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Abstract: Three-layer artificial neural networks (ANN) capable of recognizing the type of raw material (herbs, leaves, flowers, fruits, roots or
barks) using the non-metals (N, P S, Cl, I, B) contents as inputs were designed. Two different types of feed-forward ANNs - multilayer
perceptron (MLP) and radial basis function (RBF), best suited for solving classification problems, were used. Phosphorus, nitrogen,
sulfur and boron were significant in recognition; chlorine and iodine did not contribute much to differentiation. A high recognition rate
was observed for barks, fruits and herbs, while discrimination of herbs from leaves was less effective. MLP was more effective than

RBF.
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1. Introduction

A high percentage of the world’s population still depends
on medicinal plants to treat many health problems.
They are consumed, prepared as teas or infusions, and
even applied directly to an injury without restriction in
the false impression that natural products are always
safe. Since they have not been tested in the same
way as conventional pharmaceuticals, there is limited
data confirming their therapeutic effectiveness and
on adverse effects. The lack of standardization of
herbal preparations and the inadequacy of consumer
information is also of considerable concern [1].
Numerous cases of injury and even death caused by
misuse, contamination or adulteration of medicinal
herbs occur [2,3]. Therefore, their quality control is of
particular importance, encompassing e.g. identity, purity,
content, chemical and biological properties. Because
herbal drugs are always mixtures of many constituents,
developing criteria is much more complex and difficult. To
verify the composition of herbal preparations, standards
are required [3].

It was decided to explore the use of of plant
bioelements to expand standardization procedures for
medicinal plant raw materials. Six nonmetallic elements

- N, P, S, Cl, | and B were chosen because they are
involved in all plant cell reactions. For example, nitrogen
is in enzymatic proteins and nucleic acids, phosphorus is
part of coenzymes and the energetic processes through
ATP and ADP, sulfur is a component of enzymatic
proteins, chlorine participates in water regulation, iodine
is a constituent of some hormones, and boron modifies
the cell membrane structure.

These non-metals are the components of secondary
metabolites which determine the health care applications;
there are close relations between the synthesis of
biologically active compounds and accumulation of the
elements in plants [4]. Their total content may indicate
the levels of important substances from the biological
point of view determining life functions and the proper
development of medicinal plants and, in consequence,
the quality of the herbal drugs obtained.

Due to fact that artificial neural networks are capable
of modeling extremely complex nonlinear functions and
can be used to discover relationships among great
numbers of variables. The two most commonly-used
types of ANNs — multilayer perceptron (MLP) and radial
basis function (RBF) network - were chosen to reach
the objective [5]. Six non-metals (nitrogen, phosphorus,
sulfur, chlorine, iodine and boron) were used as the
descriptors, and the task was to distinguish the herbal
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part the sample represented, namely herbs, leaves,
flowers, fruits, roots and barks. The herbal samples
belonged to different species.

These networks were chosen because they handle
classification problems in different manners - MLP uses
hyperplanes to separate classes in pattern space, while
RBF employs hyperspheres [5-7], therefore any existing
relations in the concentration of non-metallic elements
were to be recognized by either MLP or RBF network. A
linear projection method — principal component analysis
(PCA) was initially applied to identify patterns and
outlying samples.

2. Experimental Procedure

2.1. Materials

Commercially available herbal raw materials - herbs
(50 samples), leaves (27), flowers (29), fruits (16), roots
(13) and barks (9), were included in the study. The
description and detailed characteristics of the samples
have been presented [8-12].

2.2. Determination

After mineralization the non-metals concentrations were
determined by spectrophotometric methods, except
sulfur. Sulfur was determined by turbidimetry using
BaCl,. Details are given elsewhere [8-12].

2.3. Software
STATISTICA, (Statsoft Inc.) release 7.1 was used to
create and train the artificial neural network models.

2.4. Calculations

To determine the type of herbal material using the non-
metal content as inputs, two different types of artificial
neural networks - MLP and RBF - were used. Their
characteristics have been fully described elsewhere
[5-7,13,14], so they will be briefly summarized.

Fig. 1 illustrates the networks’ topology. They
consisted of three layers: input, hidden, and output. All
neurons in one layer were connected to those in the
following one. The signals flowed from the input layer,
advanced through hidden neurons to the output units,
where the final result was obtained. Six (corresponding
to the six non-metals) linear neurons were used as
flow-through units in the input layer of both networks.
The minimax algorithm scaled concentrations between
the minimum and maximum of the data set [7]. In the
output layer the number of neurons was determined
by the number of groups into which the samples were
classified.

In the MLP networks, a sigmoidal activation function
was used in the hidden and output layer neurons together
with a sum of squares error function. Radial basis
function networks were composed of radial neurons with
a Gaussian activation function in the hidden layer and
linear units in the output layer. The number of neurons
in the hidden layer was varied from 1 to 20.

Prior to the training process the overall data set was
randomly divided into three subsets with 116 (80%) in
training, 14 (10%) in validation and 14 (10%) in test sets.
Each architecture with a different number of neurons in
the hidden layer was trained using identical subsets,
making the network performances comparable. To
prevent the network from getting trapped in a local
minimum, each was tested several times.

A two stage training process was applied to both
types of ANNs . The MLPs were trained with the
learning rate set to 0.1 and the momentum set to 0.2
using a back-propagation of error for 100 epochs and
a conjugate gradient for 500 epochs. Training was
halted when the validation error began to increase. In
the training process six element target vectors had to
be devised for six output neurons, so that the neuron
representing each group of herbal samples generated 1,
while the rest of the output neurons produced 0.

The standard training method was employed for RBF
networks. In the first stage two algorithms were used.
K-means assigned the radial centers in the data set and
K-nearest neighbors calculated the distance from each
center. The second stage optimized the output layer by
a pseudo-inverse method.

Evaluation and comparison of the networks were
based on two factors. The first was the root mean
square (RMS) error of the training set, determined
during training. When the RMS error became constant the
training was stopped. It was calculated by:

where y, was the value generated by the network, t was
the target (desired) value, and n was the number of
cases. The second factor was the proportion of cases in
the test and validation sets correctly classified.

The best model of each type was chosen with the
highest performance and the smallest RMS. The results
were compared and the groups of herbal samples best
recognized were identified.

Additional evaluation of the networks was done
by examining the confusion matrix which provides a
detailed breakdown of misclassifications. It illustrates
the error tendencies of the network.
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Figure 1. Network architectures: A) multilayer perceptron (MLP), B) radial basis function (RBF) network. The topology gives the number of

neurons in the input, intermediate, and output layers.
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Figure 2. The first two principal component scores for herbal samples.

To identify the non-metals with the greatest impact
on the recognition capacity of the neural networks
the response surfaces were plotted. The complexity
of the six-input response surfaces was reduced by
simultaneously adjusting the concentrations of only
two non-metals, holding the rest constant at zero. As a
result each group of the samples was depicted by three
simplified response surfaces. The impact of explanatory

variables (non-metals) on the response of the neural
networks (recognition of herbal groups) was determined
by the shape of the surfaces.

In regions where the slope of response to non-
metallic concentration became steeper the network’s
response became stronger and, it correctly grouped the
samples.
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Figure 3. MLP response surfaces for herbs, barks and fruits.

3. Results and Discussion

3.1. Results of PCA analysis

Principal component analysis was first employed to
preliminarily visualize differences among the classes
and to identify outliers. As shown in Fig. 2, the first two
principal components explain only 55.47% of the total
variance and it is difficult to discern clear divisions
among groups. Although the factor loadings (values
greater than 0.7) of the first principal component (PC1)
demonstrate the highest contribution of N, P and S and
the second principal component (PC2) is connected with
the Cl and | content, it is difficult to determine which non-
metals differentiate the samples to the greatest extent,

because the samples are clustered in the center of the
plot.

3.2. Results of ANN computations
The performance results and RMS rates for each ANN
model are presented in Table 1. In the first column the
network architectures are described by the number of
neurons in the input, hidden, and output layers. The
performance and error rates are listed for the training,
validation and test subsets. The error rate is not directly
interpretable in comparison with the performance
measure, but is significant to the training algorithms —
the lower its value, the better.

Summary statistics in Table 2 show that the samples
best recognized by the MLP belonged to barks (89%),
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Figure 4. RBF response surfaces for barks, herbs and fruits.

Table 1. Performances and RMS values of the ANN models.

Performance Error Rate
ANN Type Training Validation Test Training Validation Test
Topology
MLP 0.7500 0.5278 0.5278 0.9947 1.5080 1.3626
6-14-6
RBF 0.6428 0.5667 0.5000 0.2952 0.3339 0.3474
6-12-6

herbs (78%), fruits (69%) and leaves (63%). The and less than 35% of flowers were identified. However,
recognition rate for the flowers and roots was below 40%. there were no samples unrecognized by both models.

The same samples were also best recognized by the The confusion matrix given in Table 3 shows that the
RBF network. The artificial network recognized all bark MLP misclassified some herb samples but recognized
samples, herbs (84%), fruits (almost 75%) and leaves most as leaves, and leaves as herbs. The worst
(almost 60%). The group of roots was not identified atall  classification occurred with flowers and roots, which
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were also mostly identified as herbs. The RBF network
similarly recognized herbs as leaves but fruits were
labeled as barks.

The MLP response surfaces for the three best
classified groups are in Fig. 3. For herb samples the
elements most important in correct classification were
N (15-20 mg g') and P (1-5 mg g'). Boron’s impact
was observable for concentrations below 20 pg g7,
while chlorine was significant above 10 mg g'. The
content of | was most important between 30-40 ug g
The barks’ response surfaces indicated narrow ranges
of the contents of analyzed non-metals influenced the
classification, i.e., N below 10 mg g, P and S below
1 mg g, Cl below 2 mg g and | below 5 ug g*. On the
other hand, the fruits’ identification the was based on the
narrow range of B (20 to 30 ug g'), 1 (15-25 ug g*) and
Table 2. Summary statistics for the applied architectures of ANNs.

S (<2mgg"’). To a smaller extent the correct MLP output
was affected by N (< 10 mg g*) and P (0.5-2 mg g™).

The RBF response surfaces for the best recognized
groups are shown in Fig. 4. In the classification of
barks, N (2 to 6 mg g') and P (below 1 mg g™) were
most important. lodine (below 5 pg g') also had an
observable effect.

The RBF response surface in herb classification was
more complex than that of MLP. Four non-metals were
significant. The best classifiers were N (5-25 mg g”'),
P(<2mgg'),Cl(6-14 mgg') and | (> 35 ug g'). B
had no effect. In fruit identification the network mainly
relied on P (practically the whole range 1-7 mg g™),
S (2-8 mg g') and N (> 20 mg g"). The remaining
elements did not contribute substantially.

4. Conclusions

Correctly Incorrectly
ANN Type Raw Lo . e
Topology | Material Classified Classified  To some extent both types of artificial neural networks
0y 0y . .
(%) (%) correctly recognized herbal raw materials based on
Barks 88.9 1.1 non-metals content. In spite of the difference between
Flowers 37.9 62.1 the results for validation and test sets, rather high
Fruits 68.8 31.2 recognition of the herbal samples from the collection of
MLP .
barks, fruits and herbs was observed. There were no
6-14-6 Herbs 78.0 22.0
les unrecognized by both ANN models
Leaves 63.0 37.0 samp . o
Phosphorus and nitrogen are potentially valuable
Roots 38.5 61.5 o
for standardization. Sulfur and boron have some
Bark 100. . L .
ars 00.0 0.0 significance. The concentrations of these four elements
Flowers 34.5 65.5 may be characteristic, particularly for the groups which
RBF Fruits 74.9 25.1 were recognized most effectively. The concentration of
6-12-6 Herbs 84.0 16.0 chlorine and iodine did not contribute to the samples
Leaves 59.3 40.7 discrimination; thus they are not potential standardization
Roots 0.0 100.0 parameters.
Table 3. Confusion matrices.
Raw Material used as an input
ANN Type Raw Material
Topology Recognized Bark Flower Fruit Herb Leaf Root
Bark 8 0 3 0 0 0
Flower 0 12 0 3 2 3
MLP Fruit 1 0 1 0 1 0
6-14-6 Herb 0 11 0 39 7 5
Leaf 0 4 1 7 17 0
Root 0 2 0 1 0 5
Bark 9 0 3 0 1 0
Flower 0 10 1 3 1 3
RBF Fruit 0 5 12 0 1 2
6-12-6 Herb 0 12 0 42 8 8
Leaf 0 2 0 5 16 0
Root 0 0 0 0 0 0
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The most similarities were recognized in herbs and
leaves. Samples of different groups were also mistakenly
recognized as herbs. This can be explained by the fact
that herb samples are composed of dried parts of whole
plants including leaves, flowers and fruits in various
proportions.
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