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Abstract: A new differential pulse voltammetric method for dopamine determination at a bare glassy carbon electrode has been developed. 
Dopamine, ascorbic acid (AA) and uric acid (UA) usually coexist in physiological samples. Because AA and UA can be oxidized at 
potentials close to that of DA it is difficult to determine dopamine electrochemically, although resolution can be achieved using modified 
electrodes. Additionally, oxidized dopamine mediates AA oxidation and the electrode surface can be easily fouled by the AA oxidation 
product. In this work a chemometrics strategy, partial least squares (PLS) regression, has been applied to determine dopamine in the 
presence of AA and UA without electrode modification. The method is based on the electrooxidation of dopamine at a glassy carbon 
electrode in pH 7 phosphate buffer. The dopamine calibration curve was linear over the range of 1 – 313 µM and the limit of detection 
was 0.25 µM. The relative standard error (RSE %) was 5.28%. The method has been successfully applied to the measurement of 
dopamine in human plasma and urine.
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1. Introduction
3, 4 - Dihydroxyphenyl ethylamine, commonly known as 
dopamine (DA), is an important neurotransmitter in the 
mammalian central nervous system [1]. It is an unstable 
phenolic compound which undergoes oxidation by O2 

in neutral or alkaline solutions to dopaminochrome 
and other polymeric compounds [2-4]. DA presents 
as a cation in acidic solution (pKa ca. 8.87) [5]. The 
electrochemical oxidation of DA in aqueous solution 
occurs as a two-electron ECE reaction [6]: 
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DA plays a significant role in the cardiovascular, 
renal, hormonal and central nervous systems. DA 
dendrites extend into various regions of the brain, 
controlling different functions through the stimulation of 
α and β adrenergic and dopaminergic receptors (D1 and 
D2) [7-9]. It is thought to control processes as diverse as 
movement and drug addiction.

Quantitative determination of DA in human 
physiological fluids is of considerable significance in 
both biochemical investigations and clinical diagnoses. 
Methods include chemiluminescence [10], fluorimetry [11], 
ultraviolet-visible spectrometry [12], and capillary 
electrophoresis - luminescence [13]. Because of its 
electrochemical activity, DA can also be determined by 
electrochemical methods. These have attracted great 
interest because they can be fast, low cost, and give 
low detection limits and high accuracy [14]. 

DA, ascorbic acid (AA) and uric acid (UA) usually 
coexist in physiological samples such as blood and 
urine [15], and the AA concentration (0.2–0.4 mM) is 
generally 100 to 1000 times that of DA.  This makes it 
difficult to detect DA electrochemically because AA and 
UA can be oxidized at a potential close to that of DA 
at bare electrodes. Additionally, oxidized DA mediates 
AA oxidation, and the electrode surface can be easily 
fouled by the AA oxidation product [16]. Therefore, it 
is essential to develop simple and rapid methods for 
their determination in routine analysis. A major problem 
in DA determination is the resolution between DA 
and coexisting species such as (AA) and (UA). The 
concentration of AA is generally much higher than that 
of DA (100 to 1000 times) [12]. UA and AA also coexist 
in biological fluids, such as blood and urine [19]. The 
significant problem encountered with the detection of 
DA arising from the low concentration levels of DA and 
the primary interference from AA (0.2–0.4 mM) and UA, 
which largely co-exist with DA and have overlapping 
voltammetric response at bare electrodes. However, in 
assay of DA, the electrochemical methods suffer from 
inferior selectivity because of the presence of AA and UA 
that have higher concentrations than DA in physiological 
fluids and whose oxidation potentials always are close 
to that of DA. Therefore it is important to separate the 
oxidation peak potentials of DA and AA or UA [17]. 
Electrochemical methods have been widely used for 
determination of DA in the presence of AA and UA. All 
require modification of the electrode surface [18-20].

The present work is an effort to develop a simple and 
accurate electrochemical procedure for the determination 
of DA using an umodified glassy carbon electrode as 
a conventional working electrode. A chemometrics 
method, partial least squares (PLS) regression, was 

used for modeling and prediction. Since the charging 
due to background current is a limiting factor in the 
analytical determination of any electroactive species, 
all experiments were carried out using differential pulse 
voltammetry (DPV). 

1.1 Theory of PLS regression
PLS regression (PLSR) can allow simultaneous 
electrochemical determination of several species as 
well as improve data analysis for complex chemical 
systems [21-22]. It generalizes and combines features 
from principal component analysis (PCA) and multiple 
regression. It is particularly useful when we need to 
predict a set of dependent variables from a (very) 
large set of independent variables (i.e. predictors) [23]. 
PLSR is a particular type of multivariate analysis which 
uses the two-block predictive PLS model to model the 
relationship between two matrices, X and Y. Because 
PLSR models the structure of X and of Y it gives richer 
results than the traditional multiple regression approach 
[24-26]. PLSR is of particular interest because it can 
analyze data with strongly collinear (correlated), noisy, 
and numerous X-variables, and also simultaneously 
model several Y-response variables [23].

In electrochemical methods such as DPV, the 
measured current at a given potential is a function of 
analyte concentration. By recording DPVs of several 
samples a two-dimensional data matrix (matrix: number 
of samples × number of recorded potentials) can be 
obtained. 

The first step in principal component regression 
(PCR), is a PCA that decomposes the data matrix into two 
small matrices, Score and Loading (eigenvectors). The 
second step of PCR is a regression of the score matrix 
against the analyte(s) concentration(s). In comparison, 
PLS actually uses the concentration information during 
the decomposition process and the decomposition and 
regression are done simultaneously. The main idea of 
PLS is to get as much concentration information as 
possible into the first few loading values.

The main tool in both PCR and PLS is regression of 
the concentration matrix (Y) against the data matrix (X). 
PCR approximates X by a few (R) principal components 
and regresses Y on these R components. PCR can thus 
be written as:

X = Tx P’ + Ex     

Y = Ty B + Ey

where Tx and P’ are the Score and Loading matrices of the 
response matrix, X, and Ty and B are the Score and Loading 
matrices of the concentration matrix, Y, respectively. 
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PLS regression finds components that compromise 
between fittings of X and predicting Y. The general idea 
of PLS regression is to approximate X by a few (R) 
specifically constructed components and to regress Y 
on the R components. Hence, PLS regression tries to 
model X and Y using the common components T:

X = T P’ + Ex     

Y = T Q’ + Ey

Where T is a matrix of Score, P is a matrix of X-loading, 
Q is a matrix of Y-loading, Ex and Ey are residual matrices 
[27]. 

PLS calibration of a multi-component system can 
be performed in two different ways, PLS-1 and PLS-2. 
The use of PLS-2 has a few advantages. First, there 
is one common set of PLS factors for all analytes, 
simplifying the procedure and interpretation and 
enabling simultaneous graphical inspection. Second, 
when the analyte concentrations are strongly correlated 
the PLS-2 model is more robust than separate PLS-1 
models. Finally, when the number of analytes is large, 
the development of a single PLS-2 model is done more 
quickly than development of many separate PLS-1 
models. Practical experience, however, indicates that 
PLS-1 calibration usually performs equally well or 
better in terms of predictive accuracy. Thus, when the 
best possible prediction is required a separate PLS-1 
regression for each analyte is advised [27].

In data analysis, there is a strong tendency to delete 
variables that do not fit the current model. This is risky and 
should usually be avoided. In particular, PLS modeling 
is little affected by noise variables in the model, as long 
as a small set of variables supports the model [28]. 
PLSR is a very versatile data analysis approach which 
can be even more useful with extensions / modifications 
required by special types of data.

2. Experimental Procedures
2.1. Materials and reagents
AA, DA and UA were obtained from E. Merck (Darmstadt, 
Germany). Stock solutions of these components  
(10-3 M) were freshly prepared. Phosphate buffer (1 M, 
pH=7) was prepared by dissolving suitable amounts of 
K2HPO4 and KH2PO4. Human plasma and urine samples 
were obtained from a nearby hospital. All reagents were 
of analytical grade and solutions were prepared using 
doubly distilled water.

2.2. Apparatus
An Autolab PGSTAT30 potentiostat-galvanostat 
equipped with a Metrohm Model 663 VA Stand was 
used to record the voltammograms. Three-electrode 
systems with a glassy carbon wire counter electrode, 
an Ag | AgCl | 3 M KCl reference electrode and a 2 mm 
glassy carbon (GC) working electrode were purchased 
from Metrohm. The working electrode was polished with 
alumina powder (0.05 µm) for 1 min and washed with 
water before use. The pH was measured with a Metrohm 
digital pH meter using a combination glass electrode.

2.3. Procedure
Suitable amounts of 10-3 M stock analyte (AA, UA and 
DA) were transferred into an electrochemical cell. 1 mL 
buffer solution (phosphate, pH = 7) was added and the 
mixture was diluted to 10 mL using doubly distilled water. 
The solution was mixed thoroughly and the potential 
was scanned from –70 to 298 mV vs. the Ag | AgCl 
reference electrode. DPV with pulse amplitude of 50 mV 
and increment steps of 5 mV was used. The current 
at 75 potential values was measured for each sample 
and used for PLS calibration. The peak current of each 
analyte was used to construct individual calibrations.

2.4. Analysis of biological samples
Plasma samples were deproteinized with 2 M 
phosphoric acid [33] and centrifuged for 5 minutes 
before voltammetric measurements. 

3. Results and Discussion
3.1. The effect of pH on oxidation of AA, UA 

and DA
On increasing the pH the oxidations of AA, UA and DA 
shifted toward negative potentials. As can be seen in 
Fig. 1, the peak current for AA increases up to pH 4.0 
and then decreases. Maximum peak currents for DA 
and UA appear at pH 7.0 and 9.0, respectively. Since 
our objective was DA, pH 7 was selected. The effect of 
buffer concentration on AA, UA and DA peak currents 
was also studied; 0.1 M phosphate was the optimum.

3.2. Effect of ionic strength 
At pH 7 and in the absence of phosphate buffer, the 
effect of ionic strength was studied by changing the 
concentration of KCl and NaCl over the range 0.005–0.5 M. 
The analyte peak currents increased with increasing 
KCl or NaCl concentration up to 0.1 M and remain 
nearly constant at higher concentrations. There was no 
significant difference between KCl and NaCl. The peak 
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currents in these solutions were equal to those in 0.1 M 
phosphate buffer. Therefore the ionic strength was fixed 
using the 0.1 M phosphate buffer.

3.3. Voltamogram reproducibility 
The GC electrode is fouled by adsorption of oxidized AA 
[29-31]. Rueda et al. [32] studied the oxidation of AA on 
a gold electrode over a wide pH range and proposed 
that AA is oxidized to dehydroascorbic acid (DHAA) via 
the radical anion intermediate monodehydroascorbic 
acid. The DHAA carbonyl adds water forming 
hydrated dehydroascorbic acid, DHAA•H2O, which is  
electro-inactive [32]. Therefore, it is reasonable that 
adsorption of oxidized AA on a GC electrode may disturb 
the oxidation of UA and/or DA. 

The cyclic voltammograms obtained under these 
optimized conditions (Fig. 2) show that acceptable 

results for 30 µM DA in the presence of 200 µM AA and 
45 µM UA could be obtained for 10 repeated cycles 
using a bare electrode without polishing. As can be 
seen, no significant changes in peak currents were 
obtained (RSD < 5%). 

Because differential pulse voltammetry was used 
the electrode was polished before each scan to prevent 
fouling.

3.4. Individual calibration
Individual calibration graphs were constructed as peak 
current vs. concentration. The curve for DA was linear 
over the range of 3 – 313 µM. The characteristics of 
the individual DA calibration are shown in Table 1 and  
Fig. 3. The linear ranges for individual determinations of 
AA and UA were 3 – 150 and 5 - 250 µM, respectively.

Figure 1. Effect of pH on peak currents of AA, UA and DA. Figure 3. Dopamine individual calibration.

Figure 2. Cyclic voltammograms of a mixture of DA (30 µM),  
AA (200 µM) and UA (45 µM) in 0.1 M pH 7 phosphate 
buffer, (10 cycles). Scan rate = 100 mV s-1, step potential 
= 2.5 mV.

Figure 4. Differential pulse voltammograms of DA (3.5 µM), AA (60 µM) 
and UA (2 µM) and mixture (7.2 µM DA, 66.5 µM AA and 
4 µM UA) at a bare glassy carbon electrode in 0.1 M pH 7 
phosphate buffer, step potential = 2.5 mV.

Table 1. Characteristics of the dopamine individual calibration

Analyte Regression Equationa R2 LOD (µM)b LOQ (µM)c Linear Range (µM)
Dopamine Y = 0.1093C + 0.2586 0.9935 1.1 3 3 – 313

a Y is the peak current (µA) vs. C, dopamine concentration (µM). The standard deviations were 0.0033 and 0.433 for the slope and intercept, respectively.
b Limit of detection 
c Limit of quantification
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3.5. PLS Calibration
Typical differential pulse and cyclic voltammograms of 
AA, DA and UA are in Figs. 4 and 5. As can be seen, the 
voltammograms overlap. In such cases, voltammetry 
using modified electrodes has been used for their 
simultaneous determination in real samples [33-34]. 
In this work, instead of a time consuming modification 
step, PLSR was applied to the determination of DA in 
the presence of AA and UA.

The first step is construction of the calibration set 
for the ternary mixture AA-UA-DA. The components 
in the calibration mixtures must span all dimensions. 
Correlation between the calibration samples must be 
avoided because collinear components in the training 
set cause under-fitting in the PLS models. 

The potential region between -66.9 and 298 mV, with 
75 experimental points per i - E curve was selected. A 
training set of 30 standard samples was used (Table 2). 
Fig. 6 shows their differential pulse voltammograms. 

The model was validated with a test set of 10 synthetic 
mixtures containing different proportions of AA, UA 
and DA. All standard and test solution concentrations 
were randomly chosen within the linear range for each 
analyte. Table 3 presents the synthetic ternary mixtures, 
and their predicted concentrations and recoveries (%) 
for DA using the PLS-1 model constructed. Fig. 7 shows 
the predicted vs. known DA concentrations. The slope 
and R2 are close to 1 and the intercept is negligible, 
demonstrating the validity of the model’s predictions. 
Fig. 8 shows the predicted vs. known DA concentrations 
given by this model when its intercept was set equal to 
zero. The slope and R2 remain close to 1; the conclusion 
is unaltered.

The applicability of a calibration model can be 
evaluated in various ways. The prediction error of 
a single component in the mixtures was calculated 
as the relative standard error (RSE) of the predicted 
concentration [35-36]: 

Figure 5. Cyclic voltammograms of DA (84 µM), AA (850 µM) and 
UA (65.5 µM) and mixture (120 µM DA, 1055 µM AA 
and 180 µM UA) at a bare glassy carbon electrode in 
0.1 M pH 7 phosphate buffer, step potential = 2.5 mV,  
Scan rate = 100 mV s-1.

Figure 6. Differential pulse voltmmogrms of mixtures of AA, UA 
and DA used as calibration set for PLS modeling, step 
potential = 2.5 mV.

Figure 7. Predicted vs. known concentration of DA using PLS-1 
model with 5 components.

Figure 8. Predicted vs. known concentration of DA using PLS-1 
model with 5 components (intercept set equal to zero).
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(1)

where N is the number of samples, Cj the concentration 
of the component in the jth mixture and Ĉj the estimated 
concentration.

To select the number of factors in the PLS algorithm 
a cross-validation method leaving out one sample at a 
time was employed. For the set of 30 calibration curves, 
PLS-1 calibration on a 29-member calibration set was 
performed and using this calibration the concentration 
of the sample omitted was calculated. This process 
was repeated 30 times; each sample was omitted 
once. The predicted concentration of each sample was 
then compared with its known value and the prediction 
residual error sum of squares (PRESS, Eq. 2) was 
calculated. Fig. 9 shows the plot of the PRESS versus 
the number of factors for each individual component. 
The F test showed the optimal number of factors was 5.

	
(2)

3.6. Application of the method
The PLS method was successfully applied to the 
measurement of DA in the presence of AA and UA in 
human plasma and urine. Results (average of three 
replicate determinations) are presented in Table 4. 
The recoveries are close to 100% and indicate that the 
method was successful.
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Table 2. Calibration solution composition.

Calibration Solution AA  (µM) UA  (µM) DA  (µM) 
1 100 20 5
2 133 226 111
3 50 16 313
4 50 226 313
5 0 6.6 0
6 133 10 5
7 133 113 313
8 3.3 20 3.3
9 100 226 6.6
10 66 23 3.3
11 66 6.6 208
12 100 6.6 3.3
13 3.3 20 111
14 66 6.6 0
15 66 20 1
16 66 113 0
17 66 113 111
18 0 23 313
19 3.3 113 208
20 133 23 3.3
21 3.3 16.6 3.3
22 0 0 3.3
23 3.3 16.6 0
24 133 26 3.3
25 100 0 35
26 116 113 111
27 3.3 6.6 30
28 116 23 111
29 83 6.6 5
30 0 6.6 1
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Figure 9. Plot of PRESS against the number of factors for dopamine 
(calculated according to Eq. 2).
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Table 3. Composition of synthetic ternary mixtures of DA, UA and AA, the prediction of DA, its recovery obtained by the PLS-1 model and the 
statistical parameters for the system.

Synthetic samples (µ M) Prediction Samples (µ M) Recovery (%)
DA AA UA DA DA

1 111.6 133 20 111.3 99.73
2 111.6 66 23 139 124.55
3 30 83 10 33 110
4 313.3 133 13 331.5 105.8
5 313.3 133 23 315.7 100.76
6 30 133 26 28 93.33
7 6.6 66 26 4.7 71.21
8 313.3 83 23 306.1 97.7
9 313.3 116 26 330.6 105.52

10 208.3 133 100 217.5 104.41
Mean Recovery - - - - 101.301

RSEa (%) - - - - 5.28

a calculated using Eq. 1

Table 4. Results of analysis of DA in human plasma and urine samples.

Sample Spiked (µM) Found ± std, (n=3) Recovery (%)
DA AA UA DA DA

Plasma sample (a) 3.59 100 20 3.72   ±  0.176 103.62
Plasma sample (b) 30 133 26 28 ± 1.2 93.33
Urine sample (a) 9.79 66 10 9.53 ± 0.257 97.34
Urine sample (b) 30 133 26 32.2 ± 1.8 107.33

Table 5. Comparison of the linear range and detection limit with previous work.

Method Linear Range Electrode Detection Limit References
differential pulse
voltammetry

0.8 - 8  µM Oracet blue modified glassy carbon
electrode

0.02 µM [1]

differential pulse
voltammetry

2 - 1500   µM Carbon - ionic liquid electrode 1 µM [8]

differential pulse
voltammetry 40 nM to 3 µM

poly(acrylic acid)-multiwalled
carbon-nanotube composite-covered glassy-

carbon electrode

20 nM [17]

RRDE voltammetry 80 - 2080 µM ruthenium oxide modified electrode Not reported [19]
differential pulse
voltammetry

5 - 25 µM poly (p-nitrobenzenazo resorcinol)
modified glassy carbon electrode

0.3 µM [38]

differential pulse
voltammetry 0.5 - 160  µM

palladium nanoparticle-loaded carbon 
nanofibers modified electrode

0.2 µM [39]

linear sweep 
voltammetry

19.5 - 2285  µM bare glassy carbon electrode Not reported [37]

differential pulse
voltammetry

0.1 - 200 µM poly(eriochrome black T)
modified glassy carbon electrode

20 nM [40]

differential pulse
voltammetry

1 - 313 µM bare glassy carbon 0.25 µM This work

4. Conclusion
This method for measurement of DA in the presence of 
AA and UA using PLS regression is new, reliable, simple, 
cheap and precise. The time and reagent consuming 
electrode modification has been avoided. The method 
successfully determined DA in human serum and 
urine over a wide range of concentrations, showing its 
applicability to real samples. The reproducibly of the 
method is good; RSE % for determination of DA in the 
presence of AA and UA was 5.28%.

The method was compared with several recent 
attempts to determine DA in the presence of AA and/or 
DA (Table 5). In most of this work the overlapping DA, 
AA and UA peak currents have been separated using a 
modified electrode, while this method solves the problem 
by using a conventional glassy carbon electrode and 
applying PLSR. The method shows a higher sensitivity 
than some methods [8,23,27] or moderately less than 
others [1,19,37,40]. The limit of detection (LOD) of the 
method was 0.4 µM dopamine, comparable with the 
reported methods.
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