
1. Introduction
Formaldehyde is one of the most thoroughly 
spectroscopically studied polyatomic molecules [1-6] and 
has long served as a model for large scale vibrational 
calculations [7-19]. Using a variety of techniques (IR, 
stimulated emission pumping, dispersed fluorescence) 
276 ground electronic state vibrational levels 
(up to 12500 cm-1) have been observed and assigned 
[3-6]. Even higher CH stretch overtones have been 
observed by photoacoustic spectroscopy and analyzed 
theoretically [20].

There have been a number of ab initio determinations 
of the S0 ground electronic state equilibrium geometry 
and force field [21-24], with the 1993 quartic force field 
of Martin, Lee and Taylor (MLT) [23] achieving almost 
spectroscopic precision. The first exact variational 
calculation of vibrational levels in formaldehyde using 
an exact analytical expression for the kinetic energy 
[25] and the MLT quartic field was carried out by Carter, 
Pinnavaia and Handy [11]. There have been numerous 

adjustments and refinements of the MLT quartic force field 
as well as equilibrium geometry parameters (two bond 
lengths and one interbond angle) based on extensive 
vibrational calculations [11-13]. Burleigh et al. [14] 
performed a calculation and adjustment to experimental 
data [6] of 138 vibrational levels in formaldehyde up to 
~7600 cm-1, using 6th order canonical Van Vleck 
perturbation theory. More recently, large scale vibrational 
calculations were carried out using a generalized discrete 
variable representation and adiabatic contraction 
techniques [15]. It is noteworthy that using the MLT quartic 
force field and their symmetrized coordinates, Luckhaus 
[15] has almost exactly reproduced all the vibrational 
frequencies up to ~5700 cm-1 previously calculated by 
Carter et al. [11], who used a totally different finite set 
variational procedure. 

Bramley and Carrington [10] developed a general 
variational method based on the Lanczos algorithm 
without storage of the Hamiltonian matrix and calculated 
formaldehyde vibrational levels up to ~5700 cm-1. Poulin 
et al. [13] employed the recursive residue generation 
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method of Wyatt to carry out converged calculations 
up to about 6300 cm-1. Mladenovic [19] carried out 
accurate large scale calculations on levels up to 
~5200 cm-1 using discrete variable representation 
(DVR) and a contraction scheme resulting from several 
diagonalization/ truncation steps. Ribeiro et al. [16] 
developed a prediagonalization-perturbation Davidson 
algorithm to evaluate selected states up to 9500 cm-1. 
Recently, Bernal and Lemus [17] calculated 260 levels 
up to 12500 cm-1 using an effective Hamiltonian based 
on an algebraic approach within a SU(2) representation 
of coordinates and momenta. Lee and Light [18] 
applied their iterative solutions/energy selected bases 
variational method to calculate 729 A1 symmetry states 
up to 13500 cm-1 based on a slightly modified version of 
the Burleigh et al. adjusted potential surface [14]. This 
method seems very promising for calculations on larger 
molecules and/or higher energies.

Earlier, Luckhaus et al. [20] studied the higher 
CH stretching overtones up to about 16000 cm-1 both 
experimentally and by using normal mode modeling 
based on ab initio potential energy and dipole moment 
surfaces computation.

In this work we describe an alternative method 
for H2CO frequencies calculation equally suitable for 
low and highly excited vibrational states. However, 
the quartic PES is not of global character and  will 
certainly not hold for too high excitation energies; it 
has been tested for the CH stretch overtones up to 
about 16000 cm-1. Its most important characteristics 
are: (i) employment of an exact kinetic energy operator 
(derived from the Handy [25] expression) expressed 
as a completely symmetrized product in terms of our 
vibrational coordinates; (ii) employment of our own ab 
initio quartic force field (slightly adjusted to reproduce 
the 6 fundamental frequencies exactly); (iii) a variational 
calculation based on a set of symmetrized basis 
functions in product form, including a symmetrized local 
mode (LM) representation for the CH stretch modes; 
(iv) employment of an AI/SS procedure to obtain the 
most economic Hamiltonian matrix, complemented by a 
Lanczos matrix manipulation.

2. Theoretical derivation

2.1. Vibrational coordinates and Hamiltonian.
The atom configuration and notation is given in 
Supplementary Fig. 1. These are somewhat different 
from the MLT coordinates Sk [23], especially the angular 
coordinates. 

The vibrational coordinates Qk for the formaldehyde 
S0 ground electronic state are the Simons-Parr-Finlan 

stretching coordinates [26] ρCH, ρCH’ and ρCO, as in MLT 
[23]:

, 
 
where 

and are the stretches of the C–H 
(C–H’) and C–O bonds from their equilibrium lengths 
r0(CH) and r0(CO).

Instead of the “book” dihedral angle τ, connecting the 
HCO and H’CO planes we use the angle Q4=ϕ between 
the C=O bond and the HCH’ plane as an out-of-plane 
coordinate.

We use the projections ψOCH and ψOCH’ of θOCH and 
θOCH’ on the HCH’ plane instead of the two angles θOCH 
and θOCH’ [23]. We define symmetrized combinations of 
the ψOCH and ψOCH’ angles of symmetry species A1 and 
B2:

Our angular coordinates ϕ, θ and β are related to the 
MLT angular coordinates S3= 2

1 (θOCH+θ OCH’), S4=τ, and 
S6= 2

1 (θOCH–θ OCH’), through the equations:

                                                    (1)
 

Our angular coordinates ϕ, θ, β are related to the three 
angular coordinates in Handy’s [25] full kinetic energy 
operator T: θ1 (=θ ), θ2 (=θOCH’), and f (=the dihedral 
angle between the OCH and OCH’ planes), as follows:

                   (2)

Using Eqs. 2, we have transformed Handy’s expression 
[25] for the full vibrational kinetic energy operator T into 
our coordinates ϕ, θ, β, in explicit completely symmetrized 
form as a sum of totally symmetric terms only, each a 
product of functions of only one symmetrized coordinate 
(Supplementary Information).

The potential energy is taken to be a quartic 
expansion in terms of our symmetrized coordinates Q1, 
Q2, Q3, Q4, Q5, Q6: 

  (3)

(1)
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2.2. Symmetrized vibrational basis set.
We define a symmetrized orthogonal, normalized 
unrestricted vibrational basis set, with each basis 
function a product of symmetrized factors – functions 
of one individual vibrational coordinate. For the three 
stretching modes , ,  we employ Morse 
oscillator basis wavefunctions ,  
and , while for the three angular motions – 
coordinates Q3(A1) = Δθ/ 2  [Δθ = θ– θ0(HCH’)], Q4(B1) 
=ϕ , Q6(B2) = β 2  (defined above), we use harmonic 
oscillator basis sets: , , . The 
vibrational basis functions (as well as the vibrational 
coordinates themselves) employed here are defined 
with respect to the equilibrium molecular structure 
and therefore are not suitable for the description of 
extremely large deviations such as those associated 
with isomerization.

Our symmetrized CH stretch wavefunctions are 
linear combinations of individual Morse oscillator 
eigenfunctions  and  corresponding 
to the bond stretches CH and CH’. These symmetrized 
LM wavefunctions (dependent on two quantum numbers 
n and n’) replace the conventional NM basis set using 
symmetrized coordinates Q1 and Q5. Thus, instead of 
using symmetrized coordinates we symmetrize the 
basis set as follows.

If excitation in both CH stretches is equal n=n’, the 
basis wavefunction is of symmetry A1, and it is written 
as: . For 
n≠n’ there are two wavefunctions of symmetry A1 and 
B2: 

                                                                                     

(4)

These basis eigenfunctions are orthogonal 
and normalized. The full 6-D vibrational basis set 
wavefunction is then:

SCH is the symmetry of the LM CH stretch part (SCH=A1 or 
B2); S is the overall basis wavefunction symmetry (S=A1, 
A2, B1 or B2).

3. Vibrational calculation procedure

3.1. Hamiltonian matrix elements calculation
We should be able to calculate matrix elements 
Hik=

S
k

S
i H ΨΨ  of the Hamiltonian operator H=T+V for 

any pair of basis functions S
iΨ  and S

kΨ  belonging to 

the same symmetry species S of point group C2v. Since 
H (both T and V) are the sum of terms that are products 
of functions of one internal coordinate only, and all basis 
functions S

iΨ  and S
kΨ  are in the same form, the matrix 

element S
k

S
i H ΨΨ  is obtained as the sum of products 

of one-dimensional integrals only. 
All required one-dimensional integrals 

)' ()()( knkkn QQfQ
kk

ΨΨ  for all f(Qk) functions in both T 
and V operators were computed at the beginning of 
each calculation and stored. These were computed 
numerically using Gauss-Hermite or Gauss-Laguerre 
integration [27]. As a result the calculation of a matrix 
element Hik was reduced to a series of multiplications and 
summations, which greatly accelerated the calculation.

3.2. Artificial   intelligence   search   selection  
       procedure (AI/SS)
Even for a molecule with as few as four atoms, the 
vibrational level density at 16000 cm-1 is too high for 
a conventional variational calculation. There exist a 
number of alternative approaches capable of producing 
converged molecular vibrational levels with high energy 
and high level densities. Recent progress in this field 
has been almost entirely based on the employment 
of curvilinear vibrational coordinates and DVR, 
sequential diagonalization and truncation methods, or 
energy selected basis schemes and iterative methods 
such as modified Lanczos or Davidson algorithms 
[15,16,18,19,28-34]. We have chosen to apply a different 
but well established strategy for selecting a reduced 
dimensionality vibrational basis, namely the artificial 
intelligence search selection (AI/SS) procedure [30,35-
41], combined with conventional Lanczos iteration 
(tridiagonalization) [31,42,43]. Thus, our method does 
not use any prediagonalization as do most modern 
iterative methods. After Tietz and Chu [38] introduced 
using artificial intelligence (AI) for molecular vibrational 
state selection, Chang et al. [39] obtained accurate 
highly excited vibrational energies by diagonalizing 
small Hamiltonian matrices based on a smaller subset 
(active space - AS) selected from a much larger original 
basis states space. A number of developments mainly 
aimed at the exploration of intramolecular dynamical 
processes have since been published [30,35,36,40-42].
In general, there is an infinite-dimensional primitive 
space (PS) of vibrational states belonging to a single 
electronic state. Having defined a basis set for this 
space we would like to calculate all possible Hamiltonian 
matrix elements connecting the basis states as well 
as their energies.  We would then diagonalize the 
huge Hamiltonian matrix and obtain the vibrational 
eigenvalues and eigenvectors. Unfortunately, this is not 
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possible for most practical systems. Therefore, the aim 
is to select a reduced dimensionality active subspace 
(AS) that is feasible to manipulate but preserves the 
important features of the PS.

The basis set definition, based on the choice of 
vibrational coordinates, is crucial. First, a completely 
symmetrized vibrational basis set reduces the original 
PS dimensionality by three fourths. Next, the PS can 
always be subdivided into submanifolds Ai of basis 
states effectively isolated from each other, i.e., each 
state from one submanifold is substantially coupled 
(either directly or indirectly) to all basis states from the 
same submanifold, while negligibly coupled to all states 
from the remaining submanifolds. The dimensionality of 
various submanifolds can be quite different, and some 
may contain only one or a small number of basis states. 
The possibility of dividing the PS and the submanifolds’ 
dimensionalities strongly depends on the choice of 
vibrational basis set. Deriving the Hamiltonian matrix 
based on those basis states restricted to one particular 
submanifold and diagonalizing that matrix yields 
vibrational eigenvalues and eigenvectors for not only 
this submanifold but for the global molecular vibrational 
problem as well because of the effective submanifold 
isolation.

From our PS global basis set and a suitable initial 
vibrational basis state from one of the submanifolds, 
we identify all (or most) of the remaining basis states 
belonging to this submanifold. We apply an AI/SS 
procedure [30,35-37,40,42]. The original molecular 
vibrational PS is a ”net”, the basis states are the 
“nodes”, and the Hamiltonian coupling matrix elements 
are the “links” of the nodes. Starting at a given node – 
the “root” - our aim is to build a “subnet” incorporating 
the “nodes” (basis states) from the same submanifold, 
simultaneously preserving the substantial links among 
them while discarding those that are negligibly small. 
Since we are looking for a subnet rather than a tree 
a traditional decision tree pruning algorithm based on 
subsequent tiers [37,40] is precluded.

Our technique of search/selection is based on 
two main principles: the vibrational quantum number 
representation of the basis states and the definition of 
an evaluation function f ascribed to each basis state. 
The initial state in the search is given the value of f=1, all 
subsequently probed states will then be assigned 0<f<1. 
A parameter f0 is defined (typically 10-4 or smaller) and the 
algorithm selects only those basis states that have f>f0 
and rejects those with f<f0. A second search parameter 
is a window width ∆E0 centered around the initial state 
energy, usually chosen as 3000 cm-1 or larger.

We start our search with the basis state 0s , 
which is the zeroth-order representation of a required 

molecular vibrational state, say 0s = , of 
a symmetry species S. This state is given the value f=1. 
Next, the algorithm proceeds to generate all basis states 

ms =  of the same symmetry S that differ 
by one vibrational quantum from 0s  (Δ=Σi|ni−mi|=1). For 
each newly generated state the energy kE = kk sHs  
and the coupling matrix element H0,k= ksHs0  are 
calculated, as well as the evaluation function f=|H0,k/
(E0−Ek)|×R, where R=1 if the state is located within ∆E0 
of the root state or R=|∆E0/(E0−Ek)| if it is further away 
(|∆E0/(E0−Ek)| is also taken as 1 if it exceeds 1). Each 
newly generated state that satisfies f>f0 is stored. Next, 
the algorithm proceeds to probe the states separated 
from the initial state by two vibrational quanta (Δ=2), 
processing the newly generated states in the same way. 
The search of more and more distant quantum number 
space states is carried on at successively larger ∆ until a 
∆0 is reached where all the newly generated states with 
Δ=∆0 have f<f0. Search beyond ∆0 shows that no states 
with f>f0 occurred at Δ>∆0. At that point the search from 
the first state 0s  is terminated and the same procedure 
is started from 1s .

Now the evaluation function of a newly generated 
ks  is the product f1×|H1,k/(E1−Ek)|×R, where 

H1,k= ksHs1  and f1 is the evaluation function of 1s . 
In this way the search consecutively explores each of 

2s , 3s , … which leads in general to the selection of 
more states. Each new state is checked whether it has 
already been examined. In general, the newly selected 
states have steadily diminishing f-values. This leads to 
termination of the search when no new states with f>f0 
can be selected on exploration of 1−Ns .

This AI/SS procedure selects an active space A of 
N basis states of the same symmetry S as the initial 

0s , consisting of those basis states ks  involved in 
nonnegligible coupling to 0s . Simultaneously, the N×N 
symmetric Hamiltonian matrix H of this submanifold is 
stored.

N depends on the values of f0 and E0. In our CH 
stretch overtones calculations we used E0=3000 cm-1, 
although E0=2000 cm-1 yielded satisfactory results (within 
2 cm-1 of the E0=3000 cm-1 result) for even the highest 
excited levels explored.  It also gave strongly reduced 
N and CPU times. The more important parameter is f0; 
for most calculations we have used f0=10-5, but in some 
cases even smaller f0 values had to be used to achieve 
convergence.

Next, we carry out Lanczos tridiagonalization [43] 
of the Hamiltonian matrix. The Lanczos recursion starts 
with the same initial vector as the AI/SS procedure with 
1 as a first component and zeros in all other places. The 
Hamiltonian matrix obtained is rather sparse since the 
too small matrix elements were discarded. Thus H can 
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be presented as a 1D array containing only the nonzero 
matrix elements instead of the usual 2D array containing 
many zeros. Such a representation greatly accelerates 
the matrix×vector multiplication, which is the major time-
consuming step in a Lanczos recursion, by reducing it to 
one run over the 1D array.

In the course of the recursion, the first component of 
each successively generated Lanczos vector after the 
starting one is set to zero, making this vector orthogonal 
to the initial one. This makes the Lanczos procedure 
more stable, especially with regard to the eigenvalue 
corresponding to the starting vector; it has other 
important advanages in addition. After the tridiagonal 
Lanczos matrix has been obtained we fully diagonalize it 
using tqli() from Numerical recipes [27]. This routine has 
been simplified to yield the eigenvalues and only the first 
eigenvector component C1. The implicit orthogonalization 
of all Lanczos vectors with respect to the starting one 
makes these C1 coincide with the first components 
of the Krylov vectors -  approximations of the original 
Hamiltonian matrix eigenvectors. This means that we 
do not have to store all the Lanczos vectors needed to 
calculate eigenvectors as long as we are satisfied with 
the first components only. The eigenenergy of 0s  is 
readily recognized by having one of the largest |C1| 
values in the spectral range of interest.

4. Results and Discussion

4.1. 

We performed large scale ab initio electronic 
computations to establish a quartic force field for the 
S0 ground electronic state of formaldehyde using the 
GAMESS code [44-46] with a cc-pVTZ (correlation 
consistent polarized valence triple zeta) basis set. 
Electron correlation was accounted for by the CCSD(T) 
correction. This is a coupled cluster method with 
all singles and doubles substitutions augmented by 
quasiperturbative estimates of the connected triplet 
excitations. To establish the potential energy surface we 
generated total energy data points from displacements 
from the equilibrium geometry: r0(CO)=1.2096082 A; 
r0(CH)=1.1032935 A; θ0(HCH’)=116.1803202 deg. 
Step sizes of 0.05 Å were used for the symmetric 
bond and antisymmetric displacements ,

 
 and . The three angular coordinates 

were stepped through 5 degree increments. In all, 
425 points were used to establish the grid. The 

quadratic, cubic and quartic potential constants of 
Supplementary Table 1 came from fitting the energy data 
points to Eq. 3 by the program NLREG after converting 
to Simons-Parr-Finlan coordinates [26].

Using the computed force constants and equilibrium 
parameters and the above calculation procedure, 
we calculated the six fundamental frequencies of S0 
formaldehyde (Supplementary Table 2). The calculated 
frequencies are reasonably close to the experimental 
values, implying that the calculated quartic force field 
is satisfactory. Neverthless, before starting calculations 
on higher excited vibrational levels, we carried out a 
restricted adjustment on the six diagonal harmonic force 
constants, F11, F22, F33, F44, F55 and F66, to achieve 
precise coincidence of these calculated frequencies with 
the experimental values. Their adjusted values are also 
in Supplementary Table 1. 

4.2. Large scale calculations on highly excited  
       CH stretch overtone levels.
Next, using the ab initio quartic force field and adjusted 
constants we performed calculations on the S0 
formaldehyde CH stretch high overtones. A feature that 
distinguishes our approach from all other formaldehyde 
vibrational calculations known to us is the employment 
of a symmetrized LM to describe the CH stretch modes 
instead of the traditional NM treatment. Reisner et al. 
[5] concluded in 1984 that these modes they are better 
described as LM than NM [47] due to their strong diagonal 
anharmonicity and comparatively good localization. 
Neverthless, even in the recent work of Luckhaus et al. 
[20], the CH stretch system is modeled in terms of NM. 
However, despite the NM representation employed, their 
derived energy level structure [20] is characteristic of LM 
behavior that gets more pronounced at higher energies. 
Lee and Light [18] also found stronger LM behavior with 
increasing excitation [47].

Using two variable parameters our calculations 
converge to less than 0.1 cm-1 for the lower excited 
levels and to within about 2 cm-1 for the higher ones. 
Actually, only f0 was varied; E0=3000 cm-1 was suitable 
for all cases (Supplementary Table 3). While for the 
lowest levels active spaces of N~2000 were selected, for 
the highest excited levels (about 16000 cm-1) N>25000 
is usual.

The CPU times grow steeply mainly with energy but 
they are also state specific, being somewhat shorter for 
the two purely LM CH stretches |n,0(S=A1,B2)> of each 
overtone manifold. The Lanczos tridiagonalization and 
subsequent full diagonalization take an insignificant 
portion of the time required for the full calculation (few 

Ab initio computation of the quartic force 
field of S0 formaldehyde in terms of our 
vibrational coordinates.
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minutes for the largest N). The AI/SS procedure is 
the most time consuming part. It takes a few minutes 
for the fundamentals, about an hour for the states at 
~10000 cm-1 and grows to about 60h for those near 
16000 cm-1 (2.66 GHz processor).

Supplementary Table 4 contains our calculated 
energies for the CH stretches up to the 5th overtone, 6νCH. 
The levels display typical behavior for a LM structure 
[47]: within each overtone manifold n the two levels of 
purely local character,  and (SCH=A1,B2), 
are located at the lowest energy, are well separated 
from the remaining levels, and get closer together with 
increasing n.

In general, our calculated CH stretch frequencies 
are closer to the experimental data [6,20], than those 
calculated (and scaled) by Luckhaus et al. [20], 
especially at the comparatively lower and at the higher 
vibrational energies. At the higher levels two sources of 
uncertainty must be recognized: first, the quartic force 
field may not be adequate due to the large deviations 
from equilibrium; and secondly, the experimental 
measurements themselves are uncertain because of 
weak absorption and poor signal to noise ratio [20].

To test the performance of our method on other highly 
excited levels in S0 formaldehyde involving non CH stretch 
vibrational modes, we performed test calculations on 
Bouwens’ et al. [6] two highest experimentally observed 
levels with A1 symmetry. These are 1 =2642 (our 
notation:  measured at 12415.4 
cm-1 and 2 =112344 (our notation: 
), at 12470.2 cm-1 [6]. Their vibrational mixing was 
found to be much more extensive than for the pure 
CH stretches, especially for 2 . For the components 
of the 5th CH stretch overtone at ~16000 cm-1 the first 
calculated eigenvector component C1 exceeded by far 
all the C1 values for the remaining eigenvalues. This 
made the calculated level assignment straightforward 
and unique. However, this was not the case for the 
non-CH stretch combinations 1  and 2 which showed 
more highly structured C1 coefficient distributions. While 
for 1  the C1 intensity was shared mostly between two 
levels with comparable values, for 2  the intensity 
was distributed among a much larger number of 
levels, with C1 not exceeding 0.06 for the most intense 
components. Despite the calculations’ convergence, a 
unique assignment in terms of basis states was more 
difficult. To test the convergence and assignments, 
we performed a series of large scale calculations 
(progressively diminishing f0) starting from each of the 
zeroth (basis) states 1 and 2 . Supplementary Table 5 
shows the components with the largest intensities along 
with their C1 values. We conclude that 1  should be 
assigned to 12261 cm-1 and 2  to 12276 cm-1. It must 

be noted that the calculated energies are quite far from 
the experimental values, probably due to the defects of 
the quartic potential field.

5. Conclusions
We have described a variational procedure for calculating 
highly excited vibrational energy levels in S0 formaldehyde, 
based on artificial intelligence selection and Lanczos 
iteration, and employing the complete vibrational kinetic 
energy operator in analytical, symmetrized form. For the 
potential energy, we have computed a quartic ab initio 
force field in internal symmetrized coordinates. It has 
been slightly adjusted to reproduce the six fundamental 
frequencies of S0 formaldehyde exactly. Using these we 
have carried out converged vibrational calculations on 
the CH stretch overtone system up to about 16000 cm-1, 
which is the highest value achieved so far by variational 
calculations. The results were compared to previous 
model calculations as well as to experiment [20].

We have also demonstrated the method for non 
CH-stretch combination levels at ~12000 cm-1, which 
were more strongly fragmented than the CH stretch 
overtones.

The most important development is the possibility 
of performing converged large scale variational 
(nonperturbative) vibrational calculations in S0 
formaldehyde at very high vibrational excitation energies 
where the vibrational level density is extremely large.

In forthcoming work we plan to publish calculations 
using this approach on a much larger number and variety 
of highly excited vibrational levels in formaldehyde, 
including overtone and combination bands of all 
remaining molecular modes (the CO stretch and the 
three angular modes).

Our calculations extend up to about 16000 cm-1, 
although in principle our procedure allows them to be 
extended even further. To our knowledge, this is the first 
fully variational calculation that can probe such highly 
excited regions using no simplifications and employing 
the exact kinetic energy operator (without rotation). 
The model is restricted to the quartic potential field 
which is expected to behave regularly at the energies 
considered, but our approach also allows employment 
of more sophisticated potential energy functions. In 
forthcoming work we shall introduce a more convenient 
and well behaved compact semi-global PES functional 
form. It also substantially accelerates the calculations.

We also plan to develop a common set of internal 
coordinates to describe the vibrational motions in the 
three lowest electronic states: S0, T1 and S1. As the T1 
and S1 states are nonplanar at equilibrium, the ϕ angular 

,

,
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coordinate must span a range of at least +50 to −50 
degrees. The book angle definition used by MLT limits 
the out of plane displacement to 180.0 − <OCH, or 62.5 
degrees. The present definition for ϕ  allows wagging 
displacements of +90 to −90 degrees.
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