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Abstract: The half-wave potential (E,,)

is an important electrochemical property of organic compounds. In this work, a quantitative structure—

property relationship (QSPR) analysis has been conducted on the half-wave reduction potential (E, ) of 40 substituted benzoxazines by

means of both a heuristic method (HM) and a non-linear radial basis function neural network (RBFNN) modeling method. The statistical
parameters provided by the HM model (R* =0.946; F=152.576; RMSCV=0.0141) and the RBFNN model (R*=0.982; F=1034.171 and
RMS =0.0209) indicated satisfactory stability and predictive ability. The obtained models showed that benzoxazines with larger Min
valency of a S atom (MVSA), lower Relative number of H atom (RNHA) and Min n-n repulsion for a C-H bond (MnnRCHB) and Minimal
Electrophilic Reactivity Index for a C atom (MERICA) can be more easily reduced . This QSPR approach can contribute to a better
understanding of structural factors of the organic compounds that contribute to the E. ,, and can be useful in predicting the E., of
other compounds.
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1. Introduction

With the development of synthetic chemistry, a large
number of new compounds are synthesized every
year. Physicochemical properties, biological activities
and other properties of these compounds are required
to be determined. So far, there are many methods to
investigate the properties mentioned above. However,
many of these compounds are not tested for fundamental
or relevant thermodynamic and physicochemical
properties or biological activities, which still remain
unknown due to unavailability or handling difficulties
(toxicity, odor, instability, solubility efc.).

At the present time, quantitative structure—property
relationships (QSPR) are increasingly employed in the
prediction of chemical and physical properties of different
types of molecules [1-8]. The main task of QSPR is to
obtain a reliable model for the prediction of properties/
behaviors of new chemical substances and analytical

* E-mail: liuht@Izu.edu.cn

systems. Theserelationships derive correlations between
the structural similarities of individual compounds and
their biological activity/chemical properties.

The half-wave potential (E,,), which is an
important electrochemical property for a reversible
oxidation—reduction system, can be useful for predicting
other electrochemical properties and activities of
organic compounds. In the reduction of many organic
compounds, the reaction is a one-electron process that
produces a radical anion, Q"-, according to the following
equation:

Q+e=Q" (1)

However, because Q-is generally reactive, its lifetime
varies over a wide range, depending on its intrinsic
reactivity and experimental conditions, such as the
type of solvent, complex formation, and other chemical
reactions [9]. Nesmerak et al. have demonstrated a
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QSPR method for the prediction of E,, of benzoxazines
[10]. In [10] the correlation equation was developed
using Hammett constants of substituents and type
of heteroatom as the descriptors. Another equation
was proposed using half-wave potential vs. energy of
highest-occupied molecular orbital. However the
R? values of the two models were 0.823 and 0.897
respectively, which are smaller than that obtained with
our models. And in [10] only linear model was used.
Yuan et al. developed a QSPR method for the half-wave
potential of substituted phenols using a support vector
machine (SVM). Nikolic et al. reported a QSPR analysis
of the E,, of 36 benzenoid hydrocarbons. Fatemi et al.
used a QSPR method to predict the effect of different
solvents on the E,, [7-9]. Multiple linear regression
(MLR) was used to develop a QSPR model to predict
the reduction E, , values for nitrobenzene derivatives in
five different solvents. Results showed that the QSPR
method using MLR can generate suitable models for the
prediction of reduction E, , values for these compounds
using electronic descriptors for solutes and solvents.

Benzoxazines are bicyclic heterocyclic compounds,
which are commonly prepared by a Mannich-like
condensation of phenol, formaldehyde and an
amine. From the pharmaceutical point of view,
benzoxazine derivatives possess bacteriostatic, and
immunomodulating activity, and have been used as
neuroprotective antioxidants, efc [10].

In this work, two QSPR methods, an heuristic
method (HM) and a radial basis function neural network
(RBFNN), were used to predict the E,, of some
benzoxazines, and the results of the prediction were
satisfactory. Moreover, according to our best knowledge,
no QSPR study using RBFNN for the prediction of the
E,,, of organic compounds has been reported yet.

2. Experimental Procedures
2.1. Data set

A database of 40 substituted benzoxazines (see Fig. 1 for
the general structure and Table 1 for the substituents) and
the values of their E, s were taken from literature [11].
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S

Figure 1. General structure of the compounds

2.2. Descriptor calculation
The three-dimensional structures of the substituted

benzoxazines were drawn using the Hyperchem [12].
The Hyperchem program was used to generate the
preliminary molecular geometry optimization using
molecular mechanics MM+ force fields [13]. The final
optimization was obtained using the semiempirical PM3
[14] parametrization method present in the MOPAC
computer program [15]. Then the structural files were
transferred into CODESSA software for producing
descriptors [16,17]. In this work, 562 total constitutional,
topological, geometrical, electrostatic and quantum-
chemical descriptors were calculated.

2.3. Heuristic method

Whether the QSPR model is successful or not is largely
determined by the selection of descriptors, and their
ability to represent the essential determinants of the
molecular properties. There are many classification
methods for screening of the descriptor pool, such as
an HM [1], cluster analysis [18], neural net classification
[19], genetic algorithm [20], efc. In the present study,
an HM method was used to select the descriptors, and
to develop a linear model for the prediction of E, ,. The
HM in CODESSA was employed to select the suitable
descriptor combinations to build the linear QSPR models
[21]. The HM of the descriptor selection proceeds with
a preselection by eliminating descriptors that (i) are not
available for each structure; (ii) have a small variation in
magnitude for all structures; (iii) have a Fisher F-criterion
below 1.0; and (iv) have t-values less than the user-
specified value (by default 0.1), etc.

The next step involves correlation of the given
property with (i) the top descriptor in the above list with
each of the remaining descriptors and (ii) the next one
with each of the remaining descriptors, etc. Thus, MLR
models are developed in a stepwise procedure and
correlations are ranked according to the values of the
correlation coefficient (R?) and the F-criterion. Starting
with the top descriptor from the list, two-parameter
correlations are calculated. In the following steps new
descriptors are added one-by-one until the pre-selected
number of descriptors in the model is achieved. The
final result is a list of the 10 best models according to the
values of the F-test and correlation coefficient. The fit of
the model is tested by the coefficient of determination
(R?), the F-test (F) and the standard deviation (s?) [22].

2.4. Radial basis function neural networks

A radial basis function neural network was also
constructed to model the structure property relationship.
The theory of different networks has been extensively
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Table 1. Structures, experimental and predicted E, , for the compounds

Experimental Predicted
No. X R1 R2 E1/2(V) EIIZ(HM)(V) E1/2(RBFNN)(V)
1 O 7-OCH, 1.420 1.402 1.421
2 O 7-OCH, 4-F 1.430 1.437 1.426
3 O 7-OCH, 4-Br 1.440 1.456 1.447
4 O 7-OCH, 3-F 1.445 1.462 1.436
5 0 7-OCH, 3-Cl 1.450 1.462 1.455
6 0 7-CH, 4-CH, 1.415 1.385 1.419
7 0O 6-CH, 4-CH, 1.420 1.425 1.421
8 O 4-Br 1.490 1.495 1.491
9 0 6-OCH, 4-CH, 1.450 1.432 1.446
10 0O 6-OCH, 4-F 1.460 1.451 1.462
IAl O 6-OCH, 4-Br 1.465 1.495 1.491
12 0] 6-OCH, 4-Cl 1.470 1.470 1.463
13 0O 6-OCH, 3-F 1.480 1.483 1.479
14 O 6-OCH, 4-CN 1.510 1.514 1.495
15 0O 6-Cl 1.530 1.533 1.529
16 0O 6-Cl 3-Cl 1.590 1.569 1.593
17 S 7-OCH, 4-CH, 1.280 1.288 1.277
18 S 7-OCH, 1.315 1.332 1.322
19 S 7-OCH, 4-F 1.350 1.364 1.351
20 S 7-OCH, 4-Br 1.360 1.375 1.369
21 S 7-OCH, 4-Cl 1.370 1.369 1.364
22 S 7-OCH, 3-F 1.390 1.385 1.384
23 S 7-OCH, 3-Cl 1.395 1.375 1.370
24 S 7-OCH, 4-CF, 1.405 1.414 1.430
25 S 7-OCH, 3,4-Cl, 1.420 1.402 1.420
26 S 7-CH, 4-CH, 1.305 1.295 1.316
27 S 6-CH, 4-CH, 1.320 1.321 1.326
28 S 4-Br 1.420 1.417 1.420
29 S 6-OCH, 4-CH, 1.330 1.338 1.322
30 S 6-OCH, 1.360 1.364 1.368
31 S 6-OCH, 4-F 1.380 1.399 1.402
32 S 6-OCH, 4-Br 1.400 1.400 1.393
33 S 6-OCH, 4-Cl 1.400 1.399 1.402
34 S 6-OCH, 3-F 1.410 1.409 1.416
35 S 6-OCH, 3-Cl 1.430 1.405 1.411
36 S 6-OCH, 4-CF, 1.440 1.449 1.452
37 S 6-OCH, 3,4-Cl, 1.445 1.443 1.444
38 S 6-OCH, 4-CN 1.450 1.423 1.433
39 S 6-Cl 1.420 1.447 1.454
40 S 6-Cl 3-Cl 1.520 1.497 1.499

presented in several papers [23,24]. Here is a brief
description of the RBFNN principle. Fig. 2 shows the
basic network architecture. It consists of an input layer,
a hidden layer, and an output layer. The input layer does
not process the information; it only distributes the input
vector to the hidden layer. The hidden layer of RBFNN
consists of a number of radial basis function (RBF) units
(n,) and bias (b,). Each hidden layer unit represents a
single RBF, with associated center position and width.
Each neuron on the hidden layer employs an RBF as a
nonlinear transfer function to operate on the input data.
The most often used RBF is a Gaussian function that

is characterized by a center (cj) and a width (rj). The
RBF measures the Euclidean distance between the
input vector (X) and the RBF center (C/) and performs
the non-linear transformation with the RBF in the hidden
layer as given below:

h(X) = exp(—HX ¢/ r,?) @)

In which hj is the notation for the output of the j,
RBF unit. For the j,, RBF, c and rare the center and the
width, respectively. The operation of the output layer is
linear, which is given below:
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Ye(X) = X wyh,(X)+ b, 3)
j=1
Where y, is the k, output unit for the input vector X,
W, is the weight connection between the k, output
unit and the j, hidden layer unit, and b, is the bias. It
can be seen from Egs. (2) and (3), a RBFNN involves
selecting the center, number of hidden layer units, width,
and weights. There are various ways for selecting the
center, such as random subset selection, K-means
clustering, orthogonal least squares learning algorithm,
RBF-PLS (radial basis function - partial least squares),
efc. The widths of the RBF networks can either be
chosen the same for all the units or can be chosen
differently for each unit. In this paper, considerations
were limited to Gaussian functions with a constant width,
which was the same for all units. The adjustment of the
connection weight between hidden layer and output
layer is performed using a least-squares solution after
the selection of the centers and widths of the RBFs.
The overall performance of the RBFNN is evaluated
in terms of a root-mean-squared error (RMS) according
to the equation below:

(4)

Where y, is the desired output and y, ,is the actual
output of the network; n, is the number of compounds in
analyzed set. The performance of RBFNN is determined
by the values of following parameter: The number n, of
radial basis functions, the center c and the width r of
each radial basis function, the connection weight w,;
between the j, hidden layer unit and the k, output unit.
The center of the RBFNN is determined with the forward
subset selection method proposed by Orr [25,26]. The
optimal width was determined by experiments with a
number of trials by taking into account the leave-one-out
(LOO) cross-validation error. The one that gives a
minimum LOO cross-validation error is chosen as the
optimal value.

All calculation programs implementing the RBFNN
were written in M-file based on a MATLAB script for
RBFNN [25,26]. The RBFNN toolbox in MATLAB 7.0
was used to develop this RBFNN. The scripts were run
on a Personal Computer.

Input layer

Hidden layer Output layer

Figure 2. The architecture of RBFNN

3. Results and discussion

3.1. Results of the HM

The HM was used to develop a linear model for the
prediction of E, , using calculated structural descriptors.
After the heuristic reduction, the pool of descriptors
was reduced from 562 to 173. Good correlations with
the experimental E,, data were selected based on
the squared correlation coefficient (R?), F-criterion (F),
root-mean-squared error of cross validation (RMSECV)
and Q? of the regression. After the heuristic reduction,
ten best models with four descriptors were selected.
Then, the model with the highest R? was chosen for
analysis. The multi-linear analysis of E,, values for the
40 compounds produced a four-parameter model. The
obtained descriptors, coefficients, standard errors and
t-test statistic are summarized in Table 2. In addition,
the plot of predicted and experimental values is shown
in Fig. 3.
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Figure 3. Experimental E,, versus predicted E, by HM
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Table 2. Descriptors, Coefficients, Standard Error, and t-Test Values for the HM model

Descriptors Coefficients Standard Error t-test
Intercept 2.026e+01 5.574e+00 3.635
Min valency of a S atom 4.457e+00 3.600e-01 12.382
Relative number of H atoms -9.612e-01 7.489e-02 -12.834
Min n-n repulsion for a C-H bond -6.768e-01 1.344e-01 -5.034
Min electrophilic reactivity Index for a C atom -1.760e+04 4.989e+03 3.528

R? =0.946, F=152.576, R? | =0.927, RMSCV=0.0141;, Q°=0.946

Table 3. validation of correlations for the HM and RBFNN models

HM RBFNN
For the training set For the test set For the training set For the test set
Training Test
set set R2 RMSCV F R? RMS F R? RMS F R? RMS F
A+B+C+D E 0.949 0.0141 125710 0930 0.0179 79.149 | 0913 0.0192 970.266 0.862 0.162  37.447
A+B+C+E D 0.952 0.0141 134480 0910 0.0184 60.346 | 0.992 0.00850 1736.100 0.592 0.0343  8.703
A+B+D+E C 0.951 0.0173  130.603 0.907 0.0163 58.428 | 0.991 0.00870 1658.584 0.832 0.0227 29.746
A+B+D+E B 0.932 0.0173 92913 0992 0.00630 749.212| 0976 0.0137 589.340 0.977 0.0153 251.500
B+C+D+E A 0.961 0.0141 167.740 0.887  0.0274 47.104 | 0982 00112 970266 0.862 0.0386 37.543

From Table 2 we can see that four descriptors have
the major effect on E,,. Among them, only Min valency
of a S atom (MVSA) has a positive effect on the E,,
value, which means that the E, , value will increase with
the MVSA. While the other three descriptors, Relative
number of H atoms (RNHA), Min n-n repulsion for a C-H
bond (MnnRCHB) and Min electrophilic reactivity Index
for a C atom (MERICA), have negative effects on the
E,,value.

To demonstrate the absence of chance correlations,
the internal validation method was used. A fivefold
cross-validation algorithm was applied for validation of
the prediction results. In this process, the whole data set
was split into five equally sized parts: A (1,6,11, ..., 36),
B (2,712, ..., 37), C (3,8,13, ..., 38), D (4,9,14, ..., 39)
and E (5, 10, 15, ..., 40). Each subset was predicted
by using the other four subsets as the training set. For
each training set, the correlation equation was derived
with the same descriptors, and the equation obtained
was used to predict E,, values for the compounds from
the corresponding test set. The reported R?, F and RMS
for each cross-correlation are shown in Table 3. From
the table we can see that the values were similar. We
therefore concluded that the final model is considered
to be stable.

3.2. Results of RBFNN

Using the four molecular descriptors, a RBFNN
non-linear model was developed. Such a RBFNN can be
designed as 4-n,-1 net to indicate the number of units in
the input, the hidden layer and output layer, respectively.

To obtain better results, the parameter thatinfluenced the
performance of RBFNN was optimized. The selection
of the optimal width value for RBFNN was performed
by systemically changing its value in the training step.
The value that gives the best leave one out (LOO)
cross-validation result was used in the model. Based on
the above optimization, the value of the optimal width is
3.1 and the corresponding number of centers (hidden
layer nodes) of RBFNN is 18. The plot of predicted and
experimental values for the RBFNN method is shown
in Fig. 4. The R?, F and RMS are 0.982, 1034.171 and
0.0209, respectively.

In addition, a fivefold cross-validation algorithm, like
that described above for the HM, was applied to validate
further the predictions of the non-linear model. The R?,
F and RMS of each cross-correlation are also listed in
Table 3.

From Table 3, we can see that the performances of
the model developed by RBFNN are similar to those
developed by HM. The only exception is that when using
part D as the test set, the performance of the RBFNN
was relatively poorer than the others, indicating that the
non-linear model developed is a little bit less stable than
the linear one. And from Figs. 3 and 4, we can see that
both methods satisfactorily predict the experimental E, ..
Comparative residuals vs. compounds for the HM and
RBFNN models are shown in Fig. 5. Both the HM and
RBFNN models resulted in satisfactorily small residuals
(relative error <1.6%).
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Figure 4. Experimental E,,versus predicted E,,, by RBFNN

3.3. Discussions of the input parameters

By interpreting the descriptors in the model, it is possible

to gain some insight into the factors affecting the half-

wave potential value and understand which interactions

play an important role during the reduction reaction.

In the linear model, four descriptors were found to be

important for these compounds.

RNHA s a constitutional descriptor reflecting only the
molecular composition of the compound without using
the geometry or electronic structure of the molecule. The
negative coefficient of RNHA means that the greater the
number of H atoms in the molecule, the more difficult it
is for the molecule to accept an electron, leading to a
more negative E, , value.

MVSA, MnnRCHB and MERICA are three quantum-
chemical descriptors. Changing the substitution can
cause a change in polarization and electron density
around the ring in both reactant and product. It is
apparent from the experimental data that the E, , value of
each benzoxazine is affected by the type of substitution
on the benzene ring. Substitutions with a higher valency
can easily accept an electron; therefore, an increase in
MVSA causes an increase in E, .

MnnRCHB describes the nuclear repulsion driven
processes in the molecule and may be related to the
conformational (rotational, inversional) changes or
atomic reactivity in the molecule [27]. If the descriptor
is lower, the compound is more stable making the
reduction more difficult and which results in smaller E,,
values. Consequently, MNnnRCHB has a negative effect
on E1/2.

* HM

0.03+4 *

0.02- Ll -
0.014
0.004 " T

-0.014 * *

Residual of the models

-0.02- . . u

-0.03+ * L]

T T T
0 5 10 15 20 25 30 35 40
No. of the compounds

Figure 5. Plotof residual vs. No. of the compounds by HM and RBFNN

MERICA is a kind of charge distribution-related
descriptor. The reactivity indices estimate the relative
reactivity of the atoms in the molecule for a given series
of compounds and are related to the activation energy
of the corresponding chemical reaction. The negative
coefficient of MERICA indicates that in the reduction
reactions, the larger the MERICA, the more unfavorable
it is for the compound to accept an electron, and the E, ,
value will be smaller.

4. Conclusion

The present study demonstrates that both linear and
nonlinear QSPR models based on descriptors calculated
from the molecular structures of a set of 40 benzoxazines
can be used for the successful prediction of half-wave
potentials. The high R? and low RMS values obtained
from the models suggest that both of the models have
good predictive ability. Therefore the HM method and
RBFNN can be used independently to predict the
half-wave potential with satisfactory results.
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