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Abstract: The present study investigates the quantitative structure-activity relationship (QSAR) of 2-phenylnaphthalene ligands on an estrogen
receptor (ER ). A data set comprising 70 derivatives of 2-phenylnaphthalene is used. The most suitable parameters, classified as
topological, geometric and electronic are selected using a combination of genetic algorithm and multiple linear regression (GA-MLR)
methods. Then, selected descriptors are used as inputs for a self-training artificial neural network (STANN). Analysis of the results
suggests that the STANN model shows superior results compared to the multiple linear regressions (MLR) by accounting for 91.0% of
the variances of the antiseptic potency of the 2-phenylnaphthalene derivatives. The accuracy of the 8-4-1 STANN model is illustrated
using leave-multiple-out (LMO) cross-validation and Y-randomization techniques.
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1. Introduction

Estrogens are a group of naturally-occurring steroid
hormones that play an indispensable role in the growth,
development and preservation of various tissues.
Previously, the common assumption was that estrogen-
mediated events were regulated by only one estrogen
receptor, now known as ER  [1]. However, the discovery
of a second estrogen receptor subtype (ERB) in 1996
resulted in an ardent interest in clarifying ERB function
and identifying various aspects of estrogen biology
mediated by it [2,3].

Significant sequence homology is observed in the
DNA and ligand binding domains (LBDs) of ER  and ER,,
despite the incongruity of the expression patterns of the two
subtypes. ERB, though widely encountered in numerous
tissues, is predominantly found in ovarian granulosa cells,
lung, bladder, and prostate tissues, while ER is mainly
expressed in uterus, kidney and ovarian theca cells [4-6].

During recent years, researchers have aimed their
attention at identifying selective ERB ligands from
various classes of molecules, though only a few groups
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of molecules have been reported to have ER selectivity.
2-phenylnaphthalene derivatives are among those
ligands tending chiefly to ER; as opposed to ER .

With a well-organized study of the effects of different
substituents on the inhibitory behavior of compounds
with similar scaffolds, the design of compounds with
improved activity can be accomplished. Moreover,
the development and application of computational
procedures have facilitated the attainment of this
objective. The method of quantitative structure-activity
relationships (QSAR) has proven to be an effective
means for investigating the inhibitory activity of various
categories of compounds.

Many QSAR studies have been successfully
conducted to model the activities of various types of
agents [7-15]. Recently, different derivatives of six series
of molecules have beenreported as 2-phenylnaphthalene
inhibitors [16]. The same SAR study reports the bioactivity
of 2-phenylnaphthalene derivatives on ERB [16].
In the present work, a quantitative structure-activity
relationship (QSAR) study is conducted on these ligands
and their bioactivity on ER . The purpose of this inquiry
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is to select appropriate predictors using a combination
of genetic algorithms and linear regression techniques.
Furthermore, we attempt to assess the ability of STANN
to model the bioactivity of the ligands on ER ..

2. Theory

2.1. Self-training artificial neural network
A self-training artificial neural network (STANN) [17] is a
procedure for updating the weights of neural nodes and
trainingtheneuralnetworksinaparallelfashion. Thedetails
of the STANN method are described elsewhere [18,19].
In the STANN procedure, an important aspect is the
existence of a neural network (network 2), which trains
another network (network 1). Network 2, which is a
Back-Propagation Artificial Neural Network (BP-ANN),
produces the updated weights for network 1. The
architecture of a STANN is shown in Fig. 1. During the
training, the normalized inputs are changed by some
infinitesimal amount delta (A). Because a sigmoid
transfer function is used, which has a linear region
around 0.5, it is desirable when adding the delta value to
the normalized input to adjust the input towards the linear
region. Thus, positive delta values should be added to
normalized inputs which are less than 0.5, and negative
delta values should be added to normalized inputs which
are greater than 0.5. For the hidden layer, a similar
procedure is used. Network 1 uses weights updated by
training network 2. Thus, training of the artificial neural
network 1 is not carried out with algorithmic code, but
rather by a network training a network.

In two previous works, we have compared the
performance of the STANN with the conventional ANN
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Figure 1. The architecture of a STANN

in predicting the gas chromatographic relative retention
times [18] and relative response factors [19] of various
organic compounds. It was shown that use of the
STANN procedure reduces the number of the adjustable
parameters in the network and the optimization
procedure was faster compared to the conventional
ANN. In a third work, we have used STANN for studying
the retention behavior of different organic compounds
in reversed phase liquid chromatography on different
stationary phases [20].

In the present work, we have used the STANN
method for investigating the nonlinear characteristics
of inhibitor activity of 2-phenylnaphthalene ligands on
the estrogen receptor (ER ). The STANN program was
written in Fortran 77 in our laboratory. A three-layer
network with a sigmoid transfer function was designed.
Before training the STANN, the input and output values
of the networks were normalized between 0.1 and 0.9.
The initial weights were selected randomly between
-1.3 and +1.3. Then, the network was trained with the
training set to optimize the values of the weights and
biases using the BP strategy. The number of neurons in
the hidden layer, the learning rate and the momentum
were all optimized. To evaluate the performance of the
STANN, the standard error of training or calibration
and the standard error of the test set were measured.
Additionally, a leave-multiple-out cross-validation
method was used to evaluate the STANN model.
This technique is described in the next section.

2.2. Cross-validation analysis

The consistency and reliability of any method can be
explored using the cross-validation technique [21]. Two
different strategies of leave-one-out (LOO) and leave-
multiple-out (LMO) can be employed in this method.
In the LOO strategy, by deleting one object in each case
from the training set, multiple models can be produced.
The predicted error sum of squares (PRESS) is a
standard index to measure the accuracy of a modeling
method based on the cross-validation technique. Based
on the PRESS and SSY (sum of squares of deviations
of the experimental values from their mean) statistics,
the Qioo value can be easily calculated by Eq. 1:

o1 _PRESS | > (Vew —yp,edz)2
S(ve-r)

SSY
In the case of LMO, M represents a group of
randomly selected data points which are left out at the
beginning and are predicted by a model that is developed
using the remaining data points. So, M molecules are
considered as the prediction set. The QLZMO value can
be calculated using Eq. 2:
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In the present work, calculation of QLZMO for the
STANN method was based on a random selection of
groups of 10 samples. The higher the Q;, or O},
values, the higher the predictive power of the model.
A more detailed description of this method can be found
elsewhere [21].

3. Experimental Procedure
3.1. Data set

The six classes of compounds studied in the present
work are all derivatives of the 2-phenylnaphthalene
scaffold [16]. The chemical structures and logarithmic
experimental activities of these compounds are shown
in Fig. 2 and Table 1.

The activity parameter IC,; refers to the molar
concentration of each ligand at 50% of ER inhibition.
As such, this requires that the ligand interact with
the ligand binding domain of ER . To calculate the
molecular descriptors, the three-dimensional structures
of the ligands under study were optimized using the
semi-empirical quantum-chemical methods of the AM1
Hamiltonian method, as implemented in the Hyperchem
package [22]. The molecular structures were optimized
using the Polak-Ribiere algorithm until the root mean
square gradient was less than 0.01.

3.2. Molecular descriptors

The selection and calculation of structural descriptors as
numerical parameters that reflect chemical structures is
an essential step in every QSAR study. In the present
study, 12 molecular descriptors were generated with
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Figure 2. structures of the 2-phenylnaphthalene scaffold derivatives
together genistein and estradiol

the Hyperchem package after optimizing the molecular
structures. These descriptors include the van der Waals
volume and surface area of the molecules as geometric
descriptors, partial charges, refractivity, polarizability,
electronic energy and hydration energy as electronic
descriptors, molecular mass, and so on.

Next, the Dragon software version web 3 was used to
produce additional descriptors [23]. For each molecule,
a total of 1497 descriptors were computed using this
software. Descriptors that had the same values for
more than 90% of the molecules were eliminated. The
correlation between descriptors was then calculated.
Pairs of variables with a correlation coefficient greater
than 0.90 were classified as intercorrelated, and only
one of them was used in developing the final model.
A total of 360 descriptors were considered for further
investigation after eliminating the descriptors that had
the same value for all molecules or were intercorrelated.

3.3. Selection of descriptors by Genetic Algorithm
A genetic algorithm (GA) is a simulation method based
on notions from Darwin’s theory of evolution in that it
imitates some processes observed in natural evolution.
In QSAR studies, the GA method has been successfully
applied for feature selection. Moreover, an approach
incorporating GA with PLS (GA-PLS) has been
introduced for descriptor selection in QSAR studies [24].

In the present work, we applied the GA-MLR
method using the MATLAB software [25] in order
to select descriptors that are most relevant to the
prediction of bioactivity [26,27]. The 360 previously
mentioned descriptors were used as input to the GA-
MLR program, and the bioactivity of the ligands was
obtained as output. In this algorithm, a population
of n subsets is created, each containing a random
combination of descriptors. The fitness of each subset
is evaluated. Then, using techniques loosely based on
biological genetics and evolution, a new population
of subsets is created. The algorithm continues until a
stopping criterion is reached. The fitness value of the
final selected subset of descriptors and/or the number
of generations in the GA-MLR program could be used
as stopping criteria.

3.4. Regression analysis

Amultiple linearregression procedure was used formodel
development [28]. For regression analysis, the data set
was divided into two groups: training and prediction sets.
The molecules included in these sets were selected
randomly. In a previous study, we have considered
the effect of the size of the test set selected from the
main data set, as a percent of the main data set [29].
We have shown that if the percent of the test set is
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very low, there will be an uncertainty in the correlation
coefficient of the prediction set compared to the main
data set. Also, if the percent of the test set is very high,
the model obtained cannot be complete and cannot
accurately predict the desired property. Thus, there
exists an optimum range for the size of the test set. If
the test set consists of between 15% and 40% of the
main data set, the model constructed with the training
set can predict the test set as well as the training set.
As such, we randomly selected 40% of the main data
set as the test set, and the remaining molecules were
placed in the in training set. Therefore, a training set

comprising 50 molecules was used to generate the
models, and a test set comprising 20 molecules was
used to evaluate the generated models. The most
successful model was then chosen. For this purpose, it
is common to consider the number of descriptors in the
model, adjusted correlation coefficient (R?) and standard
error (SE) for the training and prediction sets. A reliable
MLR model is one that yields high R? values, low SE
and uses the lowest number of descriptors. Moreover,
the model should have a high predictive ability.
The specifications of the model selected are illustrated
in Table 2.

Table 1. Experimental and predicted values of LoglC,, for the 2-phenylnaphthalene inhibitor derivatives

Experimental Calculated Calculated
No | Gompound R, R. R, LoglIC,, LogIC,,(STANN)  LogIC,,(MLR)
Training set
1 2 - - - 2597+0.199 2611 2515
2 P - - - 0.505+0.136 0.762 0.455
3 a 2-OH 4-0H - 2.324+0.152 2,042 2174
4 a 1-OH 4-OH - 1.342+0.099 1.879 2.287
5 a 2-OH 2"-OH - 3.699 3.254 2.794
6 a 2-OH H - 3.129+0.021 3.127 2.947
7 a 3-OH 4-OH - 2.645+0.225 2543 2645
8 a 3-OH 3-OH - 3.422+0278 3.121 3.067
9 a 3-OH H - 3532+0.235 3.385 3232
10 b cl - - 1.959+0.176 1974 2.149
11 b Br - - 2.425+0.101 2.167 2.034
12 b F - - 1.886+0.158 2.069 2.089
13 b CN - - 3.147+0.249 2914 3.066
14 b Ph - - 3.09+0.244 3.120 3016
15 b OMe - - 2.946+0.094 2.621 2.922
16 c H 2-F H 1.38+0.014 1.394 1,62
17 c cl 2-F H 1.763+0.045 1612 1.866
18 c H 2-F 5-F 1.431+0.209 1.353 1.427
19 c H 2-F 6-F 20720147 1778 1783
20 c cl 2-F 6-F 1.544:+0,062 1.389 1538
21 c H 2-Cl H 1.00+0217 1271 1183
22 c cl 2-Cl H 1,566:+0.277 1,501 1,609
23 c H 2-OMe H 2.241+0.065 2.220 2395
24 c H 3-F H 1.964+0.118 1787 1.882
25 c cl 3-F H 2.155+0.085 2.181 2184
26 c cl 3-Cl H 25610079 2596 2444
27 c H 3-F 5-F 1.964:+0.245 1.953 1.844
28 d H F F 1.322+0.124 1813 1789
29 d cl F H 1.602+0.119 1.492 1.762
30 d cl F F 2.097+0.083 2.164 2108
31 d H cl H 1.477+0.014 1211 1124
32 d cl cl H 1,633 1764 1717
33 d H CN H 2.021+0.194 2.007 2.24
34 d cl CN H 2.037+0.115 1.995 2192
35 d cl CN F 2.476+0213 2530 2438
36 d H CHO F 2.364+0.171 2126 2128
37 d H CH=CH, F 2.405+0.191 2.390 2.479
38 d H ethyl F 2.371+0.057 2478 2537
39 d H C=CCH, F 2.535+0.077 2571 2.457
40 e 2-F 5-F - 2.27+0.037 2.003 1.908
41 e o-F 6-F - 1.653+0.164 1611 1.701
a2 e 3-F 5-F - 2.739+0.178 2572 2.39
43 f F CN H 1.982+0.19 1.955 1.855
44 f F CN Br 2.064+0.176 2012 203
45 f F CN CN 2.943+0.024 2.869 3177
46 f F CN cl 174+0.387 2172 2075
a7 f F CCMe H 2.265+0.219 2.339 2.052
48 f F CHO H 1.863+0.137 2013 2.031
49 f F CH=CH, H 2722405 2.854 3123
50 f F ethyl H 2.053+0.315 2.131 2138
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Table 1 continued. Experimental and predicted values of LogIC,, for the 2-phenylnaphthalene inhibitor derivatives

No Compound R R R Experimental Calculated Calculated
1 2 3 LoglIC,, LoglIC, (STANN) LoglIC, (MLR)
Prediction set

51m a 1-OH 3'-OH - 3.162=0.215 3.128 3.1
52A a H 4'-OH - 2.805+0.201 2.931 2.964
53m b NO2 - - 2.851+0.081 2.599 2.267
54 A [¢] H 2-F 6'-F 1.013+0.101 1.002 1.198
55m c H 3'-Cl H 2.029+0.122 1.880 2.064
56 A d H F H 1.342+0.02 1.513 1.685
57m d H CN F 2.322+0.252 2.395 2.36
584 e 2-F H - 1.415+0.05 1.861 2.009
50A f H CN H 1.924=0171 1.974 1.823
60m f H CN Cl 1.991+0.053 1.802 1.864
614 a 2-OH 3'-OH - 2.362+0.172 2.594 3.059
624 b Me - - 2.45+0.071 2.381 2.38
63m [¢] H 2'-Me H 1.602+0.011 1.759 1.657
64m c Cl 2'-Me H 1.602 1.646 1.763
65m [¢] Cl 3-F 5-F 2.715+0.105 2.758 2.486
66 A d Br CN H 2.117+0.166 2.322 2.417
67m d H C=CH F 2.393+0.334 2.261 2.28
684 d F CN F 2.494+0.104 2.743 2.695
69m f F CCH H 1.863+0.434 1.892 1.617
70A f F CN Me 2.609-+0.145 2.381 2.353

2P, , P, are genistein and estradiol, respectively that regarded as primary compounds in treating inflammatory diseases.
Values without SDs are for a single determination. m and A refer to test and prediction sets in STANN model, respectively.

Table 2. Selected descriptors of multiple linear regression

Descriptor dggﬁ:{or Notation Coefficient Mean effect
g—ggﬂ/ov?;lfg—js:?g%osﬁape index) Topological Pw2 -50.786(+7.878) -30.058
?ﬁé’i‘gﬁz%Ebie;gﬂcoﬁasseS) Geometric Mor02m 0.261(£0.041) 5.488
Y\\;\/’_f:igh?eejglyp;?;nic van der waals volumes) Geometric Elv 13.798(+2.501) 5.472
?V[J(_a'i\g?nReSdEbC;e;grrlgits :/San der waals volumes) Geometric Mor28v -4.068(-0.783) 1.874
(B\/L\j;?g;ts:jgke);\;atgjriisc Sanderson electronegativities) Electronic Behes +7.746(=1.436) -22.508
l(goor::jn?r::‘g?r:]r;ig: Scontent ,neighborhood symmetry of 4-order) Topological Bic +13.276(+-3.606) -12.087
?V[\;:i\gﬁie%Eb?/e;f)rrfits rSsanderson electronegativities) Geometric More29e 0.845(+0.252) 0213
(CA?/Z?sggvggnlgglccﬁty index chi-2) Topological X2a -36.841(=13.277) -10.351
Constant 65.022(+8.802)

szammgzo.BZS, Rzpred‘c“on:0.724, SEtralmng =0.276, SEpred‘dm:OBOS
035

In order to avoid over-correlation of the regression
equations, the R%reduction was monitored as a function 03
of the number of descriptors used, as shown in Fig. 3.
The procedure was stopped when the AR? of two
consecutive regression equations was less than or AR 02
equal to 0.02 (see Fig. 3). It can be seen from this figure
that the change in R2after eight descriptors is relatively
linear. Therefore, we have chosen eight descriptors as 04
the optimum number of parameters. The descriptors in
this model were Pw2, Mor02m, E1v, Mor28V, Behe5,
Bic4, and More29e, the definitions of which are 0
presented in Table 2. Based on the correlation matrix
(Table 3), it can be surmised that there are no significant
correlations between the selected descriptors.

0325

015

005

0 5 10 15
Mumber of descriptox
Figure 3. The plot of AR? versus the number of descriptors
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Table 3. Correlation matrix for the eight selected descriptors

Pw2 Moro2m E1v Mor28Vv Behe5 Bic4 More29e X2a

Pw2 1

Mor02m 0.282 1
Elv 0.092 -0.165 1

Mor28V -0.184 0.266 0.237 1

Behe5 0.229 0.144 -0.145 -0.503 1

Bic4 0.446 0.179 -0.114 0.011 -0.265 1

More29e -0.337 0.261 -0.124 0.183 -0.101 0.003 1
X2a -0.474 -0.229 0.026 0.365 -0.538 -0.113 0.222 1

3.5. STANN generation

The networks were generated using the eight descriptors
appearing in the MLR model as their inputs and logIC,,
values as their output. For STANN generation, the data
set was divided into three groups: training, prediction,
and test sets. The training set, comprising 50 molecules,
was used for the model generation. However, the test
set, comprising 10 molecules, was used to maintain the
overtraining. Finally, the validation set, comprising 10
molecules, was used to evaluate the generated model.
It is worth noting that the molecules in the test and
prediction sets were the same as those selected as the
prediction set in the GA-MLR model.

A three-layer network accompanied by a sigmoid
transfer function was designed for each STANN. For
STANN calculations, a program has been written in
Fortran 77 in our laboratory. For optimization of the
weights and bias values, the network was trained by the
back propagation technique using the training set. The
appropriate number of nodes in the hidden layer was
identified by training the network with different numbers
of nodes in the hidden layer, and selecting the optimal
number. The learning rate, momentum and the number
of epochs were then optimized in a similar way; the
optimized conditions were found to be 0.01, 0.95, and
25100, respectively.

To evaluate the effectiveness of the outputs compared
with the target values, the standard error (SE) measure
was used. For evaluating the over fitting, the training
of the network for the prediction of logIC_; should stop
when the SE of the test set begins to increase while SE
of training set continues to decrease. After simulation,
the values of the predicted data were transformed to the
true values, and standard error values were calculated
from the transformed data.

4. Results and Discussion

The main purpose of the present study was to develop
a QSAR model for predicting the activity parameter
(logIC,;) of 2-phenylnaphthalenes, shown in Fig. 2.

This figure and Table 1 illustrate that the inhibitors
encompass six different classes, with completely
different substituents. Moreover, in naturally complex
biological phenomena, these compounds act as
inhibitors of chronic inflammatory diseases. Thus, the
development of an effective and versatile QSAR model
that can accurately predictloglC,; values is required.

At the outset, we developed a linear model of
MLR, envisaging two objectives: first, the selection
of appropriate descriptor variables, which was
accomplished by the use of a multiple linear regression
procedure. Second, we set out to evaluate the
linear link between the bioactivity parameters of
2-phenylnaphthalenes and their molecular structures
and properties. As Table 2 illustrates, 8 descriptors were
selected out of a total of 360: Pw2, Mor02m, E1v, Mor28y,
Behe5, Bic4, Mor29e, and X2a. These descriptors
are classified as topological (Pw2, Bic4 and X2a),
geometric (E1v Mor02m, Mor29e and Mor28v), and
electronic (Behe5) [30]. This suggests that topological,
geometric and electronic features may all play a role in
the inhibitory activities of 2-phenylnaphthalenes.

To examine the relative importance as well as the
contribution of each descriptor in the model, the value of
the mean effect (MF) was calculated for each descriptor.
This calculation was performed with the equation below,
displayed in the last column of Table 2.

e B2,

LYY, ©

MF, represents the mean effect for the considered
descriptor j, B is the coefficient of the descriptor j,
d, stands for the value of the target descriptors for
each molecule and m is the descriptor number in the
model. The MF value indicates the relative importance
of a descriptor compared to the other descriptors in the
model. Its sign corresponds to the variation direction in
the value of the predicted activity as a result of a change
in the descriptor value.
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Table 4. statistical results of STANN model compared to GA-MLR model

MOdeI 2training SEtrainin thast SEtest zprediction SEpradiction
STANN 0.910 0.199 0.939° 0.139°¢ 0.903° 0.194°
GA-MLR 0.825 0.276 - 0.7242 0.305°

@ The number of molecules in the prediction set in GA-MLR model was 20.
® The number of molecules in the prediction set in STANN model was 10.
¢ The number of molecules in the test set in STANN model was 10.

Fig. 4 shows the absolute relative mean effects
for the MLR model. It can be asserted that the Pw2
(topological descriptor) is the most essential parameter
influencing the inhibitory behavior of the molecules. In
the MLR modeling, an R? value for the prediction set
of 0.724 was obtained, which suggests that the model
is able to account for 72.4% of the variances of the
loglC,,. As a second step, the non-linear characteristics
of the descriptors were investigated. Therefore, a self-
training artificial neural network was developed, using
the descriptors appearing in the MLR model as inputs.
It is a common practice to optimize the parameters
of the number of nodes in the hidden layer, learning
rate, and momentum in developing a reliable network.
Furthermore, a type of transfer function was optimized.
In the present work, different numbers of neurons in the
hidden layer were tested at an arbitrary learning rate and
momentum, epochs, and transfer function. The number
of neurons in the hidden layer with the minimum value
of the SE was selected as the optimum number. Then,
learning rate, momentum, epochs, and transfer function
were optimized in a similar way. The experimental and
calculated values of the 2-phenylnaphthalene scaffold
inhibitor activities were analyzed in this work through the
use of MLR and STANN methods, as shown in Table 1.
The results of the STANN model compared to the MLR
model are illustrated in Table 4. As shown, the R? value
for the prediction set rose dramatically from 0.724 for
the MLR models to 0.939 for the STANN model.

The consistency and reliability of a method can
be explored using the cross-validation technique.
The leave-multiple-out (LMO) cross-validation was
carried out for both the MLR and STANN methods. M
represents a group of randomly selected data points
(i.e.10 molecules) which would be left out at the
beginning of the analysis, and would be predicted by
the model developed using the remaining data points. In
the present work, calculations of Q? ,, and SEs for the
training and prediction sets were based on 100 random
selections of groups of 10 molecules (see Table 5). The
cross validation results confirm the results of Table 4.

In order to ensure the robustness of the STANN
model, the Y-randomization test was also performed.
The dependent variable vector (loglC,)) was randomly

25

20

Absolute importance

Mor02m  Efv

More29e

Descriptor

Figure 4. Absolute relative mean effects for MLR model

Table 5. Obtained statistical parameters of L1002 cross-validation
for STANN and GA-MLR models

Model Training set Prediction set
Q2 SE Q2 SE

STANN 0.869 0.223 0.918 0.231

GA-MLR 0.786 0.282 0.802 0.263

2Calculation of Q?
of 10 molecules

L100

was based on 100 random selection of groups

Table 6. R, and @

LOO

values after several Y-randomization tests

Iteration Rz, Q2 o
1 0.355 0.183
2 0.239 0.082
3 0.153 0.055
4 0.078 0.036
5 0.121 0.059
6 0.033 -0.008
7 0.127 0.082
8 0.221 0.151

shuffled and a new QSAR model was developed using
the original independent variable matrix. The new QSAR
model is expected to have low R?, and Q* ., values.
Several random shuffles of the y vector were performed
and the results are shown in Table 6. The R?, and Q?
values indicate that the good results for the STANN
model are not due to a chance correlation or structural
dependency of the training set.
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© Training
= Test
4 prediction

Cal (log IC50)
N
1

Exp (log IC50)

Flgure 5. Experimental LogIC,, versus calculated LogIC, plot

Fig. 5 shows the calculated logIC,, versus experimental
logIC,, for the training, test, and prediction sets. Fig. 6
shows the plot of residuals against the experimental
values of logIC,, for the STANN model. The spread of
the residuals on both sides of zero indicates the lack of
systematic error in the development of the STANNSs.

5. Conclusions

QSAR methodologies have been effectively utilized
for creating an arithmetic link between the bioactivity
of 2-phenylnaphthalene and topological, geometric,
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