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Abstract: Quantitative structure-property relationship (QSPR) modeling is a powerful approach for predicting environmental behavior of organic
pollutants with their structure descriptors. This study reports an optimal QSPR model for estimating logarithmic n-octanol/water
partition coefficients (log K,) of polycyclic aromatic hydrocarbons (PAHSs). Quantum chemical descriptors computed with density
functional theory at B3LYP/6-31G(d) level and partial least squares (PLS) analysis with optimizing procedure were used for generating
QSPR models for log K, of PAHs. The squared correlation coefficient (R?) of the optimal model was 0.990, and the results of cross-
validation test (@, =0.976) showed this optimal model had high fitting precision and good predictability. The log K,,,, values predicted
by the optimal model are very close to those observed. The PLS analysis indicated that PAHs with larger electronic spatial extent and
lower total energy values tend to be more hydrophobic and lipophilic.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) constitute a
large and diverse class of organic compounds consisting
of two or more fused aromatic rings in various structural
configurations generated from both natural and
anthropogenic processes [1,2]. The low water solubility
of PAHs result in high persistence of these chemicals
at contaminated sites. They have been detected in the
atmosphere, water, soil, sediment and food [3-7].

The environmental fate of PAHs has become a major
issue in recent years [8,9], since many PAHs such as

benzo[a]pyrene, chrysene and benz[a]anthracene are
mutagens and carcinogens [10] and are considered to
be primary pollutants by many countries. Understanding
the distribution of PAHs among environmental phases
is crucial to their risk assessments and remediation
of contaminated sites. It is well established that the
fate of PAHs in the environment is primarily controlled
by their physicochemical properties [11], such as the
n-octanol/water partition coefficients (K,,), which
estimates the solubility in both aqueous and organic
phases (in general n-octanol is used). By the definition,

K,y is inversely proportional to aqueous solubility.
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When K, >1, compounds are lipophilic or hydrophobic,
and hydrophilic while K,<1 [12]. Since values of K,
may vary by several orders of magnitude, it is usually
expressed in the logarithmic form.

The K, may significantly influence the chemical and
biological transformation or degradation of chemicals, so
it is essential for understanding the transport mechanism
and distribution of compounds into the environment, for
example, the mechanismthatinvolves drug absorption by
transport through a biological membrane, or the process
involving the deposition of a pollutant into bodies of water
[13]. Thus the measurement or accurate estimation of
K., is of critical importance for evaluating the fate and
potential exposure of chemicals in the environment, and
consequently, for the whole process of environmental
risk assessment. In general, compounds with higher
values of K, tend to be less mobile than those with
lower values in soil-water systems [14]. However, the
accurate determination of K, may be difficult and
expensive in terms of cost and time, or even impossible
for some compounds, which might not have been
synthesized or purified. Also experimental errors may be
introduced, especially for those congeners difficult to be
separated and identified by chromatography. Moreover,
itis impractical to measure K, of all PAHs directly in the
laboratory because there are so many PAHs that have
been found in the environment.

The lack of complete, reliable and comparable data
has led to the development of different K, estimation
methods. With the advent of inexpensive and rapid
computation, there has been a remarkable growth in
the area of quantitative structure-property relationships
(QSPR), which correlate the properties of pollutants with
relevant properties and molecular descriptors [15]. A
large number of calculation methods have been presently
developed for estimation of the partition coefficients
with varying success and applicability. According to
the descriptors used, these methods can be classified
into two groups: empirical and theoretical methods [16].
Chu and Chan [17] reported the relationships between
soil sorption coefficients (K.), water solubility (S), and
K., of a diverse collection of pollutants, use whole
word not abbreviation aliphatics, aromatics, pesticides,
herbicides and PAHs. Such property correlations are
designed to estimate properties of environmental
interest from other known physicochemical properties
which work reasonably well. It is however limited by
the unavailability of the latter properties for the majority
of chemicals of environmental concern [18]. Various
studies have shown that parameters such as n-octanol/
air partition coefficients (K,,), S, K., and K, are
correlated to some molecular descriptors, which can be
calculated directly just from chemical structures without

the input of any other experimental data [13,16,19-26].
Predictive models based on non-experimental molecular
descriptors can provide cost effective and rapid estimates
of partitioning behavior of contaminants. Topological,
geometrical and quantum chemical indexes comprise a
set of descriptors, which were useful in the prediction
of properties of structurally similar molecules [27-30].
Basak and Mills [31] developed predictive models solely
on topological and geometrical descriptors for S, K,
and K. of 136 chemicals including 19 PAHSs.

Quantum chemical descriptors can be easily obtained
by computation to clearly describe specific molecular
properties for structurally related compounds, and can
also provide insight into the environmental behavior
of chemicals not yet synthesized or those that cannot
be examined experimentally due to their extremely
hazardous nature. Hence, the development of QSPR
models in which quantum chemical descriptors are used
is of great importance [32,33]. Rapid advancement of
modern computational capability and development of
fast algorithms allow the high precision method to be
expeditiously applied in current QSPR studies [16,
25,26,34-38], several of which are about partitioning
properties of environmental pollutants [16,25,26].
Modern theoretical method in quantum chemistry
with high calculation precision was proved having its
advantages in estimating properties of environmental
concern [16,35]. However, few QSPR studies on
partitioning behavior of PAHs using quantum chemical
descriptors have appeared so far.

The aim of this work is to develop a new reliable and
predictive QSPR model for log K, of PAHSs using partial
least squares (PLS) analysis with optimizing procedure,
based on reported K, and/or log K, data and quantum
chemical descriptors computed by density functional
theory (DFT) contained in Gaussian 03 [39].

2. Materials and Methods

2.1. Target PAHs

A total of 24 PAHs containing 2 to7 fused rings, whose
K., and/or log K, data were previously published [14,
17,40], were chosen to constitute the training and test
set in this work. The training set consists of 18 of these
24 PAHSs selected randomly, and the rest of the 6 PAHs
constitute the test set. Their chemical abstracts service
numbers (CAS No.) and reported log K, are listed in
Table 1 and molecular structures are given in Fig. 1. The
compound numbers in Figure 1 correspond to those in
Table 1. As shown in Fig. 1, the training set of this work
consists of non-substituted five- and six-membered ring
PAHSs, as well as, alkyl-substituted PAHs.
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Table 1. n-Octanol/water partition coefficients of the PAHs studied.

No.? Compounds CAS No. log Ky, SE® Diff.
Observed Predicted
1 Naphthalene 91-20-3 3.3749 3.49 0.070 -0.12
2 Anthracene 120-12-7 4.549 4.66 0.062 -0.12
3 Phenanthrene 85-01-8 45749 4.46 0.046 0.11
4 Chrysene 218-01-9 5.86¢ 5.71 0.038 0.15
5 Benz[a]anthracene 56-55-3 5914 5.85 0.035 0.06
6 Benzola]pyrene 50-32-8 6.04 ¢ 6.19 0.047 -0.15
7 Acenaphthene 83-32-9 3.92¢ 3.97 0.069 -0.05
8 Fluorene 86-73-7 41849 4.28 0.054 -0.09
9 Fluoranthene 206-44-0 5229 5.18 0.042 0.04
10 Benzo[a]fluorene 238-84-6 5.40¢ 5.562 0.051 -0.12
11 Triphenylene 217-59-4 5494 5.44 0.063 0.05
12 Perylene 198-55-0 6.25¢ 6.13 0.059 0.12
13 1-Methylnaphthalene 90-12-0 3.87¢ 3.84 0.046 0.03
14 2-Methylnaphthalene 91-57-6 3.86° 3.78 0.046 0.08
15 9-Methylanthracene 779-02-2 5.07 ¢ 5.00 0.061 0.07
16 Benzol[b]fluorene 243-17-4 5759 5.64 0.054 0.11
17 Benzo[g, h,i]perylene 191-24-2 6.50¢ 6.52 0.047 -0.02
18 Coronene 191-07-1 6.759 6.89 0.065 -0.14
19 Acenaphthylene 208-96-8 4.00¢ 4.24 0.067 -0.24
20 1-Ethylnaphthalene 1127-76-0 4.39 ¢ 413 0.043 0.26
21 Pyrene 129-00-0 4.88¢f 4.90 0.047 -0.02
22 Naphthacene 92-24-0 5.90°¢ 6.10 0.072 -0.20
23 Benzol[b]fluoranthene 205-99-2 6.06 6.37 0.052 -0.31
24 Indeno([1,2,3-c,d]pyrene 193-39-5 6.50 " 6.89 0.056 -0.39

@ Compounds No. 1~18 constitute the training set and compounds No.

v SE represents standard error for the predicted log K, values;
¢ Diff. = log K, (observed) - log K., (predicted);

9 From ref. [40];

e From ref. [14];

"From ref. [17].

19~24 constitute the test set;
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Figure 1. Molecular structures of the PAHs studied.

2.2. Calculation and selection of descriptors

The molecular modeling system HyperChem (Release
7.0, Hypercube Inc. 2002) was used to construct and
view all molecular structures. Molecular geometry was
optimized and quantum chemical descriptors were
computed using the B3LYP hybrid functional of DFT in

conjunction with 6-31G(d), a split-valence basis set with
polarization function [41,42]. The B3LYP calculations
were performed using the quantum chemical computation
software Gaussian 03 [39]. All calculations were run
on an Intel Pentium D/2.66 GHz computer equipped
with 1024 megabytes of internal memory and Microsoft
Windows XP professional operating system.

According to the chemometrics theory, itis suggested
that a QSPR model should include as many relevant
descriptors as possible to increase the probability of a
good characterization for a class of compounds [43]. In
this study, 11 independent variables including 8 quantum
chemical descriptors were selected for developing
QSPR models. The 8 descriptors cover the eigenvalue
of the highest occupied molecular orbital (E,,,.). the
eigenvalue of the lowest unoccupied molecular orbital
(E,umo)» Molecular total energy (TE), dipole moment (u),
the most negative Mulliken atomic charges on a carbon
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Table 2. Quantum chemical descriptors for the PAHs studied.

No. Epiomo Emo TE u Qs Q' Lo R,
1 ~0.21267 0.03527 ~385.8927289 0.0000 0190922 0.129521 14345 1291.7137
2 -0.19201 -0.06005 -539.5305216 0.0000 -0.297755  0.130208 1.4460 2861.0192
3 -0.21056 -0.03655 -539.5386564 0.0420 -0.206640  0.133247 1.4577 26237434
4 -0.20248 -0.04660 -603.1820248 0.0000 -0.206250  0.134154 1.4529 47793414
5 -0.19556 -0.05696 -693.1789643 0.0657 -0.316335  0.134410 1.4655 4932.2234
6 -0.18748 -0.06385 ~769.4137837 0.0454 -0.336304  0.134338 1.4431 5260.4605
7 -0.20094 -0.02781 -463.3149436 08187 -0361712  0.159215 1.5688 17461112
8 -0.21150 -0.02622 -501.4232016 0.4821 -0.420260  0.172179 15161 2352.1686
9 -0.21206 -0.06438 -615.7502058 0.3291 -0.220472  0.133868 1.4759 3194.2266
10 -0.20048 -0.04179 -655.0668764 0.4401 0421373 0.173231 1.5153 4339.4356
1 -0.21488 -0.03422 -603.1810887 0.0000 -0.202328  0.134104 1.4669 4119.3318
12 -0.18198 -0.06959 -769.4061188 0.0000 -0.226768  0.132838 1.4762 4833.1441
13 -0.20853 -0.03389 4252096910 0.2957 -0.535209  0.162462 1.5104 1613.7939
14 -0.20816 -0.03418 -425.2102103 0.4221 -0.531849  0.164105 1.4336 1778.0688
15 -0.18787 -0.05886 -578.8421060 0.3236 -0.540751 0.166254 1.5139 3158.3301
16 -0.20280 -0.04408 -655.0675111 0.5856 -0.419917  0.172820 15175 4587.3211
17 -0.19120 -0.06102 -845.6544426 0.0669 -0.228600  0.133409 1.4694 54478122
18 -0.20031 -0.05192 -921.8978878 0.0000 -0.208795  0.130048 1.4275 6177.9855
19 -0.21336 -0.06933 -462.0881949 0.3351 -0.221442  0.134607 1.4726 1653.0001
20 -0.20804 -0.03313 ~464.5209840 0.4208 -0.453608  0.153446 15313 2122.3544
21 -0.19575 -0.05440 -615.7731341 0.0000 -0.225803  0.130157 1.4376 2991.0909
22 -0.17843 -0.07635 -693.1658119 0.0000 -0.298815  0.130654 1.4529 5445.1396
23 -0.21027 -0.06309 ~769.3987687 03823 -0.305885  0.134380 1.4750 5423.8821
24 -0.19624 -0.07356 -845.6292983 06075 -0.314450  0.134606 1.4760 6167.5033

atom (Q,"), the most positive Mulliken atomic charges on
a hydrogen atom (Q,;*), the largest bond length between
two carbon atoms (L), and the electronic spatial extent
(R,). All the above descriptors were obtained directly
in the output files of Gaussian 03 calculation through a
single full optimizing process for the molecular structure:
B3LYP/6-31G(d) FOPT. The values of these quantum
chemical descriptors are listed in Table 2. The units of
energy, dipole moment, atomic charge, bond length
and extent are: hartree, debye, atomic charge unit,
angstrom and atom unit, respectively. In addition, 3
combinations of frontier molecular orbital eigenvalues,
ELUMO_EHOMO’ (ELUMO_EHOMO)Z and ELUMO+EHOMO were also
selected as independent variables. E ,,,—E, o @nd
E juotEomo Can be related to PAH absolute hardness
and electronegativity, respectively [44]. E, ,,,c—E,ouo @Nd
(E umo—Enomo)? Were proven to be significant in QSAR
studies on photoinduced toxicity of PAHs and QSPR
studies on direct photolysis rate constants of PAHs
[45,46]. And E, ,,o+E, om0 Was shown to be significant

in direct photolysis quantum yield QSPRs studies of
substituted aromatic halides [47].

2.3. Modeling method and evaluation indexes
Since a large number of descriptors were selected in
this study, intercorrelation of independent variables
(multicollinearity) might become a technical problem.
To overcome this problem, the PLS regression, a
methodology that makes use of all available descriptors
as opposed to subset regression and is useful when
the descriptors are strongly collinear [43], was used.
PLS could find the relationship between a matrix Y
(containing dependent variables, often only one for
QSPR studies) and a matrix X (containing predictor
variables) by reducing the dimension of the matrices
while concurrently maximizing the relationship between
them [48].

SIMCA-P (Version 10.5, Umetrics AB, 2004 ) software
was employed to perform the PLS analysis. The default
values given by the software were used as the initial
conditions for computation. According to the user’s
guide to SIMCA-P [49], the criterion used to determine
the model dimensionality, ie, the number of significant
PLS components (h), is 7-fold cross validation (CV).
With CV, observations are excluded from the model;
the response values for the excluded observations are
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predicted by the model and compared with the actual
values. This procedure is repeated several times until
every observation has been excluded once and only
once. For every component, the fraction of the total
variation of the dependent variables (Q?) and the

cumulative @ for the extracted components (@2, ) are
computed using the following equations:
_ PRESS (1)
=1.0—
o SS
, PRESS _
O cum = 1.0-TI( 55 ), (n=1,....h) (2)

where PRESS is the prediction error sum of squares
when the observations were excluded, and SS is the
residual sum of squares of the previous component.
The tested PLS component is thought significant if
Q?is larger than a significance limit (0.0975) for the
whole data set. The model is thought to have a good
predictability when Q* is larger than 0.5 [49]. Model
adequacy was assessed based primarily on h, Q% , the
squared correlation coefficient between observed values
and fitted values (R?), the standard error of the estimate
(SE), the variance ratio (F), and the significance level (p).

3. Results and Discussion

3.1. Modeling and optimizing
For the 18 PAHs contained in the training set, PLS
analysis was performed with log K, as the dependent
variable and the 11 independent variables as the
predictor variables, yielding QSPR model I. For this
model, we have R?=0.987, SE=0.120, F=1.20x103, and
p=2.22x107'6, The fitting results for this model are listed
in Table 3. In Table 3, R?, and R? stand for the fraction
of the sum squares of all the X’s and Y’s explained by
the current component, R?,  ~and R?, = stand for
cumulative variance of all the X's and Y’s explained by
all extracted components respectively, and Eig stands
for eigenvalue that denotes the importance of the PLS
principal component.

Variable importance in the projection (VIP) is a

Table 3. Fitting results for PLS model I and Il.

parameter that shows the importance of a variable in
a model in the assistant analysis of PLS modeling.
According to the manual of SIMCA-P, terms with
large VIP (>1.0) are the most relevant for explaining
dependent variables. Previous studies found that all
independent variables were not necessary for PLS
modeling [29,30,50-52]. To obtain an optimal model, the
following PLS analysis procedure was adopted. A PLS
model with all the predictor variables was first calculated
and then the variable with the lowest VIP was eliminated
and a new PLS regression was performed, yielding a
new PLS model. This procedure was repeated until
an optimal model was obtained. The optimal model
was selected with respect to Q%  , R?, SE, F and p.
According to the statistics and metrics theories, a QSAR
model with larger values of Q%  , R? and Fand smaller
values of SE and p tends to be more stable and reliable
than in the opposite case.

The above described PLS analysis procedure with
log K, as dependent variable and the 11 independent
variables as the initial predictor variables, for the 18 PAHs
contained in the training set, resulted in model Il as an
optimal one. For this optimal model, we have R?=0.990,
SE=0.106, F=1.56%x10% and p<1.00x107'. The fitting
results for the optimal model are shown in Table 3. As
shown in the table, 3 PLS principal components were
selected in the optimal model, which explained 88.5%
of the variance of the predictor variables and 99.0% of
the variance of the dependent variable. Based on the
estimate indexes employed in this study, this optimal
model is statistically significant.

3.2. Analysis and Discussion

The predicted log K, calculated from the optimal model
for the 18 PAHSs contained in the training set were listed
in Table 1 and the comparison of observed and predicted
log K,, was shown in Fig. 2. The observed log K,
values are close to those predicted by the optimal model
and the correlation between observed and predicted
log K, is significant. For the PAHs under study, the
differences between observed and predicted log K,

Model Y X h R?, [ Re, Ry Eig Q? o,
[ log Koy X, ° i 0538 0538 0.759 0.759 592 0.712 0.712
p) 0138 0676 0.202 0.961 1.52 0.760 0.931
3 0.190 0.867 0.026 0.987 2.09 0598 0972
[ lbgKy, — X,° 1 0.568 0.568 0.761 0.761 5.68 0.718 0.718
p) 0.127 0.695 0212 0.973 1207 0813 0947
3 0.190 0.885 0.016 0.990 1.90 0.545 0.976

@ X, containing all 11 independent variables;
b X, containing 10 independent variables, not including Q...
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Figure 2. Plot of observed values vs. those predicted by the optimal
model.

are very small, so the predicted values are acceptable.
Note that the cross-validated @2, value (=0.976) of the
optimal model is not only remarkably larger than 0.500,
but also larger than that of model | without optimizing;
thus this optimal model is stable and is a good predictor
of K, for PAHs.

When X and Y are unscaled and uncentered, the
unscaled coefficients of the independent variables and
constant transformed from the PLS results are listed
in Table 4. From the positive or negative signs of the
coefficients of the independent variables, one can
evaluate the effect of each independent variable on
the K, of PAHs. Based on the unscaled coefficients,
a QSPR equation like that obtained from multiple linear
regressions can be created for the optimal model and
predicted K, for other PAHs can be calculated. Based
on model I, predictions of K, for the 6 PAHs containing
in the test set were generated and listed in Table 1 and
the comparison of observed and predicted log K, was
shown in Fig. 2. The squared correlation coefficient
between observed and predicted log K, in the test set
was as high as 0.976, close to that in the training set. As
can be seen in Table 1 and Fig. 2, the predicted log K,
values for the test set are very close to those observed.
This indicated that the optimal model has stable and
good predictability.

The VIP values for the optimal model were calculated
and listed in Table 4. We can find that the VIP values
of R, TE, and E_,,, are all greater than 1.0, indicating
they are important in governing the K, values of PAHs.
In addition, the VIP values of E,,,—E,ouo @Nd (E o=
E, ouo) are very close to 1.0. R_and TE are the two most
important variables since their VIP values are larger
than 1.50, which is greater than the VIP values of the
other variables. As shown in Table 5, the absolute value
of correlation coefficient between R_and TE is as high

Table 4. The unscaled coefficients and VIPs of the optimal model.

Variables Unscaled Coefficients VIPs
R, 3.278x10* 1.543
TE -3.169x10° 1.517
Eino -2.193 1.002
EvmoErono)” -3.941 0.989
EioEromo ~7.247x10" 0.982
Eiiomo -6.433x10"" 0.814
0 -3.767x10? 0.688
Q" 1.612 0.680
EotEvomo -5.630 0.667
[ 1.425 0.574
Constant -1.766

as 0.976, and ELUMO’ ELUMO_EHOMO and (El_urvlo_EHomo)2 are
highly intercorrelated for the PAHs under study, while
the correlations between the former two variables and
the latter three variables are inconspicuous. Thus these
five variables can be divided into two groups by their
cross-correlations.

It is expected that log K, increases with the
increasing of molecular size. Considering the
examples illustrated previously (see structures in
Fig. 1): naphthalene (log K,=3.37, molecular weight
(MW)=128.18), anthracene (log K,,,=4.54, MW=178.24)
and naphthacene (log K,,=5.90, MW=228.30), which
differ among themselves by the number of fused rings
arranged linearly, the increase in log K, as a function
of the number of rings and molecular sizes is clearly
seen. When isomers share the same molecular weight,
molecular sizes differ from the arrangements of atoms,
which can be expressed by molecular volume and
surface area, leading to the difference in log K. For
example, chrysene (log K,,=5.86), benz[alanthracene
(log K,,=5.91), triphenylene (log K,,=5.49) and
naphthacene (log K,=5.90) are isomers (MW=228.30,
structures shown in Fig. 1), but they have different
n-octanol/water partition coefficients.

The variety of molecular size could be described
by the quantum chemical descriptors of R, and TE in this
work. Firstly, R, is the expectation value of the operator
p in the formula of Jr2p(r)d?r. It is occasionally seen in the
literature as a measure of molecular volume. Although in
many cases R, correlates poorly with molecular volume,
the correlation for PAHs sharing similar structures is
quite significant. A PAH molecule with large electronic
spatial extent will have large molecular volume [30].
Secondly, for the whole compounds set in this study,
the decrease of TE values indicates more carbon and
hydrogen atoms containing in the molecule, which
might lead to the increase of molecular volume. Lu et
al. [30] found that TE correlated with molecular volume
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Table 5. Cross-correlation coefficients for some important vari-

ables (N=24).
Re TE ELUMO ELuMoiEHOMO (ELumofEHoMo)2
R, 1.000
TE -0.976 1.000
E o -0.615 0.627 1.000
EywoEriowo | 0613 0615 0955 1.000
Evmo-Erono)? | -0.626  0.624 0958 0.998 1.000

significantly for PAHs sharing similar structures. When
the carbon and hydrogen atoms of different PAHs were
equal, TE values differed from isomers. As shown in
Table 4, the coefficient sign of R and TE are positive
and negative, respectively. This implies that the increase
of the R, value and the decrease of the TE value lead
to an increase in log K, value. So it can be concluded
that PAHs molecules with larger electronic spatial extent
and lower molecular total energy values tend to be more
hydrophobic and lipophilic, leading to larger log K,
values.

The gap between E ., and E_ ... E ,uo—Eromor
which defines the energy necessary to excite an electron
from the highest occupied and the lowest unoccupied
molecular orbital, turned out to be a useful descriptor
[12]. E E is related to absolute hardness [53],

LUMO ™ —HOMO
defined as half the absolute value of £ E, ,omo» Which

LUMO

is regarded as a measure of energy stabilization in
chemical systems: Chemical structures tend to be more
stable at large values of the E , ,—E,ouo 9apP [54]. As
can be seen in Table 4, E .0, E, uo—Enomo @A (B, yuo—
E,.ouo)? @re shown to be significant besides R_and TE in
this study and all of their coefficient signs are negative.

As E is always larger than E, - (Table 2), so the

LUMO HOM

value of E, ,,,—E, ono I8 POsitive and the (E,,,o—E..om0)
value decreases along with the decrease of £, ,,,—E,.ouo
value. Thus the decrease of E ,,, and E E,

LUMO LUMO '—HOMO
values leads to the increase in log K, values.

3.3. Comparison with the results from other

models
So far as in the literatures, there have been several
QSPR studies on log K, of PAHs (e.g. ref. [12,13,31]).
The best squared correlation coefficient of the QSPR
model forlog K, of PAHs developed solely on calculated
descriptors (molecular weight and volume) was 0.976,
less than that of the optimal model in the present study
obtained solely on quantum chemical descriptors. In
addition, only non-substituted PAHs containing 2~7
fused rings with five and six carbon atoms were included
in that work [13]. The highest R checked in literature is
0.996, generated from PLS analysis on 5 combinatorial
descriptors including electron affinity, edge-connectivity,

surface area, enthalpy of formation and retention index
for a data set only consisting of six-membered ring
PAHSs [12]. It seems superior to the optimal model in this
study. However, as stated earlier, such models based
on known physicochemical properties were of limited
applicability. Therefore, our optimal model based only
on quantum chemical descriptors has wider applicability
than those based on known physicochemical properties
and/or topological descriptors. This work demonstrated
again that modern high precision quantum chemical
method can be an effective means in QSPR study of
environmental contaminants, and a series of similar
study in our laboratory is under way. The overall high
quality of the obtained optimal model in this study
indicates that it will find application in the estimation of
n-octanol/water partition coefficients of PAHs having no
known experimental values.

4. Conclusions

In this study, based on some quantum chemical
descriptors computed by DFT at the B3LYP/6-31G(d)
level, by the use of PLS analysis, QSPR models
were obtained for logarithmic n-octanol/water partition
coefficients of PAHs. The squared correlation coefficient
of the optimal model is 0.990. The optimal model has
high fitting precision and good predictability, so it can be
applied in the estimation of the n-octanol/water partition
behavior of PAHs. It can generally be concluded
that PAHs with larger electronic spatial extent and
lower molecular total energy values tend to be more
hydrophobic and lipophilic.
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