
1. Introduction

A high percentage of the world’s population still depends 
on medicinal plants to treat many health problems. 
They are consumed, prepared as teas or infusions, and 
even applied directly to an injury without restriction in 
the false impression that natural products are always 
safe. Since they have not been tested in the same 
way as conventional pharmaceuticals, there is limited 
data confirming their therapeutic effectiveness and 
on adverse effects. The lack of standardization of 
herbal preparations and the inadequacy of consumer 
information is also of considerable concern [1]. 
Numerous cases of injury and even death caused by 
misuse, contamination or adulteration of medicinal 
herbs occur [2,3]. Therefore, their quality control is of 
particular importance, encompassing e.g. identity, purity, 
content, chemical and biological properties. Because 
herbal drugs are always mixtures of many constituents, 
developing criteria is much more complex and difficult. To 
verify the composition of herbal preparations, standards 
are required [3].

It was decided to explore the use of of plant 
bioelements to expand standardization procedures for 
medicinal plant raw materials. Six nonmetallic elements 

- N, P, S, Cl, I and B were chosen because they are 
involved in all plant cell reactions. For example, nitrogen 
is in enzymatic proteins and nucleic acids, phosphorus is 
part of coenzymes and the energetic processes through 
ATP and ADP, sulfur is a component of enzymatic 
proteins, chlorine participates in water regulation, iodine 
is a constituent of some hormones, and boron modifies 
the cell membrane structure. 

These non-metals are the components of secondary 
metabolites which determine the health care applications; 
there are close relations between the synthesis of 
biologically active compounds and accumulation of the 
elements in plants [4]. Their total content may indicate 
the levels of important substances from the biological 
point of view determining life functions and the proper 
development of medicinal plants and, in consequence, 
the quality of the herbal drugs obtained.

Due to fact that artificial neural networks are capable 
of modeling extremely complex nonlinear functions and 
can be used to discover relationships among great 
numbers of variables. The two most commonly-used 
types of ANNs – multilayer perceptron (MLP) and radial 
basis function (RBF) network - were chosen to reach 
the objective [5]. Six non-metals (nitrogen, phosphorus, 
sulfur, chlorine, iodine and boron) were used as the 
descriptors, and the task was to distinguish the herbal 
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part the sample represented, namely herbs, leaves, 
flowers, fruits, roots and barks. The herbal samples 
belonged to different species.

These networks were chosen because they handle 
classification problems in different manners - MLP uses 
hyperplanes to separate classes in pattern space, while 
RBF employs hyperspheres [5-7], therefore any existing 
relations in the concentration of non-metallic elements 
were to be recognized by either MLP or RBF network. A 
linear projection method – principal component analysis 
(PCA) was initially applied to identify patterns and 
outlying samples. 

2. Experimental Procedure

2.1. Materials
Commercially available herbal raw materials - herbs 
(50 samples), leaves (27), flowers (29), fruits (16), roots 
(13) and barks (9), were included in the study. The 
description and detailed characteristics of the samples 
have been presented [8-12]. 

2.2. Determination
After mineralization the non-metals concentrations were 
determined by spectrophotometric methods, except 
sulfur. Sulfur was determined by turbidimetry using 
BaCl2. Details are given elsewhere [8-12]. 

2.3. Software
STATISTICA, (Statsoft Inc.) release 7.1 was used to 
create and train the artificial neural network models. 

2.4. Calculations
To determine the type of herbal material using the non-
metal content as inputs, two different types of artificial 
neural networks - MLP and RBF - were used. Their 
characteristics have been fully described elsewhere 
[5-7,13,14], so they will be briefly summarized.

Fig. 1 illustrates the networks’ topology. They 
consisted of three layers: input, hidden, and output. All 
neurons in one layer were connected to those in the 
following one. The signals flowed from the input layer, 
advanced through hidden neurons to the output units, 
where the final result was obtained. Six (corresponding 
to the six non-metals) linear neurons were used as 
flow-through units in the input layer of both networks. 
The minimax algorithm scaled concentrations between 
the minimum and maximum of the data set [7]. In the 
output layer the number of neurons was determined 
by the number of groups into which the samples were 
classified. 

In the MLP networks, a sigmoidal activation function 
was used in the hidden and output layer neurons together 
with a sum of squares error function. Radial basis 
function networks were composed of radial neurons with 
a Gaussian activation function in the hidden layer and 
linear units in the output layer. The number of neurons 
in the hidden layer was varied from 1 to 20. 

Prior to the training process the overall data set was 
randomly divided into three subsets with 116 (80%) in 
training, 14 (10%) in validation and 14 (10%) in test sets. 
Each architecture with a different number of neurons in 
the hidden layer was trained using identical subsets, 
making the network performances comparable. To 
prevent the network from getting trapped in a local 
minimum, each was tested several times. 

A two stage training process was applied to both 
types of ANNs . The MLPs were trained with the 
learning rate set to 0.1 and the momentum set to 0.2 
using a back-propagation of error for 100 epochs and 
a conjugate gradient for 500 epochs. Training was 
halted when the validation error began to increase. In 
the training process six element target vectors had to 
be devised for six output neurons, so that the neuron 
representing each group of herbal samples generated 1, 
while the rest of the output neurons produced 0.

The standard training method was employed for RBF 
networks. In the first stage two algorithms were used. 
K-means assigned the radial centers in the data set and 
K-nearest neighbors calculated the distance from each 
center. The second stage optimized the output layer by 
a pseudo-inverse method.

Evaluation and comparison of the networks were 
based on two factors. The first was the root mean 
square (RMS) error of the training set, determined 
during training. When the RMS error became constant the 
training was stopped. It was calculated by:
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where yi was the value generated by the network, ti was 
the target (desired) value, and n was the number of 
cases. The second factor was the proportion of cases in 
the test and validation sets correctly classified. 

The best model of each type was chosen with the 
highest performance and the smallest RMS. The results 
were compared and the groups of herbal samples best 
recognized were identified. 

Additional evaluation of the networks was done 
by examining the confusion matrix which provides a 
detailed breakdown of misclassifications. It illustrates 
the error tendencies of the network. 
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To identify the non-metals with the greatest impact 
on the recognition capacity of the neural networks 
the response surfaces were plotted. The complexity 
of the six-input response surfaces was reduced by 
simultaneously adjusting the concentrations of only 
two non-metals, holding the rest constant at zero. As a 
result each group of the samples was depicted by three 
simplified response surfaces. The impact of explanatory 

variables (non-metals) on the response of the neural 
networks (recognition of herbal groups) was determined 
by the shape of the surfaces.

 In regions where the slope of response to non-
metallic concentration became steeper the network’s 
response became stronger and, it correctly grouped the 
samples.

Figure 1. Network architectures:  A)  multilayer perceptron (MLP), B) radial  basis  function  (RBF) network.  The  topology  gives  the  number of  
         neurons in the input, intermediate, and output layers.

Figure 2. The first two principal component scores for herbal samples. 
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3. Results and Discussion

3.1. Results of PCA analysis
Principal component analysis was first employed to 
preliminarily visualize differences among the classes 
and to identify outliers. As shown in Fig. 2, the first two 
principal components explain only 55.47% of the total 
variance and it is difficult to discern clear divisions 
among groups. Although the factor loadings (values 
greater than 0.7) of the first principal component (PC1) 
demonstrate the highest contribution of  N, P and S and 
the second principal component (PC2) is connected with 
the Cl and I content, it is difficult to determine which non-
metals differentiate the samples to the greatest extent, 

because the samples are clustered in the center of the 
plot. 

3.2. Results of ANN computations
The performance results and RMS rates for each ANN 
model are presented in Table 1. In the first column the 
network architectures are described by the number of 
neurons in the input, hidden, and output layers. The 
performance and error rates are listed for the training, 
validation and test subsets. The error rate is not directly 
interpretable in comparison with the performance 
measure, but is significant to the training algorithms – 
the lower its value, the better.

Summary statistics in Table 2 show that the samples 
best recognized by the MLP belonged to barks (89%), 

Figure 3. MLP response surfaces for herbs, barks and fruits.
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herbs (78%), fruits (69%) and leaves (63%). The 
recognition rate for the flowers and roots was below 40%. 
The same samples were also best recognized by the 
RBF network. The artificial network recognized all bark 
samples, herbs (84%), fruits (almost 75%) and leaves 
(almost 60%). The group of roots was not identified at all 

and less than 35% of flowers were identified. However, 
there were no samples unrecognized by both models.

The confusion matrix given in Table 3 shows that the 
MLP misclassified some herb samples but recognized 
most as leaves, and leaves as herbs. The worst 
classification occurred with flowers and roots, which 

Figure 4. RBF response surfaces for barks, herbs and fruits.

Table 1. Performances and RMS values of the ANN models.

ANN Type
Topology

Performance Error Rate

Training Validation Test Training Validation Test

MLP
6-14-6

0.7500 0.5278 0.5278 0.9947 1.5080 1.3626

RBF
6-12-6

0.6428 0.5667 0.5000 0.2952 0.3339 0.3474
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were also mostly identified as herbs. The RBF network 
similarly recognized herbs as leaves but fruits were 
labeled as barks.

The MLP response surfaces for the three best 
classified groups are in Fig. 3. For herb samples the 
elements most important in correct classification were 
N (15-20 mg g-1) and P (1-5 mg g-1). Boron’s impact 
was observable for concentrations below 20 µg g-1, 
while chlorine was significant above 10 mg g-1. The 
content of I was most important between 30-40 µg g-1. 
The barks’ response surfaces indicated narrow ranges 
of the contents of analyzed non-metals influenced the 
classification, i.e., N below 10 mg g-1, P and S below 
1 mg g-1, Cl below 2 mg g-1 and I below 5 µg g-1. On the 
other hand, the fruits’ identification the was based on the 
narrow range of B (20 to 30 µg g-1), I (15-25 µg g-1) and 

S (< 2 mg g-1). To a smaller extent the correct MLP output 
was affected by N (< 10 mg g-1) and P (0.5-2 mg g-1).

The RBF response surfaces for the best recognized 
groups are shown in Fig. 4. In the classification of 
barks, N (2 to 6 mg g-1) and P (below 1 mg g-1) were 
most important. Iodine (below 5 µg g-1) also had an 
observable effect.

The RBF response surface in herb classification was 
more complex than that of MLP. Four non-metals were 
significant. The best classifiers were N (5-25 mg g-1), 
P (< 2 mg g-1), Cl (6-14 mg g-1) and I (> 35 µg g-1). B 
had no effect. In fruit identification the network mainly 
relied on P (practically the whole range 1-7 mg g-1), 
S (2-8 mg g-1) and N (> 20 mg g-1). The remaining 
elements did not contribute substantially. 

4. Conclusions
To some extent both types of artificial neural networks 
correctly recognized herbal raw materials based on 
non-metals content. In spite of the difference between 
the results for validation and test sets, rather high 
recognition of the herbal samples from the collection of 
barks, fruits and herbs was observed. There were no 
samples unrecognized by both ANN models.

Phosphorus and nitrogen are potentially valuable 
for standardization. Sulfur and boron have some 
significance. The concentrations of these four elements 
may be characteristic, particularly for the groups which 
were recognized most effectively. The concentration of 
chlorine and iodine did not contribute to the samples 
discrimination; thus they are not potential standardization 
parameters. 

Table 3. Confusion matrices.

ANN Type
Topology

Raw Material 

Recognized

Raw Material used as an input

Bark Flower Fruit Herb Leaf Root

MLP

6-14-6

Bark 8 0 3 0 0 0

Flower 0 12 0 3 2 3

Fruit 1 0 11 0 1 0

Herb 0 11 0 39 7 5

Leaf 0 4 1 7 17 0

Root 0 2 0 1 0 5

RBF

6-12-6

Bark 9 0 3 0 1 0

Flower 0 10 1 3 1 3

Fruit 0 5 12 0 1 2

Herb 0 12 0 42 8 8

Leaf 0 2 0 5 16 0

Root 0 0 0 0 0 0

Table 2. Summary statistics for the applied architectures of ANNs.

ANN Type 
Topology

Raw 
Material

Correctly 

Classified

(% )

Incorrectly 

Classified

(%)

MLP

6-14-6

Barks 88.9 11.1

Flowers 37.9 62.1

Fruits 68.8 31.2

Herbs 78.0 22.0

Leaves 63.0 37.0

Roots 38.5 61.5

RBF

6-12-6

Barks 100.0 0.0

Flowers 34.5 65.5

Fruits 74.9 25.1

Herbs 84.0 16.0

Leaves 59.3 40.7

Roots 0.0 100.0
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The most similarities were recognized in herbs and 
leaves. Samples of different groups were also mistakenly 
recognized as herbs. This can be explained by the fact 
that herb samples are composed of dried parts of whole 
plants including leaves, flowers and fruits in various 
proportions.

The performances of the two different types of 
ANN are comparable. However, the MLP network 
demonstrated a slightly better capability in identifying 
different herbal groups. 
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