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Abstract: The present study investigates the quantitative structure-activity relationship (QSAR) of 2-phenylnaphthalene ligands on an estrogen 
receptor (ERa). A data set comprising 70 derivatives of 2-phenylnaphthalene is used. The most suitable parameters, classified as 
topological, geometric and electronic are selected using a combination of genetic algorithm and multiple linear regression (GA-MLR) 
methods. Then, selected descriptors are used as inputs for a self-training artificial neural network (STANN). Analysis of the results 
suggests that the STANN model shows superior results compared to the multiple linear regressions (MLR) by accounting for 91.0% of 
the variances of the antiseptic potency of the 2-phenylnaphthalene derivatives. The accuracy of the 8-4-1 STANN model is illustrated 
using leave-multiple-out (LMO) cross-validation and Y-randomization techniques. 
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1. Introduction
Estrogens are a group of naturally-occurring steroid 
hormones that play an indispensable role in the growth, 
development and preservation of various tissues. 
Previously, the common assumption was that estrogen-
mediated events were regulated by only one estrogen 
receptor, now known as ERa [1]. However, the discovery 
of a second estrogen receptor subtype (ERβ) in 1996 
resulted in an ardent interest in clarifying ERβ function 
and identifying various aspects of estrogen biology 
mediated by it [2,3]. 

Significant sequence homology is observed in the 
DNA and ligand binding domains (LBDs) of ERa and ERβ, 
despite the incongruity of the expression patterns of the two 
subtypes. ERβ, though widely encountered in numerous 
tissues, is predominantly found in ovarian granulosa cells, 
lung, bladder, and prostate tissues, while ERa is mainly 
expressed in uterus, kidney and ovarian theca cells [4-6].

During recent years, researchers have aimed their 
attention at identifying selective ERβ ligands from 
various classes of molecules, though only a few groups 

of molecules have been reported to have ERβ selectivity. 
2-phenylnaphthalene derivatives are among those 
ligands tending chiefly to ERβ as opposed to ERa. 

With a well-organized study of the effects of different 
substituents on the inhibitory behavior of compounds 
with similar scaffolds, the design of compounds with 
improved activity can be accomplished. Moreover, 
the development and application of computational 
procedures have facilitated the attainment of this 
objective. The method of quantitative structure-activity 
relationships (QSAR) has proven to be an effective 
means for investigating the inhibitory activity of various 
categories of compounds.

Many QSAR studies have been successfully 
conducted to model the activities of various types of 
agents [7-15]. Recently, different derivatives of six series 
of molecules have been reported as 2-phenylnaphthalene 
inhibitors [16]. The same SAR study reports the bioactivity 
of 2-phenylnaphthalene derivatives on ERβ [16].
In the present work, a quantitative structure-activity 
relationship (QSAR) study is conducted on these ligands 
and their bioactivity on ERa. The purpose of this inquiry 
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is to select appropriate predictors using a combination 
of genetic algorithms and linear regression techniques. 
Furthermore, we attempt to assess the ability of STANN 
to model the bioactivity of the ligands on ERa.

2. Theory
2.1. Self-training artificial neural network
A self-training artificial neural network (STANN) [17] is a 
procedure for updating the weights of neural nodes and 
training the neural networks in a parallel fashion. The details 
of the STANN method are described elsewhere [18,19].
In the STANN procedure, an important aspect is the 
existence of a neural network (network 2), which trains 
another network (network 1). Network 2, which is a 
Back-Propagation Artificial Neural Network (BP-ANN), 
produces the updated weights for network 1. The 
architecture of a STANN is shown in Fig. 1. During the 
training, the normalized inputs are changed by some 
infinitesimal amount delta (Δ). Because a sigmoid 
transfer function is used, which has a linear region 
around 0.5, it is desirable when adding the delta value to 
the normalized input to adjust the input towards the linear 
region. Thus, positive delta values should be added to 
normalized inputs which are less than 0.5, and negative 
delta values should be added to normalized inputs which 
are greater than 0.5. For the hidden layer, a similar 
procedure is used. Network 1 uses weights updated by 
training network 2. Thus, training of the artificial neural 
network 1 is not carried out with algorithmic code, but 
rather by a network training a network. 

In two previous works, we have compared the 
performance of the STANN with the conventional ANN 

in predicting the gas chromatographic relative retention 
times [18] and relative response factors [19] of various 
organic compounds. It was shown that use of the 
STANN procedure reduces the number of the adjustable 
parameters in the network and the optimization 
procedure was faster compared to the conventional 
ANN. In a third work, we have used STANN for studying 
the retention behavior of different organic compounds 
in reversed phase liquid chromatography on different 
stationary phases [20]. 

In the present work, we have used the STANN 
method for investigating the nonlinear characteristics 
of inhibitor activity of 2-phenylnaphthalene ligands on 
the estrogen receptor (ERa). The STANN program was 
written in Fortran 77 in our laboratory. A three-layer 
network with a sigmoid transfer function was designed. 
Before training the STANN, the input and output values 
of the networks were normalized between 0.1 and 0.9. 
The initial weights were selected randomly between 
-1.3 and +1.3. Then, the network was trained with the 
training set to optimize the values of the weights and 
biases using the BP strategy. The number of neurons in 
the hidden layer, the learning rate and the momentum 
were all optimized. To evaluate the performance of the 
STANN, the standard error of training or calibration 
and the standard error of the test set were measured. 
Additionally, a leave-multiple-out cross-validation 
method was used to evaluate the STANN model. 
This technique is described in the next section. 

2.2. Cross-validation analysis
The consistency and reliability of any method can be 
explored using the cross-validation technique [21]. Two 
different strategies of leave-one-out (LOO) and leave-
multiple-out (LMO) can be employed in this method. 
In the LOO strategy, by deleting one object in each case 
from the training set, multiple models can be produced. 
The predicted error sum of squares (PRESS) is a 
standard index to measure the accuracy of a modeling 
method based on the cross-validation technique. Based 
on the PRESS and SSY (sum of squares of deviations 
of the experimental values from their mean) statistics, 
the 2

LooQ value can be easily calculated by Eq. 1: 

(1)

In the case of LMO, M represents a group of 
randomly selected data points which are left out at the 
beginning and are predicted by a model that is developed 
using the remaining data points. So, M molecules are 
considered as the prediction set. The 2

LMOQ value can 
be calculated using Eq. 2: Figure 1. �The architecture of a STANN
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(2)

In the present work, calculation of 2
LMOQ  for the 

STANN method was based on a random selection of 
groups of 10 samples. The higher the 2

LooQ or 2
LMOQ

values, the higher the predictive power of the model. 
A more detailed description of this method can be found 
elsewhere [21]. 

3. Experimental Procedure
3.1. Data set
The six classes of compounds studied in the present 
work are all derivatives of the 2-phenylnaphthalene 
scaffold [16]. The chemical structures and logarithmic 
experimental activities of these compounds are shown 
in Fig. 2 and Table 1.

The activity parameter IC50 refers to the molar 
concentration of each ligand at 50% of ERα inhibition. 
As such, this requires that the ligand interact with 
the ligand binding domain of ERa. To calculate the 
molecular descriptors, the three-dimensional structures 
of the ligands under study were optimized using the 
semi-empirical quantum-chemical methods of the AM1 
Hamiltonian method, as implemented in the Hyperchem 
package [22]. The molecular structures were optimized 
using the Polak-Ribiere algorithm until the root mean 
square gradient was less than 0.01.

3.2. Molecular descriptors
The selection and calculation of structural descriptors as 
numerical parameters that reflect chemical structures is 
an essential step in every QSAR study. In the present 
study, 12 molecular descriptors were generated with 

the Hyperchem package after optimizing the molecular 
structures. These descriptors include the van der Waals 
volume and surface area of the molecules as geometric 
descriptors, partial charges, refractivity, polarizability, 
electronic energy and hydration energy as electronic 
descriptors, molecular mass, and so on.  

Next, the Dragon software version web 3 was used to 
produce additional descriptors [23]. For each molecule, 
a total of 1497 descriptors were computed using this 
software. Descriptors that had the same values for 
more than 90% of the molecules were eliminated. The 
correlation between descriptors was then calculated. 
Pairs of variables with a correlation coefficient greater 
than 0.90 were classified as intercorrelated, and only 
one of them was used in developing the final model. 
A total of 360 descriptors were considered for further 
investigation after eliminating the descriptors that had 
the same value for all molecules or were intercorrelated.

3.3. Selection of descriptors by Genetic Algorithm 
A genetic algorithm (GA) is a simulation method based 
on notions from Darwin’s theory of evolution in that it 
imitates some processes observed in natural evolution. 
In QSAR studies, the GA method has been successfully 
applied for feature selection. Moreover, an approach 
incorporating GA with PLS (GA-PLS) has been 
introduced for descriptor selection in QSAR studies [24].

In the present work, we applied the GA-MLR 
method using the MATLAB software [25] in order 
to select descriptors that are most relevant to the 
prediction of bioactivity [26,27]. The 360 previously 
mentioned descriptors were used as input to the GA-
MLR program, and the bioactivity of the ligands was 
obtained as output. In this algorithm, a population 
of n subsets is created, each containing a random 
combination of descriptors. The fitness of each subset 
is evaluated. Then, using techniques loosely based on 
biological genetics and evolution, a new population 
of subsets is created. The algorithm continues until a 
stopping criterion is reached. The fitness value of the 
final selected subset of descriptors and/or the number 
of generations in the GA-MLR program could be used 
as stopping criteria. 

3.4. Regression analysis
A multiple linear regression procedure was used for model 
development [28]. For regression analysis, the data set 
was divided into two groups: training and prediction sets. 
The molecules included in these sets were selected 
randomly. In a previous study, we have considered 
the effect of the size of the test set selected from the 
main data set, as a percent of the main data set [29].
We have shown that if the percent of the test set is 

( )
( )

2

exp2 1
2

exp1

1
test

predi
LMO train

traini

y yPRESSQ
SSY y y

=

=

−
= = −

−

∑
∑

Figure 2. �Structures of the 2-phenylnaphthalene scaffold derivatives 
together genistein and estradiol
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very low, there will be an uncertainty in the correlation 
coefficient of the prediction set compared to the main 
data set. Also, if the percent of the test set is very high, 
the model obtained cannot be complete and cannot 
accurately predict the desired property. Thus, there 
exists an optimum range for the size of the test set. If 
the test set consists of between 15% and 40% of the 
main data set, the model constructed with the training 
set can predict the test set as well as the training set. 
As such, we randomly selected 40% of the main data 
set as the test set, and the remaining molecules were 
placed in the in training set. Therefore, a training set 

comprising 50 molecules was used to generate the 
models, and a test set comprising 20 molecules was 
used to evaluate the generated models. The most 
successful model was then chosen. For this purpose, it 
is common to consider the number of descriptors in the 
model, adjusted correlation coefficient (R2) and standard 
error (SE) for the training and prediction sets. A reliable 
MLR model is one that yields high R2 values, low SE 
and uses the lowest number of descriptors. Moreover, 
the model should have a high predictive ability. 
The specifications of the model selected are illustrated 
in Table 2.

No Compound R1 R2 R3

Experimental 
LogIC50

Calculated 
LogIC50 (STANN)

Calculated 
LogIC50 (MLR)

             Training set

1 P1
a - - - 2.597±0.199 2.611 2.515

2 P2
b - - - 0.505±0.136 0.762 0.455

3 a 2-OH 4’-OH - 2.324±0.152 2.042 2.174
4 a 1-OH 4’-OH - 1.342±0.099 1.879 2.287
5 a 2-OH 2’-OH - 3.699 3.254 2.794
6 a 2-OH H - 3.129±0.021 3.127 2.947
7 a 3-OH 4’-OH - 2.645±0.225 2.543 2.645
8 a 3-OH 3’-OH - 3.422±0.278 3.121 3.067
9 a 3-OH H - 3.532±0.235 3.385 3.232
10 b Cl - - 1.959±0.176 1.974 2.149
11 b Br - - 2.425±0.101 2.167 2.034
12 b F - - 1.886±0.158 2.069 2.089
13 b CN - - 3.147±0.249 2.914 3.066
14 b Ph - - 3.09±0.244 3.120 3.016
15 b OMe - - 2.946±0.094 2.621 2.922
16 c H 2’-F H 1.38±0.014 1.394 1.62
17 c Cl 2’-F H 1.763±0.045 1.612 1.866
18 c H 2’-F 5’-F 1.431±0.209 1.353 1.427
19 c H 2’-F 6’-F 2.072±0.147 1.778 1.783
20 c Cl 2’-F 6’-F 1.544±0.062 1.389 1.538
21 c H 2’-Cl H 1.00±0.217 1.271 1.183
22 c Cl 2’-Cl H 1.556±0.277 1.501 1.609
23 c H 2’-OMe H 2.241±0.065 2.220 2.395
24 c H 3’-F H 1.964±0.118 1.787 1.882
25 c Cl 3’-F H 2.155±0.085 2.181 2.184
26 c Cl 3’-Cl H 2.551±0.079 2.596 2.444
27 c H 3’-F 5’-F 1.964±0.245 1.953 1.844
28 d H F F 1.322±0.124 1.813 1.789
29 d Cl F H 1.602±0.119 1.492 1.762
30 d Cl F F 2.097±0.083 2.164 2.108
31 d H Cl H 1.477±0.014 1.211 1.124
32 d Cl Cl H 1.633 1.764 1.717
33 d H CN H 2.021±0.194 2.027 2.24
34 d Cl CN H 2.037±0.115 1.995 2.192
35 d Cl CN F 2.476±0.213 2.530 2.438
36 d H CHO F 2.364±0.171 2.126 2.128
37 d H CH=CH2 F 2.405±0.191 2.390 2.479
38 d H ethyl F 2.371±0.057 2.478 2.537
39 d H C=CCH3 F 2.535±0.077 2.571 2.457
40 e 2’-F 5’-F - 2.27±0.037 2.003 1.908
41 e 2’-F 6’-F - 1.653±0.164 1.611 1.701
42 e 3’-F 5’-F - 2.739±0.178 2.572 2.39
43 f F CN H 1.982±0.19 1.955 1.855
44 f F CN Br 2.064±0.176 2.012 2.03
45 f F CN CN 2.943±0.024 2.869 3.177
46 f F CN Cl 1.74±0.387 2.172 2.075
47 f F CCMe H 2.255±0.219 2.339 2.052
48 f F CHO H 1.863±0.137 2.013 2.031
49 f F CH=CH2 H 2.722±0.5 2.854 3.123
50 f F ethyl H 2.053±0.315 2.131 2.138

Table 1. �Experimental and predicted values of LogIC50 for the 2-phenylnaphthalene inhibitor derivatives
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In order to avoid over-correlation of the regression 
equations, the R2 reduction was monitored as a function 
of the number of descriptors used, as shown in Fig. 3. 
The procedure was stopped when the ΔR2 of two 
consecutive regression equations was less than or 
equal to 0.02 (see Fig. 3). It can be seen from this figure 
that the change in R2 after eight descriptors is relatively 
linear. Therefore, we have chosen eight descriptors as 
the optimum number of parameters. The descriptors in 
this model were Pw2, Mor02m, E1v, Mor28V, Behe5, 
Bic4, and More29e, the definitions of which are 
presented in Table 2. Based on the correlation matrix 
(Table 3), it can be surmised that there are no significant 
correlations between the selected descriptors. Figure 3. �The plot of ΔR2 versus the number of descriptors

No Compound R1 R2 R3

Experimental 
LogIC50

Calculated 
LogIC50 (STANN)

Calculated 
LogIC50 (MLR)

            Prediction set

51■ a 1-OH 3’-OH - 3.162±0.215 3.128 3.11
52▲ a H 4’-OH - 2.805±0.201 2.931 2.964
53■ b NO2 - - 2.851±0.081 2.599 2.267
54▲ c H 2’-F 6’-F 1.013±0.101 1.002 1.198
55■ c H 3’-Cl H 2.029±0.122 1.880 2.064
56▲ d H F H 1.342±0.02 1.513 1.685
57■ d H CN F 2.322±0.252 2.395 2.36
58▲ e 2’-F H - 1.415±0.05 1.861 2.009
59▲ f H CN H 1.924±0.171 1.974 1.823
60■ f H CN Cl 1.991±0.053 1.802 1.864
61▲ a 2-OH 3’-OH - 2.362±0.172 2.594 3.059
62▲ b Me - - 2.45±0.071 2.381 2.38
63■ c H 2’-Me H 1.602±0.011 1.759 1.657
64■ c Cl 2’-Me H 1.602 1.646 1.763
65■ c Cl 3’-F 5’-F 2.715±0.105 2.758 2.486
66▲ d Br CN H 2.117±0.166 2.322 2.417
67■ d H C=CH F 2.393±0.334 2.261 2.28
68▲ d F CN F 2.494±0.104 2.743 2.695
69■ f F CCH H 1.863±0.434 1.892 1.617
70▲ f F CN Me 2.609±0.145 2.381 2.353

 �a P1 , 
bP2 are genistein and estradiol, respectively that regarded as primary compounds in treating inflammatory diseases.

 Values without SDs are for a single determination.  ■ and ▲ refer to test and prediction sets in STANN model, respectively.

Table 2. �Selected descriptors of multiple linear regression

Descriptor Type of 
descriptor Notation Coefficient Mean effect

Topological descriptors
(Path/walk 2-Randic shape index) Topological Pw2 -50.786(±7.878) -30.058

3D-MoRSE descriptors
(Weighted by atomic masses) Geometric Mor02m 0.261(±0.041) 5.488

WHIM descriptors
(Weighted by atomic van der waals volumes) Geometric E1v 13.798(±2.501) 5.472

3D-MoRSE descriptors
(Weighted by atomic van der waals volumes) Geometric Mor28V -4.068(±0.783) 1.374

Burden eigenvalues
(Weighted by atomic Sanderson electronegativities) Electronic Behe5 -7.746(±1.436) -22.508

Information indices 
(Bond information content ,neighborhood symmetry of 4-order) Topological Bic4 -13.276(±3.606) -12.037

3D-MoRSE descriptors
(Weighted by atomic Sanderson electronegativities) Geometric More29e 0.845(±0.252) -0.213

Connectivity indices
(Average connectivity index chi-2) Topological X2a -36.841(±13.277) -10.351

Constant 65.022(±8.802)

 R2
training=0.825, R2

prediction=0.724, SEtraining =0.276, SEprediction=0.305

Table 1 continued. �Experimental and predicted values of LogIC50 for the 2-phenylnaphthalene inhibitor derivatives
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3.5. STANN generation
The networks were generated using the eight descriptors 
appearing in the MLR model as their inputs and logIC50 

values as their output. For STANN generation, the data 
set was divided into three groups: training, prediction, 
and test sets. The training set, comprising 50 molecules, 
was used for the model generation. However, the test 
set, comprising 10 molecules, was used to maintain the 
overtraining. Finally, the validation set, comprising 10 
molecules, was used to evaluate the generated model. 
It is worth noting that the molecules in the test and 
prediction sets were the same as those selected as the 
prediction set in the GA-MLR model.

A three-layer network accompanied by a sigmoid 
transfer function was designed for each STANN. For 
STANN calculations, a program has been written in 
Fortran 77 in our laboratory. For optimization of the 
weights and bias values, the network was trained by the 
back propagation technique using the training set. The 
appropriate number of nodes in the hidden layer was 
identified by training the network with different numbers 
of nodes in the hidden layer, and selecting the optimal 
number. The learning rate, momentum and the number 
of epochs were then optimized in a similar way; the 
optimized conditions were found to be 0.01, 0.95, and 
25100, respectively. 

To evaluate the effectiveness of the outputs compared 
with the target values, the standard error (SE) measure 
was used. For evaluating the over fitting, the training 
of the network for the prediction of logIC50 should stop 
when the SE of the test set begins to increase while SE 
of training set continues to decrease. After simulation, 
the values of the predicted data were transformed to the 
true values, and standard error values were calculated 
from the transformed data.

4. Results and Discussion
The main purpose of the present study was to develop 
a QSAR model for predicting the activity parameter 
(logIC50) of 2-phenylnaphthalenes, shown in Fig.  2. 

This figure and Table  1 illustrate that the inhibitors 
encompass six different classes, with completely 
different substituents. Moreover, in naturally complex 
biological phenomena, these compounds act as 
inhibitors of chronic inflammatory diseases. Thus, the 
development of an effective and versatile QSAR model 
that can accurately predictlogIC50 values is required.

At the outset, we developed a linear model of 
MLR, envisaging two objectives: first, the selection 
of appropriate descriptor variables, which was 
accomplished by the use of a multiple linear regression 
procedure. Second, we set out to evaluate the 
linear link between the bioactivity parameters of 
2-phenylnaphthalenes and their molecular structures 
and properties. As Table 2 illustrates, 8 descriptors were 
selected out of a total of 360: Pw2, Mor02m, E1v, Mor28v, 
Behe5, Bic4, Mor29e, and X2a. These descriptors 
are classified as topological (Pw2, Bic4 and X2a), 
geometric (E1v Mor02m, Mor29e and Mor28v), and 
electronic (Behe5) [30]. This suggests that topological, 
geometric and electronic features may all play a role in 
the inhibitory activities of 2-phenylnaphthalenes. 

To examine the relative importance as well as the 
contribution of each descriptor in the model, the value of 
the mean effect (MF) was calculated for each descriptor. 
This calculation was performed with the equation below, 
displayed in the last column of Table 2.

(3)

MFj represents the mean effect for the considered 
descriptor j, βj is the coefficient of the descriptor j,
dij stands for the value of the target descriptors for 
each molecule and m is the descriptor number in the 
model. The MF value indicates the relative importance 
of a descriptor compared to the other descriptors in the 
model. Its sign corresponds to the variation direction in 
the value of the predicted activity as a result of a change 
in the descriptor value.
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Table 3. �Correlation matrix for the eight selected descriptors

Pw2 Mor02m E1v Mor28V Behe5 Bic4 More29e X2a

Pw2 1

Mor02m 0.282 1

E1v 0.092 -0.165 1

Mor28V -0.184 0.266 0.237 1

Behe5 0.229 0.144 -0.145 -0.503 1

Bic4 0.446 0.179 -0.114 0.011 -0.265 1

More29e -0.337 0.261 -0.124 0.183 -0.101 0.003 1

X2a -0.474 -0.229 0.026 0.365 -0.538 -0.113 0.222 1

ijd
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shuffled and a new QSAR model was developed using 
the original independent variable matrix. The new QSAR 
model is expected to have low R2

P and Q2
 LOO values. 

Several random shuffles of the y vector were performed 
and the results are shown in Table 6. The R2

P and Q2
 LOO

values indicate that the good results for the STANN 
model are not due to a chance correlation or structural 
dependency of the training set.  

Fig.  4 shows the absolute relative mean effects 
for the MLR model. It can be asserted that the Pw2 
(topological descriptor) is the most essential parameter 
influencing the inhibitory behavior of the molecules. In 
the MLR modeling, an R2 value for the prediction set 
of 0.724 was obtained, which suggests that the model 
is able to account for 72.4% of the variances of the 
logIC50. As a second step, the non-linear characteristics 
of the descriptors were investigated. Therefore, a self-
training artificial neural network was developed, using 
the descriptors appearing in the MLR model as inputs. 
It is a common practice to optimize the parameters 
of the number of nodes in the hidden layer, learning 
rate, and momentum in developing a reliable network. 
Furthermore, a type of transfer function was optimized. 
In the present work, different numbers of neurons in the 
hidden layer were tested at an arbitrary learning rate and 
momentum, epochs, and transfer function. The number 
of neurons in the hidden layer with the minimum value 
of the SE was selected as the optimum number. Then, 
learning rate, momentum, epochs, and transfer function 
were optimized in a similar way. The experimental and 
calculated values of the 2-phenylnaphthalene scaffold 
inhibitor activities were analyzed in this work through the 
use of MLR and STANN methods, as shown in Table 1. 
The results of the STANN model compared to the MLR 
model are illustrated in Table 4. As shown, the R2 value 
for the prediction set rose dramatically from 0.724 for 
the MLR models to 0.939 for the STANN model.

The consistency and reliability of a method can 
be explored using the cross-validation technique. 
The leave-multiple-out (LMO) cross-validation was 
carried out for both the MLR and STANN methods. M 
represents a group of randomly selected data points 
(i.e.10 molecules) which would be left out at the 
beginning of the analysis, and would be predicted by 
the model developed using the remaining data points. In 
the present work, calculations of Q2

L10O and SEs for the 
training and prediction sets were based on 100 random 
selections of groups of 10 molecules (see Table 5). The 
cross validation results confirm the results of Table 4. 

In order to ensure the robustness of the STANN 
model, the Y-randomization test was also performed. 
The dependent variable vector (logIC50) was randomly 

Table 5. �Obtained statistical parameters of L10Oa cross-validation 
for STANN and GA-MLR models

Table 4. �Statistical results of STANN model compared to GA-MLR model

Model R2
training SEtraining R2

test SEtest R2
prediction SEprediction

STANN 0.910 0.199 0.939c 0.139 c 0.903b 0.194b

GA-MLR 0.825 0.276 - - 0.724a 0.305a

a The number of molecules in the prediction set in GA-MLR model was 20.
b The number of molecules in the prediction set in STANN model was 10.
c The number of molecules in the test set in STANN model was 10.

Model Training set Prediction set

Q2 SE Q2 SE

STANN 0.869 0.223 0.918 0.231

GA-MLR 0.786 0.282 0.802 0.263

a�Calculation of Q2
L10O was based on 100 random selection of groups

of 10 molecules

Figure 4. �Absolute relative mean effects for MLR model
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Table 6. �R2
P and Q2 LOO values after several Y-randomization tests

Iteration R2
P Q2 LOO

1 0.355 0.183

2 0.239 0.082

3 0.153 0.055

4 0.078 0.036

5 0.121 0.059

6 0.033 -0.008

7 0.127 0.082

8 0.221 0.151
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Fig. 5 shows the calculated logIC50 versus experimental 
logIC50 for the training, test, and prediction sets. Fig.  6 
shows the plot of residuals against the experimental 
values of logIC50 for the STANN model. The spread of 
the residuals on both sides of zero indicates the lack of 
systematic error in the development of the STANNs. 

5. Conclusions
QSAR methodologies have been effectively utilized 
for creating an arithmetic link between the bioactivity 
of 2-phenylnaphthalene and topological, geometric, 

and electronic molecular descriptors. For the selection 
of descriptors, an amalgamation of multiple linear 
regression and genetic algorithm methods (GA-MLR) 
was used. The superior accuracy of the non-linear over 
the linear (MLR) model demonstrates the non-linear 
characteristics of the inhibitory behavior. To develop 
a neural network, various parameters, including 
the number of hidden nodes, the learning rate, the 
momentum, the number of epochs, and the type of 
transfer function were optimized. In summary, the 
STANN model is extremely capable of distinguishing 
between the inhibitory behaviors of different ligands. 
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Figure 6. �Experimental LogIC50 versus residual plot
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