as well as equilibrium geometry parameters (two bond
lengths and one interbond angle) based on extensive
vibrational calculations [11-13]. Burleigh et al. [14]
performed a calculation and adjustment to experimental
data [6] of 138 vibrational levels in formaldehyde up to
~7600 cm™, using 6" order canonical Van Vleck
perturbation theory. More recently, large scale vibrational
calculations were carried out using a generalized discrete
variable representation and adiabatic contraction
techniques [15]. Itis noteworthy that using the MLT quartic
force field and their symmetrized coordinates, Luckhaus
[15] has almost exactly reproduced all the vibrational
frequencies up to ~5700 cm™" previously calculated by
Carter et al. [11], who used a totally different finite set
variational procedure.

Bramley and Carrington [10] developed a general
variational method based on the Lanczos algorithm
without storage of the Hamiltonian matrix and calculated
formaldehyde vibrational levels up to ~5700 cm™'. Poulin
et al. [13] employed the recursive residue generation
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method of Wyatt to carry out converged calculations
up to about 6300 cm™. Mladenovic [19] carried out
accurate large scale calculations on levels up to
~5200 cm™ using discrete variable representation
(DVR) and a contraction scheme resulting from several
diagonalization/ truncation steps. Ribeiro et al. [16]
developed a prediagonalization-perturbation Davidson
algorithm to evaluate selected states up to 9500 cm-.
Recently, Bernal and Lemus [17] calculated 260 levels
up to 12500 cm™' using an effective Hamiltonian based
on an algebraic approach within a SU(2) representation
of coordinates and momenta. Lee and Light [18]
applied their iterative solutions/energy selected bases
variational method to calculate 729 A, symmetry states
up to 13500 cm™" based on a slightly modified version of
the Burleigh et al. adjusted potential surface [14]. This
method seems very promising for calculations on larger
molecules and/or higher energies.

Earlier, Luckhaus et al. [20] studied the higher
CH stretching overtones up to about 16000 cm™ both
experimentally and by using normal mode modeling
based on ab initio potential energy and dipole moment
surfaces computation.

In this work we describe an alternative method
for H,CO frequencies calculation equally suitable for
low and highly excited vibrational states. However,
the quartic PES is not of global character and will
certainly not hold for too high excitation energies; it
has been tested for the CH stretch overtones up to
about 16000 cm'. Its most important characteristics
are: (i) employment of an exact kinetic energy operator
(derived from the Handy [25] expression) expressed
as a completely symmetrized product in terms of our
vibrational coordinates; (ii) employment of our own ab
initio quartic force field (slightly adjusted to reproduce
the 6 fundamental frequencies exactly); (iii) a variational
calculation based on a set of symmetrized basis
functions in product form, including a symmetrized local
mode (LM) representation for the CH stretch modes;
(iv) employment of an Al/SS procedure to obtain the
most economic Hamiltonian matrix, complemented by a
Lanczos matrix manipulation.

2. Theoretical derivation

2.1. Vibrational coordinates and Hamiltonian.
The atom configuration and notation is given in
Supplementary Fig. 1. These are somewhat different
from the MLT coordinates S, [23], especially the angular
coordinates.

The vibrational coordinates Q,_ for the formaldehyde
S, ground electronic state are the Simons-Parr-Finlan

stretching coordinates [26] p.,,, P, and p., as in MLT
[23]:
0:A) =i = PO OuRy) = sy = For L,

Ox(Ay) = Sx(A) = peo

Ar, Ar,
where por =—%, pro =—L; 1 =Argg + ro(CH), 150 =Argy+
Tom Teo

+ 19(CO),  Argg (Argg) and Ar,, are the stretches of the C—H
(C-H’) and C-O bonds from their equilibrium lengths
r,(CH) and r,(CO).

Instead of the “book” dihedral angle 71, connecting the
HCO and H'CO planes we use the angle Q,=¢ between
the C=0 bond and the HCH’ plane as an out-of-plane
coordinate.

We use the projections w,,, and g, of 6., and
6, On the HCH’ plane instead of the two angles 6,
and 6, [23]. We define symmetrized combinations of
the w,, and g, angles of symmetry species A, and

5
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Our angular coordinates ¢, 6 and B are related to the
MLT angular coordinates S,= %(6 +6 , S,=T7, and

. OCI:{ OCH')
Se= 75 (Boci—0 o), through the equations:
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Our angular coordinates ¢, 6, 8 are related to the three
angular coordinates in Handy’s [25] full kinetic energy
operator T: 8, (=6 ), 6, (=6,.,), and ¢ (=the dihedral
angle between the OCH and OCH'’ planes), as follows:

s S, =

(1

COS o = cos[

. . . a
sme, sm@=sme , cost, =—cose COS[E_ ﬁ] (2)

Using Egs. 2, we have transformed Handy’s expression
[25] for the full vibrational kinetic energy operator T into
our coordinates ¢, 6, B, in explicit completely symmetrized
form as a sum of totally symmetric terms only, each a
product of functions of only one symmetrized coordinate
(Supplementary Information).

The potential energy is taken to be a quartic
expansion in terms of our symmetrized coordinates Q,,
Q, Q, Q, Q, Q
V=E+3 FO0+% Fp00,0,+ > Fu00,00 (3)
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2.2. Symmetrized vibrational basis set.

We define a symmetrized orthogonal, normalized
unrestricted vibrational basis set, with each basis
function a product of symmetrized factors — functions
of one individual vibrational coordinate. For the three
stretching modes AFCH, ArCH , /_\rco we employ Morse
oscnlator basis wavefunctions M (A1), ' M (A1)
and ¥(Arz,), while for the three angular motions —
coordinates Q L(A,) = A6/42 [A6 = 6- 6 (HCH)], Q,(B,)
=p, QB,) = ,8\/5 (defined above), we use harmonic
oscillator basis sets: t//::(Qg), wfj(g), t//f(Qé). The
vibrational basis functions (as well as the vibrational
coordinates themselves) employed here are defined
with respect to the equilibrium molecular structure
and therefore are not suitable for the description of
extremely large deviations such as those associated
with isomerization.

Our symmetrized CH stretch wavefunctions are
linear combinations of individual Morse oscillator
eigenfunctions ¥ (A1) and ' (Argy) corresponding
to the bond stretches CH and CH’. These symmetrized
LM wavefunctions (dependent on two quantum numbers
n and n’) replace the conventional NM basis set using
symmetrized coordinates Q, and Q. Thus, instead of
using symmetrized coordinates we symmetrize the
basis set as follows.

If excitation in both CH stretches is equal n=n’, the
basis wavefunction is of svmmetrv A,, and it is written
as: ‘P V(Ary, AT ) = v (/_\rCH) s (ArCH) For
n#n’ there are two wavefunctions of symmetry A, and
B,
Y (At Wy (Ao ) + it (Ary Yy, (Ary )

V2 4)
Wf(ArCH)W:{(‘A’.L‘H‘)7Wf(arCH)Wy(ArCH‘) (
NE

These basis eigenfunctions are orthogonal
and normalized. The full 6-D vibrational basis set
wavefunction is then:

LP; = C’H);n:z’nB’n4’n6(S)>:LPf,ﬁI?(ArCH’ArCH')
W (M) w2 (Q3), w0, v (Q:)
S,y is the symmetry of the LM CH stretch part (S, =A, or

B,); Sis the overall basis wavefunction symmetry (S=A,,
A, B,orB,).

‘{J:L'(A-"CH« Alpg) =

PE(Arpy, Ay =

3. Vibrational calculation procedure

3.1. Hamiltonian matrix elements calculation

We should be able to calculate matrix elements
Hik=<‘1’,-3 ,,) of the Hamiltonian operator H=T+V for
any pair of basis functions ¥ and ¥/ belonging to

the same symmetry species S of point group C,,. Since
H (both T and V) are the sum of terms that are products
of functions of one internal coordinate only, and all basis
functions ¥° and ¥ are in the same form, the matrix
element (W|H|¥S) is obtained as the sum of products
of one-dimensional integrals only.

All required one-dimensional integrals
(¥, ()| £(©@)|¥,,©,) for all Q) functions in both T
and V operators were computed at the beginning of
each calculation and stored. These were computed
numerically using Gauss-Hermite or Gauss-Laguerre
integration [27]. As a result the calculation of a matrix
element H, was reduced to a series of multiplications and
summations, which greatly accelerated the calculation.

3.2. Artificial intelligence search selection
procedure (Al/SS)

Even for a molecule with as few as four atoms, the
vibrational level density at 16000 cm™ is too high for
a conventional variational calculation. There exist a
number of alternative approaches capable of producing
converged molecular vibrational levels with high energy
and high level densities. Recent progress in this field
has been almost entirely based on the employment
of curvilinear vibrational coordinates and DVR,
sequential diagonalization and truncation methods, or
energy selected basis schemes and iterative methods
such as modified Lanczos or Davidson algorithms
[15,16,18,19,28-34]. We have chosen to apply a different
but well established strategy for selecting a reduced
dimensionality vibrational basis, namely the artificial
intelligence search selection (Al/SS) procedure [30,35-
41], combined with conventional Lanczos iteration
(tridiagonalization) [31,42,43]. Thus, our method does
not use any prediagonalization as do most modern
iterative methods. After Tietz and Chu [38] introduced
using artificial intelligence (Al) for molecular vibrational
state selection, Chang et al. [39] obtained accurate
highly excited vibrational energies by diagonalizing
small Hamiltonian matrices based on a smaller subset
(active space - AS) selected from a much larger original
basis states space. A number of developments mainly
aimed at the exploration of intramolecular dynamical
processes have since been published [30,35,36,40-42].
In general, there is an infinite-dimensional primitive
space (PS) of vibrational states belonging to a single
electronic state. Having defined a basis set for this
space we would like to calculate all possible Hamiltonian
matrix elements connecting the basis states as well
as their energies. We would then diagonalize the
huge Hamiltonian matrix and obtain the vibrational
eigenvalues and eigenvectors. Unfortunately, this is not
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possible for most practical systems. Therefore, the aim
is to select a reduced dimensionality active subspace
(AS) that is feasible to manipulate but preserves the
important features of the PS.

The basis set definition, based on the choice of
vibrational coordinates, is crucial. First, a completely
symmetrized vibrational basis set reduces the original
PS dimensionality by three fourths. Next, the PS can
always be subdivided into submanifolds A of basis
states effectively isolated from each other, i.e., each
state from one submanifold is substantially coupled
(either directly or indirectly) to all basis states from the
same submanifold, while negligibly coupled to all states
from the remaining submanifolds. The dimensionality of
various submanifolds can be quite different, and some
may contain only one or a small number of basis states.
The possibility of dividing the PS and the submanifolds’
dimensionalities strongly depends on the choice of
vibrational basis set. Deriving the Hamiltonian matrix
based on those basis states restricted to one particular
submanifold and diagonalizing that matrix yields
vibrational eigenvalues and eigenvectors for not only
this submanifold but for the global molecular vibrational
problem as well because of the effective submanifold
isolation.

From our PS global basis set and a suitable initial
vibrational basis state from one of the submanifolds,
we identify all (or most) of the remaining basis states
belonging to this submanifold. We apply an Al/SS
procedure [30,35-37,40,42]. The original molecular
vibrational PS is a "net”, the basis states are the
“nodes”, and the Hamiltonian coupling matrix elements
are the “links” of the nodes. Starting at a given node —
the “root” - our aim is to build a “subnet” incorporating
the “nodes” (basis states) from the same submanifold,
simultaneously preserving the substantial links among
them while discarding those that are negligibly small.
Since we are looking for a subnet rather than a tree
a traditional decision tree pruning algorithm based on
subsequent tiers [37,40] is precluded.

Our technique of search/selection is based on
two main principles: the vibrational quantum number
representation of the basis states and the definition of
an evaluation function f ascribed to each basis state.
The initial state in the search is given the value of =1, all
subsequently probed states will then be assigned 0<f<1.
Aparameter f is defined (typically 10 or smaller) and the
algorithm selects only those basis states that have f>f
and rejects those with f<f. A second search parameter
is a window width AE; centered around the initial state
energy, usually chosen as 3000 cm or larger.

We start our search with the basis state \s(]),
which is the zeroth-order representation of a required

molecular vibrational state, say \s()) =|n, n'(SCH);nl,...>, of
a symmetry species S. This state is given the value =1.
Next, the algorithm proceeds to generate all basis states
\sm> =|m.m'(Sy, ).m,....) of the same symmetry S that differ
by one vibrational quantum from \s0> (A=Z|n-m|=1). For
each newly generated state the energy E, =<Sk ‘H\sk
and the coupling matrix element H, =(s,|H|s,) are
calculated, as well as the evaluation function f=|Hka/
(E,~E)I*R, where R=1 if the state is located within AE
of the root state or R=|AE /(E,~E,)| if it is further away
(IAE/(E,~E,)| is also taken as 1 if it exceeds 1). Each
newly generated state that satisfies f>f is stored. Next,
the algorithm proceeds to probe the states separated
from the initial state by two vibrational quanta (A=2),
processing the newly generated states in the same way.
The search of more and more distant quantum number
space states is carried on at successively larger A until a
A, is reached where all the newly generated states with
A=A have f<f, Search beyond A, shows that no states
with f>f, occurred at A>A . At that point the search from
the first state ‘s0> is terminated and the same procedure
is started from |s, ).

Now the evaluation function of a newly generated
\Sk> is the product fx|H, /(E~E)*R, where
H1’k=<sl ‘H\sk> and f, is the evaluation function of \s1>.
In this way the search consecutively explores each of
‘s2>, s3>, ... which leads in general to the selection of
more states. Each new state is checked whether it has
already been examined. In general, the newly selected
states have steadily diminishing f-values. This leads to
termination of the search when no new states with 7>f,
can be selected on exploration of \SN,1>.

This Al/SS procedure selects an active space A of
N basis states of the same symmetry S as the initial
|55}, consisting of those basis states |s;) involved in
nonnegligible coupling to \so> . Simultaneously, the NxN
symmetric Hamiltonian matrix H of this submanifold is
stored.

N depends on the values of f; and E,. In our CH
stretch overtones calculations we used E=3000 cm,
although E;=2000 cm" yielded satisfactory results (within
2 cm of the £,=3000 cm™ result) for even the highest
excited levels explored. It also gave strongly reduced
N and CPU times. The more important parameter is £ ;
for most calculations we have used f0=10'5, but in some
cases even smaller f; values had to be used to achieve
convergence.

Next, we carry out Lanczos tridiagonalization [43]
of the Hamiltonian matrix. The Lanczos recursion starts
with the same initial vector as the Al/SS procedure with
1 as a first component and zeros in all other places. The
Hamiltonian matrix obtained is rather sparse since the
too small matrix elements were discarded. Thus H can
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be presented as a 1D array containing only the nonzero
matrix elements instead of the usual 2D array containing
many zeros. Such a representation greatly accelerates
the matrixxvector multiplication, which is the major time-
consuming step in a Lanczos recursion, by reducing it to
one run over the 1D array.

In the course of the recursion, the first component of
each successively generated Lanczos vector after the
starting one is set to zero, making this vector orthogonal
to the initial one. This makes the Lanczos procedure
more stable, especially with regard to the eigenvalue
corresponding to the starting vector; it has other
important advanages in addition. After the tridiagonal
Lanczos matrix has been obtained we fully diagonalize it
using qli() from Numerical recipes [27]. This routine has
been simplified to yield the eigenvalues and only the first
eigenvector component C,. Theimplicit orthogonalization
of all Lanczos vectors with respect to the starting one
makes these C, coincide with the first components
of the Krylov vectors - approximations of the original
Hamiltonian matrix eigenvectors. This means that we
do not have to store all the Lanczos vectors needed to
calculate eigenvectors as long as we are satisfied with
the first components only. The eigenenergy of |s,) is
readily recognized by having one of the largest |C,|
values in the spectral range of interest.

4. Results and Discussion

4.1. Ab initio computation of the quartic force
field of S, formaldehyde in terms of our
vibrational coordinates.

We performed large scale ab initio electronic

computations to establish a quartic force field for the

S, ground electronic state of formaldehyde using the

GAMESS code [44-46] with a cc-pVTZ (correlation

consistent polarized valence triple zeta) basis set.

Electron correlation was accounted for by the CCSD(T)

correction. This is a coupled cluster method with

all singles and doubles substitutions augmented by
quasiperturbative estimates of the connected triplet
excitations. To establish the potential energy surface we
generated total energy data points from displacements

from the equilibrium geometry: r (CO)=1.2096082 A;

r,(CH)=1.1032935 A; 6,(HCH')=116.1803202 deg.

Step sizes of 0.05 A were used for the symmetric

bond and antisymmetric displacements Ar., + Ar.,.,

Ar., and Ar,, —Ar.,.. The three angular coordinates

were stepped through 5 degree increments. In all,

425 points were used to establish the grid. The

quadratic, cubic and quartic potential constants of
Supplementary Table 1 came from fitting the energy data
points to Eq. 3 by the program NLREG after converting
to Simons-Parr-Finlan coordinates [26].

Using the computed force constants and equilibrium
parameters and the above calculation procedure,
we calculated the six fundamental frequencies of S,
formaldehyde (Supplementary Table 2). The calculated
frequencies are reasonably close to the experimental
values, implying that the calculated quartic force field
is satisfactory. Neverthless, before starting calculations
on higher excited vibrational levels, we carried out a
restricted adjustment on the six diagonal harmonic force
constants, F11, F22, F33, F44, F55 and F66, to achieve
precise coincidence of these calculated frequencies with
the experimental values. Their adjusted values are also
in Supplementary Table 1.

4.2. Large scale calculations on highly excited

CH stretch overtone levels.

Next, using the ab initio quartic force field and adjusted
constants we performed calculations on the S|
formaldehyde CH stretch high overtones. A feature that
distinguishes our approach from all other formaldehyde
vibrational calculations known to us is the employment
of a symmetrized LM to describe the CH stretch modes
instead of the traditional NM treatment. Reisner et al.
[5] concluded in 1984 that these modes they are better
described as LMthan NM[47] due to their strong diagonal
anharmonicity and comparatively good localization.
Neverthless, even in the recent work of Luckhaus et al.
[20], the CH stretch system is modeled in terms of NM.
However, despite the NM representation employed, their
derived energy level structure [20] is characteristic of LM
behavior that gets more pronounced at higher energies.
Lee and Light [18] also found stronger LM behavior with
increasing excitation [47].

Using two variable parameters our calculations
converge to less than 0.1 cm™ for the lower excited
levels and to within about 2 cm for the higher ones.
Actually, only f, was varied; E;=3000 cm™” was suitable
for all cases (Supplementary Table 3). While for the
lowest levels active spaces of N~2000 were selected, for
the highest excited levels (about 16000 cm™) N>25000
is usual.

The CPU times grow steeply mainly with energy but
they are also state specific, being somewhat shorter for
the two purely LM CH stretches |n,0(S=A,,B,)> of each
overtone manifold. The Lanczos tridiagonalization and
subsequent full diagonalization take an insignificant
portion of the time required for the full calculation (few
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minutes for the largest N). The Al/SS procedure is
the most time consuming part. It takes a few minutes
for the fundamentals, about an hour for the states at
~10000 cm™ and grows to about 60h for those near
16000 cm' (2.66 GHz processor).

Supplementary Table 4 contains our calculated
energies for the CH stretches up to the 5" overtone, 6v,,..
The levels display typical behavior for a LM structure
[47]: within each overtone manifold n the two levels of
purely local character, |n,0(S.;):0,...} and (S,,=A,,B,),
are located at the lowest energy, are well separated
from the remaining levels, and get closer together with
increasing n.

In general, our calculated CH stretch frequencies
are closer to the experimental data [6,20], than those
calculated (and scaled) by Luckhaus et al. [20],
especially at the comparatively lower and at the higher
vibrational energies. At the higher levels two sources of
uncertainty must be recognized: first, the quartic force
field may not be adequate due to the large deviations
from equilibrium; and secondly, the experimental
measurements themselves are uncertain because of
weak absorption and poor signal to noise ratio [20].

To test the performance of our method on other highly
excitedlevelsin S formaldehyde involvingnon CH stretch
vibrational modes, we performed test calculations on
Bouwens’ et al. [6] two highest experimentally observed
levels with A, symmetry. These are |[1)=2.4, (our
notation: O,O(Al);6,2,O,O(A1))) measured at 12415.4
cm” and |2)=1,2,4, (our notation: [1,0(4,);3,4,0,0(4))}
), at 12470.2 cm™ [6]. Their vibrational mixing was
found to be much more extensive than for the pure
CH stretches, especially for \2) For the components
of the 5" CH stretch overtone at ~16000 cm™' the first
calculated eigenvector component C, exceeded by far
all the C, values for the remaining eigenvalues. Thig
made the calculated level assignment straightforward
and unique. However, this was not the case for the
non-CH stretch combinations [1) and |2) which showed
more highly structured C, coefficient distributions. While
for |1) the C, intensity was shared mostly between two
levels with comparable values, for \2) the intensity
was distributed among a much larger number of
levels, with C, not exceeding 0.06 for the most intense
components. Despite the calculations’ convergence, a
unique assignment in terms of basis states was more
difficult. To test the convergence and assignments,
we performed a series of large scale calculations
(progressively diminishing f)) starting from each of the
zeroth (basis) states |1)and |2) . Supplementary Table 5
shows the components with the largest intensities along
with their C, values. We conclude that |1) should be
assigned to 12261 cm™' and \2) to 12276 cm™'. It must

be noted that the calculated energies are quite far from
the experimental values, probably due to the defects of
the quartic potential field.

5. Conclusions

We have described a variational procedure for calculating
highlyexcitedvibrationalenergylevelsinS formaldehyde,
based on artificial intelligence selection and Lanczos
iteration, and employing the complete vibrational kinetic
energy operator in analytical, symmetrized form. For the
potential energy, we have computed a quartic ab initio
force field in internal symmetrized coordinates. It has
been slightly adjusted to reproduce the six fundamental
frequencies of S formaldehyde exactly. Using these we
have carried out converged vibrational calculations on
the CH stretch overtone system up to about 16000 cm™',
which is the highest value achieved so far by variational
calculations. The results were compared to previous
model calculations as well as to experiment [20].

We have also demonstrated the method for non
CH-stretch combination levels at ~12000 cm, which
were more strongly fragmented than the CH stretch
overtones.

The most important development is the possibility
of performing converged large scale variational
(nonperturbative)  vibrational calculations in S
formaldehyde at very high vibrational excitation energies
where the vibrational level density is extremely large.

In forthcoming work we plan to publish calculations
using this approach on a much larger number and variety
of highly excited vibrational levels in formaldehyde,
including overtone and combination bands of all
remaining molecular modes (the CO stretch and the
three angular modes).

Our calculations extend up to about 16000 cm,
although in principle our procedure allows them to be
extended even further. To our knowledge, this is the first
fully variational calculation that can probe such highly
excited regions using no simplifications and employing
the exact kinetic energy operator (without rotation).
The model is restricted to the quartic potential field
which is expected to behave regularly at the energies
considered, but our approach also allows employment
of more sophisticated potential energy functions. In
forthcoming work we shall introduce a more convenient
and well behaved compact semi-global PES functional
form. It also substantially accelerates the calculations.

We also plan to develop a common set of internal
coordinates to describe the vibrational motions in the
three lowest electronic states: S, T, and S,. As the T,
and S, states are nonplanar at equilibrium, the ¢ angular
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coordinate must span a range of at least +50 to —-50
degrees. The book angle definition used by MLT limits
the out of plane displacement to 180.0 - <OCH, or 62.5
degrees. The present definition for ¢ allows wagging
displacements of +90 to —-90 degrees.
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