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Abstract: The half-wave potential (E1/2) is an important electrochemical property of organic compounds. In this work, a quantitative structure–
property relationship (QSPR) analysis has been conducted on the half-wave reduction potential (E1/2) of 40 substituted benzoxazines by 
means of both a heuristic method (HM) and a non-linear radial basis function neural network (RBFNN) modeling method. The statistical 
parameters provided by the HM model (R2 =0.946; F=152.576; RMSCV=0.0141) and the RBFNN model (R2=0.982; F=1034.171 and  
RMS =0.0209) indicated satisfactory stability and predictive ability. The obtained models showed that benzoxazines with larger Min  
valency of a S atom (MVSA), lower Relative number of H atom (RNHA) and Min n-n repulsion for a C-H bond (MnnRCHB) and Minimal 
Electrophilic Reactivity Index for a C atom (MERICA) can be more easily reduced . This QSPR approach can contribute to a better 
understanding of structural factors of the organic compounds that contribute to the E1/2, and can be useful in predicting the E1/2 of 
other compounds. 
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1. Introduction
With the development of synthetic chemistry, a large 
number of new compounds are synthesized every 
year. Physicochemical properties, biological activities 
and other properties of these compounds are required 
to be determined. So far, there are many methods to 
investigate the properties mentioned above. However, 
many of these compounds are not tested for fundamental 
or relevant thermodynamic and physicochemical 
properties or biological activities, which still remain 
unknown due to unavailability or handling difficulties 
(toxicity, odor, instability, solubility etc.). 

At the present time, quantitative structure–property 
relationships (QSPR) are increasingly employed in the 
prediction of chemical and physical properties of different 
types of molecules [1-8]. The main task of QSPR is to 
obtain a reliable model for the prediction of properties/
behaviors of new chemical substances and analytical 

systems. These relationships derive correlations between 
the structural similarities of individual compounds and 
their biological activity/chemical properties. 

The half-wave potential (E1/2), which is an 
important electrochemical property for a reversible  
oxidation–reduction system, can be useful for predicting 
other electrochemical properties and activities of 
organic compounds. In the reduction of many organic 
compounds, the reaction is a one-electron process that 
produces a radical anion, Q•–, according to the following 
equation:

Q + e = Q•–        		       (1)

However, because Q•– is generally reactive, its lifetime 
varies over a wide range, depending on its intrinsic 
reactivity and experimental conditions, such as the 
type of solvent, complex formation, and other chemical 
reactions [9]. Nesmerak et al. have demonstrated a 
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QSPR method for the prediction of E1/2 of benzoxazines 
[10]. In [10] the correlation equation was developed 
using Hammett constants of substituents and type 
of heteroatom as the descriptors. Another equation 
was proposed using half-wave potential vs. energy of  
highest-occupied molecular orbital. However the 
R2 values of the two models were 0.823 and 0.897 
respectively, which are smaller than that obtained with 
our models. And in [10] only linear model was used. 
Yuan et al. developed a QSPR method for the half-wave 
potential of substituted phenols using a support vector 
machine (SVM). Nikolic et al. reported a QSPR analysis 
of the E1/2 of 36 benzenoid hydrocarbons. Fatemi et al. 
used a QSPR method to predict the effect of different 
solvents on the E1/2 [7-9]. Multiple linear regression 
(MLR) was used to develop a QSPR model to predict 
the reduction E1/2 values for nitrobenzene derivatives in 
five different solvents. Results showed that the QSPR 
method using MLR can generate suitable models for the 
prediction of reduction E1/2 values for these compounds 
using electronic descriptors for solutes and solvents.

Benzoxazines are bicyclic heterocyclic compounds, 
which are commonly prepared by a Mannich-like 
condensation of phenol, formaldehyde and an 
amine. From the pharmaceutical point of view, 
benzoxazine derivatives possess bacteriostatic, and 
immunomodulating activity, and have been used as 
neuroprotective antioxidants, etc [10].

In this work, two QSPR methods, an heuristic 
method (HM) and a radial basis function neural network 
(RBFNN), were used to predict the E1/2 of some 
benzoxazines, and the results of the prediction were 
satisfactory. Moreover, according to our best knowledge, 
no QSPR study using RBFNN for the prediction of the 
E1/2 of organic compounds has been reported yet.

2. Experimental Procedures
2.1. Data set
A database of 40 substituted benzoxazines (see Fig. 1 for 
the general structure and Table 1 for the substituents) and 
the values of their E1/2s were taken from literature [11].  

The three-dimensional structures of the substituted 
benzoxazines were drawn using the Hyperchem [12]. 
The Hyperchem program was used to generate the 
preliminary molecular geometry optimization using 
molecular mechanics MM+ force fields [13]. The final 
optimization was obtained using the semiempirical PM3 
[14] parametrization method present in the MOPAC 
computer program [15]. Then the structural files were 
transferred into CODESSA software for producing 
descriptors [16,17]. In this work, 562 total constitutional, 
topological, geometrical, electrostatic and quantum-
chemical descriptors were calculated. 

2.3. Heuristic method
Whether the QSPR model is successful or not is largely 
determined by the selection of descriptors, and their 
ability to represent the essential determinants of the 
molecular properties. There are many classification 
methods for screening of the descriptor pool, such as 
an HM [1], cluster analysis [18], neural net classification 
[19], genetic algorithm [20], etc. In the present study, 
an HM method was used to select the descriptors, and 
to develop a linear model for the prediction of E1/2. The 
HM in CODESSA was employed to select the suitable 
descriptor combinations to build the linear QSPR models 
[21]. The HM of the descriptor selection proceeds with 
a preselection by eliminating descriptors that (i) are not 
available for each structure; (ii) have a small variation in 
magnitude for all structures; (iii) have a Fisher F-criterion 
below 1.0; and (iv) have t-values less than the user-
specified value (by default 0.1), etc.

The next step involves correlation of the given 
property with (i) the top descriptor in the above list with 
each of the remaining descriptors and (ii) the next one 
with each of the remaining descriptors, etc. Thus, MLR 
models are developed in a stepwise procedure and 
correlations are ranked according to the values of the 
correlation coefficient (R2) and the F-criterion. Starting 
with the top descriptor from the list, two-parameter 
correlations are calculated. In the following steps new 
descriptors are added one-by-one until the pre-selected 
number of descriptors in the model is achieved. The 
final result is a list of the 10 best models according to the 
values of the F-test and correlation coefficient. The fit of 
the model is tested by the coefficient of determination 
(R2), the F-test (F) and the standard deviation (s2) [22].

2.4. Radial basis function neural networks
A radial basis function neural network was also 
constructed to model the structure property relationship. 
The theory of different networks has been extensively 

Figure 1. General structure of the compounds

2.2. Descriptor calculation
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presented in several papers [23,24]. Here is a brief 
description of the RBFNN principle. Fig. 2 shows the 
basic network architecture. It consists of an input layer, 
a hidden layer, and an output layer. The input layer does 
not process the information; it only distributes the input 
vector to the hidden layer. The hidden layer of RBFNN 
consists of a number of radial basis function (RBF) units 
(nh) and bias (bk). Each hidden layer unit represents a 
single RBF, with associated center position and width. 
Each neuron on the hidden layer employs an RBF as a 
nonlinear transfer function to operate on the input data. 
The most often used RBF is a Gaussian function that 

is characterized by a center (cj) and a width (rj). The 
RBF measures the Euclidean distance between the 
input vector (X) and the RBF center (cj) and performs 
the non-linear transformation with the RBF in the hidden 
layer as given below: 

                               (2)

In which hj is the notation for the output of the jth 
RBF unit. For the jth RBF, cj and rj are the center and the 
width, respectively. The operation of the output layer is 
linear, which is given below:

Table 1. Structures, experimental and predicted E1/2 for the compounds

No. X R1 R2
Experimental Predicted

E1/2(V) E1/2(HM)(V) E1/2(RBFNN)(V)

1 O 7-OCH3 1.420 1.402 1.421
2 O 7-OCH3 4-F 1.430 1.437 1.426
3 O 7-OCH3 4-Br 1.440 1.456 1.447
4 O 7-OCH3 3-F 1.445 1.462 1.436
5 O 7-OCH3 3-Cl 1.450 1.462 1.455
6 O 7-CH3 4-CH3 1.415 1.385 1.419
7 O 6-CH3 4-CH3 1.420 1.425 1.421
8 O 4-Br 1.490 1.495 1.491
9 O 6-OCH3 4-CH3 1.450 1.432 1.446
10 O 6-OCH3 4-F 1.460 1.451 1.462
11 O 6-OCH3 4-Br 1.465 1.495 1.491
12 O 6-OCH3 4-Cl 1.470 1.470 1.463
13 O 6-OCH3 3-F 1.480 1.483 1.479
14 O 6-OCH3 4-CN 1.510 1.514 1.495
15 O 6-Cl 1.530 1.533 1.529
16 O 6-Cl 3-Cl 1.590 1.569 1.593
17 S 7-OCH3 4-CH3 1.280 1.288 1.277
18 S 7-OCH3 1.315 1.332 1.322
19 S 7-OCH3 4-F 1.350 1.364 1.351
20 S 7-OCH3 4-Br 1.360 1.375 1.369
21 S 7-OCH3 4-Cl 1.370 1.369 1.364
22 S 7-OCH3 3-F 1.390 1.385 1.384
23 S 7-OCH3 3-Cl 1.395 1.375 1.370
24 S 7-OCH3 4-CF3 1.405 1.414 1.430
25 S 7-OCH3 3,4-Cl2 1.420 1.402 1.420
26 S 7-CH3 4-CH3 1.305 1.295 1.316
27 S 6-CH3 4-CH3 1.320 1.321 1.326
28 S 4-Br 1.420 1.417 1.420
29 S 6-OCH3 4-CH3 1.330 1.338 1.322
30 S 6-OCH3 1.360 1.364 1.368
31 S 6-OCH3 4-F 1.380 1.399 1.402
32 S 6-OCH3 4-Br 1.400 1.400 1.393
33 S 6-OCH3 4-Cl 1.400 1.399 1.402
34 S 6-OCH3 3-F 1.410 1.409 1.416
35 S 6-OCH3 3-Cl 1.430 1.405 1.411
36 S 6-OCH3 4-CF3 1.440 1.449 1.452
37 S 6-OCH3 3,4-Cl2 1.445 1.443 1.444
38 S 6-OCH3 4-CN 1.450 1.423 1.433
39 S 6-Cl 1.420 1.447 1.454
40 S 6-Cl 3-Cl 1.520 1.497 1.499
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                (3)

Where yk is the kth output unit for the input vector X, 
wkj is the weight connection between the kth output 
unit and the jth hidden layer unit, and bk is the bias. It 
can be seen from Eqs. (2) and (3), a RBFNN involves 
selecting the center, number of hidden layer units, width, 
and weights. There are various ways for selecting the 
center, such as random subset selection, K-means 
clustering, orthogonal least squares learning algorithm, 
RBF-PLS (radial basis function - partial least squares), 
etc. The widths of the RBF networks can either be 
chosen the same for all the units or can be chosen 
differently for each unit. In this paper, considerations 
were limited to Gaussian functions with a constant width, 
which was the same for all units. The adjustment of the 
connection weight between hidden layer and output 
layer is performed using a least-squares solution after 
the selection of the centers and widths of the RBFs.

The overall performance of the RBFNN is evaluated 
in terms of a root-mean-squared error (RMS) according 
to the equation below:

                     
 

(4)

Where yk is the desired output and yk,0 is the actual 
output of the network; nk is the number of compounds in 
analyzed set. The performance of RBFNN is determined 
by the values of following parameter: The number nh of 
radial basis functions, the center cj and the width rj of 
each radial basis function, the connection weight wkj 
between the jth hidden layer unit and the kth output unit. 
The center of the RBFNN is determined with the forward 
subset selection method proposed by Orr [25,26]. The 
optimal width was determined by experiments with a 
number of trials by taking into account the leave-one-out 
(LOO) cross-validation error. The one that gives a 
minimum LOO cross-validation error is chosen as the 
optimal value.

All calculation programs implementing the RBFNN 
were written in M-file based on a MATLAB script for 
RBFNN [25,26]. The RBFNN toolbox in MATLAB 7.0 
was used to develop this RBFNN. The scripts were run 
on a Personal Computer.

3. Results and discussion

3.1. Results of the HM
The HM was used to develop a linear model for the 
prediction of E1/2 using calculated structural descriptors. 
After the heuristic reduction, the pool of descriptors 
was reduced from 562 to 173. Good correlations with 
the experimental E1/2 data were selected based on 
the squared correlation coefficient (R2), F-criterion (F), 
root-mean-squared error of cross validation (RMSECV) 
and Q2 of the regression. After the heuristic reduction, 
ten best models with four descriptors were selected. 
Then, the model with the highest R2 was chosen for 
analysis. The multi-linear analysis of E1/2 values for the 
40 compounds produced a four-parameter model. The 
obtained descriptors, coefficients, standard errors and 
t-test statistic are summarized in Table 2. In addition, 
the plot of predicted and experimental values is shown 
in Fig. 3. 
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Figure 2. The architecture of RBFNN

Figure 3. Experimental E1/2 versus predicted E1/2 by HM
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From Table 2 we can see that four descriptors have 
the major effect on E1/2. Among them, only Min valency 
of a S atom (MVSA) has a positive effect on the E1/2 

value, which means that the E1/2 value will increase with 
the MVSA. While the other three descriptors, Relative 
number of H atoms (RNHA), Min n-n repulsion for a C-H 
bond (MnnRCHB) and Min electrophilic reactivity Index 
for a C atom (MERICA), have negative effects on the 
E1/2 value.

To demonstrate the absence of chance correlations, 
the internal validation method was used. A fivefold 
cross-validation algorithm was applied for validation of 
the prediction results. In this process, the whole data set 
was split into five equally sized parts: A (1,6,11, ..., 36), 
B (2,7,12, ..., 37), C (3,8,13, ..., 38), D (4,9,14, ..., 39) 
and E (5, 10, 15, …, 40). Each subset was predicted 
by using the other four subsets as the training set. For 
each training set, the correlation equation was derived 
with the same descriptors, and the equation obtained 
was used to predict E1/2 values for the compounds from 
the corresponding test set. The reported R2, F and RMS 
for each cross-correlation are shown in Table 3. From 
the table we can see that the values were similar. We 
therefore concluded that the final model is considered 
to be stable.

3.2. Results of RBFNN
Using the four molecular descriptors, a RBFNN  
non-linear model was developed. Such a RBFNN can be 
designed as 4-nk-1 net to indicate the number of units in 
the input, the hidden layer and output layer, respectively. 

To obtain better results, the parameter that influenced the 
performance of RBFNN was optimized. The selection 
of the optimal width value for RBFNN was performed 
by systemically changing its value in the training step. 
The value that gives the best leave one out (LOO)  
cross-validation result was used in the model. Based on 
the above optimization, the value of the optimal width is 
3.1 and the corresponding number of centers (hidden 
layer nodes) of RBFNN is 18. The plot of predicted and 
experimental values for the RBFNN method is shown 
in Fig. 4. The R2, F and RMS are 0.982, 1034.171 and 
0.0209, respectively. 

In addition, a fivefold cross-validation algorithm, like 
that described above for the HM, was applied to validate 
further the predictions of the non-linear model. The R2, 
F and RMS of each cross-correlation are also listed in 
Table 3.

From Table 3, we can see that the performances of 
the model developed by RBFNN are similar to those 
developed by HM. The only exception is that when using 
part D as the test set, the performance of the RBFNN 
was relatively poorer than the others, indicating that the 
non-linear model developed is a little bit less stable than 
the linear one.  And from Figs. 3 and 4, we can see that 
both methods satisfactorily predict the experimental E1/2. 
Comparative residuals vs. compounds for the HM and 
RBFNN models are shown in Fig. 5. Both the HM and 
RBFNN models resulted in satisfactorily small residuals 
(relative error <1.6%). 

Table 2. Descriptors, Coefficients, Standard Error, and t-Test Values for the HM model

Descriptors Coefficients Standard Error t-test

Intercept 2.026e+01 5.574e+00 3.635

Min valency of a S atom 4.457e+00 3.600e-01 12.382

Relative number of H atoms -9.612e-01 7.489e-02 -12.834

Min n-n repulsion for a C-H bond -6.768e-01 1.344e-01 -5.034

Min electrophilic reactivity Index for a C atom -1.760e+04 4.989e+03 -3.528

R2 =0.946; F=152.576; R2
cv=0.927; RMSCV=0.0141; Q2=0.946

Table 3. Validation of correlations for the HM and RBFNN models

HM RBFNN

For the training set For the test set For the training set For the test set

Training 
set

Test 
set R2 RMSCV F R2 RMS F R2 RMS F R2 RMS F

A+B+C+D E 0.949 0.0141 125.710 0.930 0.0179 79.149 0.913 0.0192 970.266 0.862 0.162 37.447

A+B+C+E D 0.952 0.0141 134.480 0.910 0.0184 60.346 0.992 0.00850 1736.100 0.592 0.0343 8.703

A+B+D+E C 0.951 0.0173 130.603 0.907 0.0163 58.428 0.991 0.00870 1658.584 0.832 0.0227 29.746

A+B+D+E B 0.932 0.0173 92.913 0.992 0.00630 749.212 0.976 0.0137 589.340 0.977 0.0153 251.500

B+C+D+E A 0.961 0.0141 167.740 0.887 0.0274 47.104 0.982 0.0112 970.266 0.862 0.0386 37.543
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3.3. Discussions of the input parameters
By interpreting the descriptors in the model, it is possible 
to gain some insight into the factors affecting the half-
wave potential value and understand which interactions 
play an important role during the reduction reaction. 
In the linear model, four descriptors were found to be 
important for these compounds.

RNHA is a constitutional descriptor reflecting only the 
molecular composition of the compound without using 
the geometry or electronic structure of the molecule. The 
negative coefficient of RNHA means that the greater the 
number of H atoms in the molecule, the more difficult it 
is for the molecule to accept an electron, leading to a 
more negative E1/2 value.

MVSA, MnnRCHB and MERICA are three quantum-
chemical descriptors. Changing the substitution can 
cause a change in polarization and electron density 
around the ring in both reactant and product. It is 
apparent from the experimental data that the E1/2 value of 
each benzoxazine is affected by the type of substitution 
on the benzene ring. Substitutions with a higher valency 
can easily accept an electron; therefore, an increase in 
MVSA causes an increase in E1/2.

MnnRCHB describes the nuclear repulsion driven 
processes in the molecule and may be related to the 
conformational (rotational, inversional) changes or 
atomic reactivity in the molecule [27]. If the descriptor 
is lower, the compound is more stable making the 
reduction more difficult and which results in smaller E1/2 
values. Consequently, MnnRCHB has a negative effect 
on E1/2.

MERICA is a kind of charge distribution-related 
descriptor. The reactivity indices estimate the relative 
reactivity of the atoms in the molecule for a given series 
of compounds and are related to the activation energy 
of the corresponding chemical reaction. The negative 
coefficient of MERICA indicates that in the reduction 
reactions, the larger the MERICA, the more unfavorable 
it is for the compound to accept an electron, and the E1/2 
value will be smaller. 

4. Conclusion
The present study demonstrates that both linear and 
nonlinear QSPR models based on descriptors calculated 
from the molecular structures of a set of 40 benzoxazines 
can be used for the successful prediction of half-wave 
potentials. The high R2 and low RMS values obtained 
from the models suggest that both of the models have 
good predictive ability. Therefore the HM method and 
RBFNN can be used independently to predict the  
half-wave potential with satisfactory results.
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Figure 4. Experimental E1/2 versus predicted E1/2 by RBFNN Figure 5. Plot of residual vs. No. of the compounds by HM and RBFNN
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