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Role of temperature in the numerical analysis of 
CaO under high pressure
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Abstract: In this paper we focus on the elastic and thermodynamic properties of the B1 phase of CaO by using the modified TBP model, including 
the role of temperature. We have successfully obtained the phase transition pressure and volume change at different temperatures. In 
addition elastic constants and bulk modulus of B1 phase of CaO at different temperatures are discussed. Our results are comparable with 
the previous ones at high temperatures and pressures. The thermodynamical properties of the B1 phase of CaO are also predicted.
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1. Introduction
The lower mantle (670-2890 km depth) is the largest 
single region of the Earth’s interior making up 55% of 
its volume. As such, it dominates the process of mass, 
momentum and energy transport in the deep interior 
and hence may have a substantial influence on the 
planet’s thermal and chemical evolution. Despite a 
number of analyses made over several years, the major 
element composition of the lower mantle is still a source 
of controversy. Until the existence of samples from the 
lower mantle can be confirmed, comparison between 
seismological observations and elastic properties of 
potentially relevant minerals and mineral assemblages 
represent the most direct way of extracting information 
regarding the composition and mineralogy of this 
region. Such comparisons are severely hindered by 
the lack of sufficient and reliable elasticity data for the 
relevant phases. The majority of the measurements so 
far are confined to low pressures so that extrapolations 
to the extreme conditions corresponding to the lower 
mantle are needed. Alternatively, the seismic data can 
be extrapolated to ambient conditions for comparison 
with laboratory defined mineral properties. These 

approaches are usually based on a limited subset of 
seismic observations such as the density and seismic 
parameter (or bulk modulus), which are usually known 
from static compression, shock wave, and ultrasonic 
experiments.

CaO is a major constituent in the lower mantle [1], 
and knowing its thermoelasticiy helps us to understand 
the process of brittle failure, flexure and the propagation 
of elastic waves [2,3]. However many of its physical 
properties are still relatively poorly understood. For 
example, its equation of state (EOS) is relatively well 
known only at 298K [4-6], while at high pressures and 
temperatures no experiments are reported. The elastic 
constants were measure d experimentally at pressures 
only up to 1 GPa [7] although elasticity data are available 
over a wide temperature range [8]. Chang and Graham 
[7] investigated several thermodynamical quantities of 
CaO at high pressures. The pressure induced phase 
transition from phase B1 to phase B2 was observed 
in both diamond cell and shock wave experiments at 
high pressures ranging from 53 to 70 GPa [4-6,9]. A 
number of theoretical investigations of structure and 
phase stability of CaO at high pressures indicate that 
the B1-B2 phase transition takes place in a wide range 
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2. Experimental procedure

2.1. Potential model and method of 
calculations 
It is well known that pressure causes changes in crystal 
volume, and consequently it alters the charge distribution 
of the electron shells. As a result, a deformation of the 
overlapping electron shells of the adjacent ions takes 
place, that leads to an increased charge transfer (or three 
body interaction (TBI) [29]). This interaction becomes 
more important to consider due to the decrease in inter-
ionic spacing of the lattice crystal when pressure gets 
increased and when ions experience sufficient overlap. 
This overlapping leads to the transfer (or exchange) 
of charge. Besides, enhance in overlap energy, the 
transferred charge due to overlap in electron shells, 
modifies the coulomb energy by (1+(2n/z) f(r)), where n 
and z are the number of electrons in outermost shell and 
ionic charge of compound. The f (r) is the TBI parameter 
and dependent on the nearest neighbor distance (r) [29] 

(1)

The effect of TBI is introduced in the expressions of 
Gibbs free energy (G = U+PV-TS), in order to obtain 
the stability condition for a crystal structure. Here, U 
is the internal energy, which at 0 K is equivalent to 
the lattice energy, and S is the entropy. Since the 
theoretical calculations are done at 0 K, the Gibbs 
free energy is equivalent to enthalpy (H). This is 
not the realistic approach because experiments are 
carried out at room temperature. This fact causes 
discrepancy in comparability of theoretical results 
with experimental data. To obtain better comparability 
the room temperature was taken into account in 
pressure induced theoretical calculations. The Gibbs 
free energies for rock salt (B1, real) and CsCl (B2, 
hypothetical) structures at room temperature 300 K 
are given by:

(2)
		

(3)

With VB1 (=2.00r3) and VB2 (=1.54r’3) as unit cell volumes, 
S1 and S2 are the entropies for B1 and B2 phases, 
respectively. The difference in free energy between two 
phases 

of predicted pressures [10-18]. Correspondingly, first 
principle computer simulations have been increasingly 
employed for exploring various properties of the Earths 
materials under the geophysical relevant conditions. 
The full potential linear muffin-tin-orbital (FP-LMTO) was 
used to study the elastic properties and their pressure 
dependence of four B1-type alkaline earth oxides at 
high pressures [19]. Recently Karki and Crain [12] 
have performed plane wave pseudopotential (PPWP) 
calculations to predict single crystal elastic constants of 
CaO as a function of pressure up to 140 GPa.

Shanker et al. [20] investigated the theory of thermal 
expansivity and bulk modulus for MgO, CaO and other 
minerals in the temperature range 300-1800K using 
the Gruneisen theory of thermal expansion. Karki et al. 
investigated the elastic instabilities in crystal (MgO, CaO) 
from ab-initio stress strain relations [21], vibrational and 
quasiharmonic thermal properties of CaO under pressure 
using first principles [22] and structural and elastic 
properties of MgO periclase were studied up to 150 GPa 
with the first principle pseudopotential method within the 
local density approximation [23]. Alfredsson et al. [24] 
investigated the structural as well as elastic properties 
and magnetic phase transitions in simple oxides using 
hybrid exchange functionals within DFT. Yamanaka 
et al. [25] performed the X-ray powder diffraction 
measurements of CaO at pressure and temperature of 
B1-B2 phase transition. Ye Deng et al. [26] investigated 
the elastic properties of CaO by ab-initio plane wave 
pseudopotential density functional theory calculation. 

Studies of Cohen and Gordon [27] were based on two 
body potentials and could not explain Cauchy violations 
(C12≠C44), which are significant in all the divalent metal 
oxides (DMO). The need of inclusion of three body 
interaction forces was emphasized by Sims et al. [28] 
for the better matching of results. Thu, it is evident that a 
realistic model potential for DMO must include the effect of 
three-body potential (TBP) [29] and van der Waals (vdW) 
interactions. Tosi and coworkers [30] have demonstrated 
the significance of van der Waals attraction due to the 
dipole-dipole (d-d) and dipole-quadrupole (d-q) interactions 
to depict the cohesion in ionic solids. According to Varshney 
et al. [31], the vdW interactions are the corner stone which 
are ignored in the first principle calculations.

In the present paper, we used the three body 
potential model with including the temperature effect. We 
have studied the phase transition pressure and volume 
change of CaO at different temperatures. The second 
order elastic constants (SOECs) which we calculated at 
T=300 K have been calculated for different pressures. 
The main aim of this potential is a critical assessment of 
the performance of this potential in predicting the phase 
transition and high pressure behavior of CaO. 
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 			     (4)

should approach to zero. It is a condition for a phase 
transition.
The first terms in Eqs. 2 and 3 are lattice energies for B1 
and B2 structures and they are expressed as:

		
		

                        
(5)                                                                                

  (6)

Where αm and α’m are the Madelung constants for NaCl 
and CsCl structure respectively. C (C’) and D (D’) 
are the overall van der Waals coefficients of B1 (B2) 
phases, βij (i,j=1,2) are the Pauling coefficients. Ze is 
the ionic charge and b (ρ) are the hardness (range) 
parameters, r(r’) are the nearest neighbor separations 
for NaCl (CsCl) structure fm(r ) is the modified three body 
force parameter which includes the covalency effect with 
three body interaction; ri (rj) are the ionic radii of ions i (j). 
S1 and S2 are the entropies and <ω2>1/2 is the mean square 
frequency related to the Debye temperature (θD) as 

 <ω2>1/2=kθD/h 			                           (7)	
   

					                          
here, θD can be expressed by well known Blackman’s 
formula described in [14] 

 θD = (h/k) [(5rBT)/µ]1/2 		                            (8)

where BT and µ are the bulk modulus and reduced mass 
of the compound.

The first terms in Eqs. 5 and 6 are long range 
Coulomb energies, second terms appear due to 
three body interactions corresponding to the nearest 
neighbor separation r(r’) for B1 (B2) phases; third 
terms appear due to vdW interaction, fourth terms 
are the energies of the overlap repulsion represented 
by Born-Mayer potentials for (i,j) ions, fifth and sixth 
terms are the overlap repulsive terms extended up to 
the second neighbor ions by using Hafemeister and 
Flygare (HF) type potential. Seventh term indicates the 
zero point energy effect and the last term indicate the 
room and higher temperature effect. Now the entropy 

differences in the last term of Eqs. 5 and 6 can be 
calculated from the relation used in our earlier work 
[32]:					                         

  		   (9)

where, 1 and 2 stand for the B1 and B2 phases, C1 
and C2 are the specific heats of the two phases at 
constant pressure, their values can be calculated 
knowing Gruneisen parameter (γ) and linear isothermal 
temperature coefficients (β):

 		                                                  	
		
			   (10)

Gruneisen parameter (γ) can be calculated with well 
known formula as follows [33] 		   

 	 (11)

 In order to access the relative merit of the present 
potential, we have calculated the compressibility 
(β), molecular force constant (f), infrared absorption 
frequency (υ0), Debye temperature (θD), which are 
directly derived from the cohesive energy, Ф(r). Their 
expressions [34] are given below for reference.
 The compressibility is well known to be given by
  

	 				    (12)

in terms of molecular force constants
			 
			 
             	  (13)

where Фkk’
SR(r) is the short range nearest neighbor 

(k≠k’) part of Ф (r) given by the last three terms in Eqs. 
3 and 4. Using force constant ƒ and infrared absorption 
frequency the reduced mass (µ) of the oxide crystals 
could be calculated:				  
			                                     

 			   (14)

This frequency gives us the Debye temperature
                                                                             
					   
      	  			   (15)
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where h and k are the Planck and Boltzmann constants, 
respectively.

3. Results and discussion

The Gibb’s free energies contain three model parameters 
[b, ρ, f(r)]. The values of these parameters have been 
evaluated using the first and second order space 
derivatives [35-37] of the cohesive energy (U) expressed 
after choosing an appropriate value of ρ as:

0

0
r r

dU
dr =

  =  

0

2

02 9 T
r r

d U kr B
dr

=

 
= 

 

The values of input data and model parameters are 
listed in Table 1 [38]. In order to obtain the structural 
phase transition, we have followed the technique of 
minimization. By minimizing UB1 (r) and UB2 (r’) at different 
pressures we obtained the interionic separations r and r’ 
associated with minimum energies for B1 and B2 phases, 
respectively. We have evaluated the corresponding 
GB1(r) and GB2 (r ’) and their respective differences 
∆G (= GB1(r) - GB2 (r’)). 

As the pressure increases the value of ∆G decreases 
and approaches zero at the transition pressure. Beyond 
this pressure ∆G becomes negative as the phase B2 
becomes stable. These differences have been plotted 
against pressure (P) in Fig.1 for CaO at different 
temperatures. The phase transition pressures and 
volume changes obtained from the model are presented 
in Table 2. The values of volume changes of CaO are 
compared with Shankar et al. [20] in different temperature 
ranges. Our values show the same trend. The volume 
change of CaO is plotted at different temperatures in 
Fig. 2. Our results are compared with other theoretical 
data [20]. The solid lines of presented results show the 
same trend as given in [20]. Also the volume collapses 
at phase transition pressure for different temperatures 
have been plotted in Fig. 3 and compared with the 
theoretical and experimental work of Karki et al. [22]. It 
is clear from the figure that our values are close to the 
theoretical and experimental ones [22].

The B1-B2 phase transition was confirmed with 
increasing and decreasing pressure at several 
temperatures. The measurement of the B1-B2 transition 
pressure in NaCl at high temperatures is observed by 
Li et al. [39], using the diamond anvil cell. Also Bassett 

et al. [40] studied NaCl by shock wave (Hugoniot) 
measurements. As temperatures in the shock 
experiments were estimated to about 1000 K higher 
than in the static experiments, they concluded that the 
pressure temperature (P-T) Clapeyron slope of the 
phase boundary must be negative. As reported by Karki 
et al. [22] the calculated transition pressure decreases 
with increasing temperature, thus showing a negative 
Clapeyron slop. This phase boundary should indeed have 
a negative slope since the entropy increases across this 
phase change. Not only the entropy increases but also 
thermal expansion coefficient (α) and specific heat (Cp) 
increase across the transition. The variation of phase 
transition pressure with temperature is plotted in Fig. 4. 
It is clear that the phase transition pressure decreases 
monotonically when the temperature increases. The 
phase transition pressure becomes smaller 62 GPa 
(T=0 K), 61.4 GPa (T=300 K), 59.3 GPa (T=500 K), 
57.6 GPa (T=700 K), 55.7 GPa (T=900 K) and 54 GPa 
(T=1200 K) as the temperature increases. Comparison 
of the pressure-temperature slope obtained in this work 
and the one described in [22] shows great similarity. 

The elasticity of the minerals at high pressure is of 
substantial physical and geological interest for several 
reasons. First, our most precise and informative observations 
of the bulk of the earth are from its elastic properties. Second, 
the geometry of mantle flow can be clarified by comparing 
seismological observations of mantle anisotropy with the 
measured or predicted anisotropy of hypothesized mantle 
phases. Finally, the elasticity of mineral yields substantial 
insight into the nature of bonding. 

To test the mechanical stability of our model, the 
elastic properties of proposed materials were computed. 
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Also, we could reproduce the correct sign of the elastic 
constants (C11-C12) and C44. C11 represents a measure 
of resistance to deformation by a stress applied on 
(1,0,0) plane with polarization in the direction <100>. 
C44 represents the measure of resistance to deformation 
with respect to shearing stress applied across the 
(1,0,0) plane with polarization in the <010> direction. 
The elastic constant C11 represents elasticity in length. 
A longitudinal strain produces a change in C11. The 
elastic constants C12 and C44 are related to the elasticity 
in shape, which is a shear constant. A transverse strain 
causes a change in shape without a change in volume. 
Therefore, C12 and C44 are less sensitive to pressure as 
compared to C11. As pressure increases C11, C12 and 
B (bulk modulus) of the B1 phase at zero temperature 
increase, but C44 decreases monotonically.

The values of second order elastic constants 
(SOEC,s) at different pressures (at T=300 K) are given 
in Table 3. The variation of SOEC,s with pressure are 
plotted in Fig. 5. Table 3 and Fig. 5 show that in case of 
CaO C11 varies largely under the effect of pressure as 
compared to the variations in the C12 and C44. 

Besides thermo physical properties of CaO at 
T=300 K were calculated and listed in Table 4. The 
thermo physical properties provide us the interesting 

information about the substance. The Debye 
characteristic temperature θD reflects its structure 
stability, the bonds strength between its separate 
elements, structure defects availability (dislocations 
in crystalline structure of mineral grains, pores, micro 
cracks) and its density. Compressibility is used in the 
earth science to quantify the ability of a soil or rock 
to reduce in volume with applied pressure. Thermo 
physical properties have been computed with the help 
of model parameters and input data listed in Tables 1-3. 
the bulk modulus at T=300K has been compared to the 
experimental [8] and other theoretical results [22]. 

4. Conclusions

There is reasonably good agreement of the proposed 
modified model with the results of other theoretical data 
[20]. The success achieved in the present investigation 
can be ascribed to the realistic approach of our model. The 
charge transfer effect seems to be of great importance at 
high pressure when the inter-ionic separation reduces 
considerably and the coordination number increases. 

Compound
ri

(Å)
rj

(Å)
r

(Å)
BT 

(GPa)
b

(10-12 ergs)
ρ

(Å)
f

(r)

CaO 1.06a 1.40a 2.405a 110b 7.52 0.925 -0.624

Table 1. Input data and model parameters of the crystal.

a[38];  b[6]
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Figure 2. Variation of volume change VP/V0 with temperature. Figure 3. Variation of Δ V/V0 with temperature.
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P C11 C12 C44

0 215.13 66.94 77.82

20 393.21 91.85 76.49

40 562.65 116.74 71.49

60 721.04 140.21 64.97

61 728.39 141.26 64.56

62 739.31 145.5 64.35

63 747.69 147.01 63.85

54 753.07 145.68 63.4

65 763.07 148.94 63.07

70 803.84 155.76 61.09

75 843.02 162.42 59.1

80 881.68 167.63 56.78

100 1037.7 194 47.46

Table 3. Elastic constants at T=300 K of CaO.

Temperature 
(K)

Phase 
transition 
pressure 

(GPa)

Volume change 
(V/V0)

0
(Present)
(Others)
(Expt.)

62
56a

53-70b

1.0000
1.0000d

1.0000b

300
(Present)
(Others)

61.4
60c

1.0027
1.0033d,1.0033e, 1.0033f

500
(Present)
(Others)

59.3
-

1.00589
1.00681d, 1.0068e, 1.0066f

700
(Present)
(Others)

57.6
-

1.0105
1.0143d, 1.0141e, 1.0145f

Table 2. Phase Transition pressure and volume change at different 
temperatures.

a[22]; b[4-6]; c[25]; d[20], Eq. 11; e[20], Eq. 12; f[20], Expt.
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Figure 5. Variation of elastic constants with pressure at T=300 K.

a[22]; b[8]

Compound BT ƒ (104dyn cm-1) θD (K) υ0 (1012 Hz)

CaO
(Present)
(Others)
(Expt.)

116.33
121a

111b, 115b

2.1630
-
-

682.67
-
-

6.749645
-
-

Table 4. Thermal properties of CaO at temperature T=300 K



Role of temperature
 in the numerical analysis of CaO

 under high pressure 

132

Finally, it may be concluded that the present 
modified three body potential model (MTBP) is suitable 
for describing the phase transition phenomena and 
elastic properties of CaO. The inclusion of three body 
interactions with temperature effect has improved the 
prediction of phase transition pressures over those 
obtained from the two-body potential and TBI without 
temperature effect. 
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