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Abstract: �Quantitative structure-property relationship (QSPR) modeling is a powerful approach for predicting environmental behavior of organic 
pollutants with their structure descriptors. This study reports an optimal QSPR model for estimating logarithmic n-octanol/water 
partition coefficients (log KOW) of polycyclic aromatic hydrocarbons (PAHs). Quantum chemical descriptors computed with density 
functional theory at B3LYP/6-31G(d) level and partial least squares (PLS) analysis with optimizing procedure were used for generating 
QSPR models for log KOW of PAHs. The squared correlation coefficient (R2) of the optimal model was 0.990, and the results of cross-
validation test (Q2

cum=0.976) showed this optimal model had high fitting precision and good predictability. The log KOW values predicted 
by the optimal model are very close to those observed. The PLS analysis indicated that PAHs with larger electronic spatial extent and 
lower total energy values tend to be more hydrophobic and lipophilic.
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1. Introduction
Polycyclic aromatic hydrocarbons (PAHs) constitute a 
large and diverse class of organic compounds consisting 
of two or more fused aromatic rings in various structural 
configurations generated from both natural and 
anthropogenic processes [1,2]. The low water solubility 
of PAHs result in high persistence of these chemicals 
at contaminated sites.  They have been detected in the 
atmosphere, water, soil, sediment and food [3-7].

The environmental fate of PAHs has become a major 
issue in recent years [8,9], since many PAHs such as 

benzo[a]pyrene, chrysene and benz[a]anthracene are 
mutagens and carcinogens [10] and are considered to 
be primary pollutants by many countries. Understanding 
the distribution of PAHs among environmental phases 
is crucial to their risk assessments and remediation 
of contaminated sites.  It is well established that the 
fate of PAHs in the environment is primarily controlled 
by their physicochemical properties [11], such as the 
n-octanol/water partition coefficients (KOW), which 
estimates the solubility in both aqueous and organic 
phases (in general n-octanol is used). By the definition, 
KOW is inversely proportional to aqueous solubility. 
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When KOW>1, compounds are lipophilic or hydrophobic, 
and hydrophilic while KOW<1 [12].  Since values of KOW 
may vary by several orders of magnitude, it is usually 
expressed in the logarithmic form.

The KOW may significantly influence the chemical and 
biological transformation or degradation of chemicals, so 
it is essential for understanding the transport mechanism 
and distribution of compounds into the environment, for 
example, the mechanism that involves drug absorption by 
transport through a biological membrane, or the process 
involving the deposition of a pollutant into bodies of water 
[13]. Thus the measurement or accurate estimation of 
KOW is of critical importance for evaluating the fate and 
potential exposure of chemicals in the environment, and 
consequently, for the whole process of environmental 
risk assessment. In general, compounds with higher 
values of KOW tend to be less mobile than those with 
lower values in soil-water systems [14]. However, the 
accurate determination of KOW may be difficult and 
expensive in terms of cost and time, or even impossible 
for some compounds, which might not have been 
synthesized or purified.  Also experimental errors may be 
introduced, especially for those congeners difficult to be 
separated and identified by chromatography. Moreover, 
it is impractical to measure KOW of all PAHs directly in the 
laboratory because there are so many PAHs that have 
been found in the environment.

The lack of complete, reliable and comparable data 
has led to the development of different KOW estimation 
methods. With the advent of inexpensive and rapid 
computation, there has been a remarkable growth in 
the area of quantitative structure-property relationships 
(QSPR), which correlate the properties of pollutants with 
relevant properties and molecular descriptors [15]. A 
large number of calculation methods have been presently 
developed for estimation of the partition coefficients 
with varying success and applicability. According to 
the descriptors used, these methods can be classified 
into two groups: empirical and theoretical methods [16].  
Chu and Chan [17] reported the relationships between 
soil sorption coefficients (KOC), water solubility (S), and 
KOW of a diverse collection of pollutants, use whole 
word not abbreviation aliphatics, aromatics, pesticides, 
herbicides and PAHs. Such property correlations are 
designed to estimate properties of environmental 
interest from other known physicochemical properties 
which work reasonably well. It is however limited by 
the unavailability of the latter properties for the majority 
of chemicals of environmental concern [18]. Various 
studies have shown that parameters such as n-octanol/
air partition coefficients (KOA), S, KOW and KOC are 
correlated to some molecular descriptors, which can be 
calculated directly just from chemical structures without 

the input of any other experimental data [13,16,19-26].  
Predictive models based on non-experimental molecular 
descriptors can provide cost effective and rapid estimates 
of partitioning behavior of contaminants. Topological, 
geometrical and quantum chemical indexes comprise a 
set of descriptors, which were useful in the prediction 
of properties of structurally similar molecules [27-30].  
Basak and Mills [31] developed predictive models solely 
on topological and geometrical descriptors for S, KOW 
and KOC of 136 chemicals including 19 PAHs.

Quantum chemical descriptors can be easily obtained 
by computation to clearly describe specific molecular 
properties for structurally related compounds, and can 
also provide insight into the environmental behavior 
of chemicals not yet synthesized or those that cannot 
be examined experimentally due to their extremely 
hazardous nature. Hence, the development of QSPR 
models in which quantum chemical descriptors are used 
is of great importance [32,33]. Rapid advancement of 
modern computational capability and development of 
fast algorithms allow the high precision method to be 
expeditiously applied in current QSPR studies [16, 
25,26,34-38], several of which are about partitioning 
properties of environmental pollutants [16,25,26].  
Modern theoretical method in quantum chemistry 
with high calculation precision was proved having its 
advantages in estimating properties of environmental 
concern [16,35]. However, few QSPR studies on 
partitioning behavior of PAHs using quantum chemical 
descriptors have appeared so far.

The aim of this work is to develop a new reliable and 
predictive QSPR model for log KOW of PAHs using partial 
least squares (PLS) analysis with optimizing procedure, 
based on reported KOW and/or log KOW data and quantum 
chemical descriptors computed by density functional 
theory (DFT) contained in Gaussian 03 [39].

2. Materials and Methods

2.1. Target PAHs
A total of 24 PAHs containing 2 to7 fused rings, whose 
KOW and/or log KOW data were previously published [14, 
17,40], were chosen to constitute the training and test 
set in this work. The training set consists of 18 of these 
24 PAHs selected randomly, and the rest of the 6 PAHs 
constitute the test set.  Their chemical abstracts service 
numbers (CAS No.) and reported log KOW are listed in 
Table 1 and molecular structures are given in Fig. 1.  The 
compound numbers in Figure 1 correspond to those in 
Table 1. As shown in Fig. 1, the training set of this work 
consists of non-substituted five- and six-membered ring 
PAHs, as well as, alkyl-substituted PAHs.

311



Estimation of n-octanol/water partition coefficients of polycyclic 
aromatic hydrocarbons by quantum chemical descriptors

No.a Compounds CAS No. log KOW SE b Diff. c

Observed Predicted

1 Naphthalene 91-20-3 3.37 d 3.49 0.070 –0.12

2 Anthracene 120-12-7 4.54 d 4.66 0.062 –0.12

3 Phenanthrene 85-01-8 4.57 d 4.46 0.046 0.11

4 Chrysene 218-01-9 5.86 d 5.71 0.038 0.15

5 Benz[a]anthracene 56-55-3 5.91 d 5.85 0.035 0.06

6 Benzo[a]pyrene 50-32-8 6.04 d 6.19 0.047 –0.15

7 Acenaphthene 83-32-9 3.92 d 3.97 0.069 –0.05

8 Fluorene 86-73-7 4.18 d 4.28 0.054 –0.09

9 Fluoranthene 206-44-0 5.22 d 5.18 0.042 0.04

10 Benzo[a]fluorene 238-84-6 5.40 d 5.52 0.051 –0.12

11 Triphenylene 217-59-4 5.49 d 5.44 0.063 0.05

12 Perylene 198-55-0 6.25 d 6.13 0.059 0.12

13 1-Methylnaphthalene 90-12-0 3.87 e 3.84 0.046 0.03

14 2-Methylnaphthalene 91-57-6 3.86 e 3.78 0.046 0.08

15 9-Methylanthracene 779-02-2 5.07 e 5.00 0.061 0.07

16 Benzo[b]fluorene 243-17-4 5.75 d 5.64 0.054 0.11

17 Benzo[g,h,i]perylene 191-24-2 6.50 d 6.52 0.047 –0.02

18 Coronene 191-07-1 6.75 d 6.89 0.065 –0.14

19 Acenaphthylene 208-96-8 4.00 d 4.24 0.067 –0.24

20 1-Ethylnaphthalene 1127-76-0 4.39 e 4.13 0.043 0.26

21 Pyrene 129-00-0 4.88 e, f 4.90 0.047 –0.02

22 Naphthacene 92-24-0 5.90 e 6.10 0.072 –0.20

23 Benzo[b]fluoranthene 205-99-2 6.06 f 6.37 0.052 –0.31

24 Indeno[1,2,3-c,d]pyrene 193-39-5 6.50 f 6.89 0.056 –0.39

Table 1. n-Octanol/water partition coefficients of the PAHs studied.

a Compounds No. 1~18 constitute the training set and compounds No. 19~24 constitute the test set;
b SE represents standard error for the predicted log KOW values;
c Diff. = log KOW (observed) – log KOW (predicted);
d From ref. [40];
e From ref. [14];
f From ref. [17].

2.2. Calculation and selection of descriptors
The molecular modeling system HyperChem (Release 
7.0, Hypercube Inc. 2002) was used to construct and 
view all molecular structures. Molecular geometry was 
optimized and quantum chemical descriptors were 
computed using the B3LYP hybrid functional of DFT in 

conjunction with 6-31G(d), a split-valence basis set with 
polarization function [41,42]. The B3LYP calculations 
were performed using the quantum chemical computation 
software Gaussian 03 [39].  All calculations were run 
on an Intel Pentium D/2.66 GHz computer equipped 
with 1024 megabytes of internal memory and Microsoft 
Windows XP professional operating system.

According to the chemometrics theory, it is suggested 
that a QSPR model should include as many relevant 
descriptors as possible to increase the probability of a 
good characterization for a class of compounds [43]. In 
this study, 11 independent variables including 8 quantum 
chemical descriptors were selected for developing 
QSPR models. The 8 descriptors cover the eigenvalue 
of the highest occupied molecular orbital (EHOMO), the 
eigenvalue of the lowest unoccupied molecular orbital 
(ELUMO), molecular total energy (TE), dipole moment (µ), 
the most negative Mulliken atomic charges on a carbon 
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Figure 1. Molecular structures of the PAHs studied.
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atom (QC
–), the most positive Mulliken atomic charges on 

a hydrogen atom (QH
+), the largest bond length between 

two carbon atoms (LCC), and the electronic spatial extent 
(Re). All the above descriptors were obtained directly 
in the output files of Gaussian 03 calculation through a 
single full optimizing process for the molecular structure: 
B3LYP/6-31G(d) FOPT. The values of these quantum 
chemical descriptors are listed in Table 2. The units of 
energy, dipole moment, atomic charge, bond length 
and extent are: hartree, debye, atomic charge unit, 
angstrom and atom unit, respectively. In addition, 3 
combinations of frontier molecular orbital eigenvalues, 
ELUMO–EHOMO, (ELUMO–EHOMO)2

 and ELUMO+EHOMO were also 
selected as independent variables.  ELUMO–EHOMO and 
ELUMO+EHOMO can be related to PAH absolute hardness 
and electronegativity, respectively [44]. ELUMO–EHOMO and 
(ELUMO–EHOMO)2 were proven to be significant in QSAR 
studies on photoinduced toxicity of PAHs and QSPR 
studies on direct photolysis rate constants of PAHs 
[45,46]. And ELUMO+EHOMO was shown to be significant 
in direct photolysis quantum yield QSPRs studies of 
substituted aromatic halides [47].

2.3. Modeling method and evaluation indexes
Since a large number of descriptors were selected in 
this study, intercorrelation of independent variables 
(multicollinearity) might become a technical problem.  
To overcome this problem, the PLS regression, a 
methodology that makes use of all available descriptors 
as opposed to subset regression and is useful when 
the descriptors are strongly collinear [43], was used.  
PLS could find the relationship between a matrix Y 
(containing dependent variables, often only one for 
QSPR studies) and a matrix X (containing predictor 
variables) by reducing the dimension of the matrices 
while concurrently maximizing the relationship between 
them [48].

SIMCA-P (Version 10.5, Umetrics AB, 2004) software 
was employed to perform the PLS analysis. The default 
values given by the software were used as the initial 
conditions for computation. According to the user’s 
guide to SIMCA-P [49], the criterion used to determine 
the model dimensionality, ie, the number of significant 
PLS components (h), is  7-fold cross validation (CV).  
With CV, observations are excluded from the model; 
the response values for the excluded observations are 

No. EHOMO ELUMO TE m QC
– QH

+ LCC Re

1 –0.21267 –0.03527 –385.8927289 0.0000 –0.190922 0.129521 1.4345 1291.7137

2 –0.19201 –0.06005 –539.5305216 0.0000 –0.297755 0.130208 1.4460 2861.0192

3 –0.21056 –0.03655 –539.5386564 0.0420 –0.206640 0.133247 1.4577 2623.7434

4 –0.20248 –0.04660 –693.1820248 0.0000 –0.206250 0.134154 1.4529 4779.3414

5 –0.19556 –0.05696 –693.1789643 0.0657 –0.316335 0.134410 1.4655 4932.2234

6 –0.18748 –0.06385 –769.4137837 0.0454 –0.336304 0.134338 1.4431 5260.4605

7 –0.20094 –0.02781 –463.3149436 0.8187 –0.361712 0.159215 1.5688 1746.1112

8 –0.21150 –0.02622 –501.4232016 0.4821 –0.420260 0.172179 1.5161 2352.1686

9 –0.21206 –0.06438 –615.7502058 0.3291 –0.220472 0.133868 1.4759 3194.2266

10 –0.20048 –0.04179 –655.0668764 0.4401 –0.421373 0.173231 1.5153 4339.4356

11 –0.21488 –0.03422 –693.1810887 0.0000 –0.202328 0.134104 1.4669 4119.3318

12 –0.18198 –0.06959 –769.4061188 0.0000 –0.226768 0.132838 1.4762 4833.1441

13 –0.20853 –0.03389 –425.2096910 0.2957 –0.535209 0.162462 1.5104 1613.7939

14 –0.20816 –0.03418 –425.2102103 0.4221 –0.531849 0.164105 1.4336 1778.0688

15 –0.18787 –0.05886 –578.8421060 0.3236 –0.540751 0.166254 1.5139 3158.3301

16 –0.20280 –0.04408 –655.0675111 0.5856 –0.419917 0.172820 1.5175 4587.3211

17 –0.19120 –0.06102 –845.6544426 0.0669 –0.228600 0.133409 1.4694 5447.8122

18 –0.20031 –0.05192 –921.8978878 0.0000 –0.208795 0.130048 1.4275 6177.9855

19 –0.21336 –0.06933 –462.0881949 0.3351 –0.221442 0.134607 1.4726 1653.0001

20 –0.20804 –0.03313 –464.5209840 0.4208 –0.453608 0.153446 1.5313 2122.3544

21 –0.19575 –0.05440 –615.7731341 0.0000 –0.225803 0.130157 1.4376 2991.0909

22 –0.17843 –0.07635 –693.1658119 0.0000 –0.298815 0.130654 1.4529 5445.1396

23 –0.21027 –0.06309 –769.3987687 0.3823 –0.305885 0.134380 1.4750 5423.8821

24 –0.19624 –0.07356 –845.6292983 0.6075 –0.314450 0.134606 1.4760 6167.5033

Table 2. Quantum chemical descriptors for the PAHs studied. 
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predicted by the model and compared with the actual 
values. This procedure is repeated several times until 
every observation has been excluded once and only 
once. For every component, the fraction of the total 
variation of the dependent variables (Q2) and the 
cumulative Q2 for the extracted components (Q2

cum) are 
computed using the following equations:

(1)

(2)
where PRESS is the prediction error sum of squares 
when the observations were excluded, and SS is the 
residual sum of squares of the previous component.  
The tested PLS component is thought significant if 
Q2 is larger than a significance limit (0.0975) for the 
whole data set. The model is thought to have a good 
predictability when Q2

cum is larger than 0.5 [49]. Model 
adequacy was assessed based primarily on h, Q2

cum, the 
squared correlation coefficient between observed values 
and fitted values (R2), the standard error of the estimate 
(SE), the variance ratio (F), and the significance level (p).

3. Results and Discussion

3.1. Modeling and optimizing
For the 18 PAHs contained in the training set, PLS 
analysis was performed with log KOW as the dependent 
variable and the 11 independent variables as the 
predictor variables, yielding QSPR model I. For this 
model, we have R2=0.987, SE=0.120, F=1.20×103, and 
p=2.22×10–16. The fitting results for this model are listed 
in Table 3. In Table 3, R2

X and R2
Y stand for the fraction 

of the sum squares of all the X’s and Y’s explained by 
the current component, R2

X(cum) and R2
Y(cum) stand for 

cumulative variance of all the X’s and Y’s explained by 
all extracted components respectively, and Eig stands 
for eigenvalue that denotes the importance of the PLS 
principal component.

Variable importance in the projection (VIP) is a 

parameter that shows the importance of a variable in 
a model in the assistant analysis of PLS modeling.  
According to the manual of SIMCA-P, terms with 
large VIP (>1.0) are the most relevant for explaining 
dependent variables. Previous studies found that all 
independent variables were not necessary for PLS 
modeling [29,30,50-52]. To obtain an optimal model, the 
following PLS analysis procedure was adopted. A PLS 
model with all the predictor variables was first calculated 
and then the variable with the lowest VIP was eliminated 
and a new PLS regression was performed, yielding a 
new PLS model. This procedure was repeated until 
an optimal model was obtained. The optimal model 
was selected with respect to Q2

cum, R2, SE, F and p. 
According to the statistics and metrics theories, a QSAR 
model with larger values of Q2

cum, R2 and F and smaller 
values of SE and p tends to be more stable and reliable 
than in the opposite case.

The above described PLS analysis procedure with 
log KOW as dependent variable and the 11 independent 
variables as the initial predictor variables, for the 18 PAHs 
contained in the training set, resulted in model II as an 
optimal one.  For this optimal model, we have R2=0.990, 
SE=0.106, F=1.56×103, and p<1.00×10–16. The fitting 
results for the optimal model are shown in Table 3. As 
shown in the table, 3 PLS principal components were 
selected in the optimal model, which explained 88.5% 
of the variance of the predictor variables and 99.0% of 
the variance of the dependent variable. Based on the 
estimate indexes employed in this study, this optimal 
model is statistically significant.

3.2. Analysis and Discussion
The predicted log KOW calculated from the optimal model 
for the 18 PAHs contained in the training set were listed 
in Table 1 and the comparison of observed and predicted 
log KOW was shown in Fig. 2. The observed log KOW 
values are close to those predicted by the optimal model 
and the correlation between observed and predicted 
log KOW is significant. For the PAHs under study, the 
differences between observed and predicted log KOW 

Model Y X h R2
X R2

X(cum) R2
Y R2

Y(cum) Eig Q2 Q2
cum

I log KOW X1 
a 1 0.538 0.538 0.759 0.759 5.92 0.712 0.712

2 0.138 0.676 0.202 0.961 1.52 0.760 0.931

3 0.190 0.867 0.026 0.987 2.09 0.598 0.972

II log KOW X2 
b 1 0.568 0.568 0.761 0.761 5.68 0.718 0.718

2 0.127 0.695 0.212 0.973 1.27 0.813 0.947

3 0.190 0.885 0.016 0.990 1.90 0.545 0.976

Table 3. Fitting results for PLS model I and II.

a X1 containing all 11 independent variables;
b X2 containing 10 independent variables, not including QC

–.

Q2 = 1.0–
SS

PRESS                      

Q2
cum = 1.0– nSS

PRESS )(     (n = 1,......h) 
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are very small, so the predicted values are acceptable.  
Note that the cross-validated Q2

cum value (=0.976) of the 
optimal model is not only remarkably larger than 0.500, 
but also larger than that of model I without optimizing; 
thus this optimal model is stable and is a good predictor 
of KOW for PAHs.

When X and Y are unscaled and uncentered, the 
unscaled coefficients of the independent variables and 
constant transformed from the PLS results are listed 
in Table 4. From the positive or negative signs of the 
coefficients of the independent variables, one can 
evaluate the effect of each independent variable on 
the KOW of PAHs. Based on the unscaled coefficients, 
a QSPR equation like that obtained from multiple linear 
regressions can be created for the optimal model and 
predicted KOW for other PAHs can be calculated. Based 
on model II, predictions of KOW for the 6 PAHs containing 
in the test set were generated and listed in Table 1 and 
the comparison of observed and predicted log KOW was 
shown in Fig. 2. The squared correlation coefficient 
between observed and predicted log KOW in the test set 
was as high as 0.976, close to that in the training set. As 
can be seen in Table 1 and Fig. 2, the predicted log KOW 
values for the test set are very close to those observed. 
This indicated that the optimal model has stable and 
good predictability.

The VIP values for the optimal model were calculated 
and listed in Table 4. We can find that the VIP values 
of Re, TE, and ELUMO are all greater than 1.0, indicating 
they are important in governing the KOW values of PAHs.  
In addition, the VIP values of ELUMO–EHOMO and (ELUMO–
EHOMO)2 are very close to 1.0.  Re and TE are the two most 
important variables since their VIP values are larger 
than 1.50, which is greater than the VIP values of the 
other variables.  As shown in Table 5, the absolute value 
of correlation coefficient between Re and TE is as high 

as 0.976, and ELUMO, ELUMO–EHOMO and (ELUMO–EHOMO)2 are 
highly intercorrelated for the PAHs under study, while 
the correlations between the former two variables and 
the latter three variables are inconspicuous. Thus these 
five variables can be divided into two groups by their 
cross-correlations.

It is expected that log KOW increases with the 
increasing of molecular size. Considering the 
examples illustrated previously (see structures in 
Fig. 1): naphthalene (log KOW=3.37, molecular weight 
(MW)=128.18), anthracene (log KOW=4.54, MW=178.24) 
and naphthacene (log KOW=5.90, MW=228.30), which 
differ among themselves by the number of fused rings 
arranged linearly, the increase in log KOW as a function 
of the number of rings and molecular sizes is clearly 
seen. When isomers share the same molecular weight, 
molecular sizes differ from the arrangements of atoms, 
which can be expressed by molecular volume and 
surface area, leading to the difference in log KOW. For 
example, chrysene (log KOW=5.86), benz[a]anthracene 
(log KOW=5.91), triphenylene (log KOW=5.49) and 
naphthacene (log KOW=5.90) are isomers (MW=228.30, 
structures shown in Fig. 1), but they have different 
n-octanol/water partition coefficients.

The variety of molecular size could be described 
by the quantum chemical descriptors of Re and TE in this 
work. Firstly, Re is the expectation value of the operator 
ρ in the formula of ∫r2ρ(r)d3r. It is occasionally seen in the 
literature as a measure of molecular volume. Although in 
many cases Re correlates poorly with molecular volume, 
the correlation for PAHs sharing similar structures is 
quite significant. A PAH molecule with large electronic 
spatial extent will have large molecular volume [30]. 
Secondly, for the whole compounds set in this study, 
the decrease of TE values indicates more carbon and 
hydrogen atoms containing in the molecule, which 
might lead to the increase of molecular volume. Lu et 
al. [30] found that TE correlated with molecular volume 
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Figure 2. Plot of observed values vs. those predicted by the optimal 
model.

Variables Unscaled Coefficients VIPs

Re 3.278×10–4 1.543

TE –3.169×10–3 1.517

ELUMO –2.193 1.002

(ELUMO–EHOMO)2 –3.941 0.989

ELUMO–EHOMO –7.247×10–1 0.982

EHOMO –6.433×10–1 0.814

m –3.767×10–2 0.688

QH
+ 1.612 0.680

ELUMO+EHOMO –5.630 0.667

LCC 1.425 0.574

Constant –1.766

Table 4.  The unscaled coefficients and VIPs of the optimal model.  
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significantly for PAHs sharing similar structures. When 
the carbon and hydrogen atoms of different PAHs were 
equal, TE values differed from isomers. As shown in 
Table 4, the coefficient sign of Re and TE are positive 
and negative, respectively. This implies that the increase 
of the Re value and the decrease of the TE value lead 
to an increase in log KOW value. So it can be concluded 
that PAHs molecules with larger electronic spatial extent 
and lower molecular total energy values tend to be more 
hydrophobic and lipophilic, leading to larger log KOW 
values.

The gap between ELUMO and EHOMO, ELUMO–EHOMO, 
which defines the energy necessary to excite an electron 
from the highest occupied and the lowest unoccupied 
molecular orbital, turned out to be a useful descriptor 
[12]. ELUMO–EHOMO is related to absolute hardness [53], 
defined as half the absolute value of ELUMO–EHOMO, which 
is regarded as a measure of energy stabilization in 
chemical systems: Chemical structures tend to be more 
stable at large values of the ELUMO–EHOMO gap [54]. As 
can be seen in Table 4, ELUMO, ELUMO–EHOMO and (ELUMO–
EHOMO)2 are shown to be significant besides Re and TE in 
this study and all of their coefficient signs are negative.  
As ELUMO is always larger than EHOMO (Table 2), so the 
value of ELUMO–EHOMO is positive and the (ELUMO–EHOMO)2 
value decreases along with the decrease of ELUMO–EHOMO 
value.  Thus the decrease of ELUMO and ELUMO–EHOMO 
values leads to the increase in log KOW values.

3.3. Comparison with the results from other 
models

So far as in the literatures, there have been several 
QSPR studies on log KOW of PAHs (e.g. ref. [12,13,31]).  
The best squared correlation coefficient of the QSPR 
model for log KOW of PAHs developed solely on calculated 
descriptors (molecular weight and volume) was 0.976, 
less than that of the optimal model in the present study 
obtained solely on quantum chemical descriptors. In 
addition, only non-substituted PAHs containing 2~7 
fused rings with five and six carbon atoms were included 
in that work [13]. The highest R checked in literature is 
0.996, generated from PLS analysis on 5 combinatorial 
descriptors including electron affinity, edge-connectivity, 

surface area, enthalpy of formation and retention index 
for a data set only consisting of six-membered ring 
PAHs [12]. It seems superior to the optimal model in this 
study.  However, as stated earlier, such models based 
on known physicochemical properties were of limited 
applicability. Therefore, our optimal model based only 
on quantum chemical descriptors has wider applicability 
than those based on known physicochemical properties 
and/or topological descriptors. This work demonstrated 
again that modern high precision quantum chemical 
method can be an effective means in QSPR study of 
environmental contaminants, and a series of similar 
study in our laboratory is under way. The overall high 
quality of the obtained optimal model in this study 
indicates that it will find application in the estimation of 
n-octanol/water partition coefficients of PAHs having no 
known experimental values.

4. Conclusions
In this study, based on some quantum chemical 
descriptors computed by DFT at the B3LYP/6-31G(d) 
level, by the use of PLS analysis, QSPR models 
were obtained for logarithmic n-octanol/water partition 
coefficients of PAHs. The squared correlation coefficient 
of the optimal model is 0.990. The optimal model has 
high fitting precision and good predictability, so it can be 
applied in the estimation of the n-octanol/water partition 
behavior of PAHs. It can generally be concluded 
that PAHs with larger electronic spatial extent and 
lower molecular total energy values tend to be more 
hydrophobic and lipophilic.
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Table 5.  Cross-correlation coefficients for some important vari-
ables (N=24).

Re TE ELUMO ELUMO–EHOMO (ELUMO–EHOMO)2

Re 1.000

TE –0.976 1.000

ELUMO –0.615 0.627 1.000

ELUMO–EHOMO –0.613 0.615 0.955 1.000

(ELUMO–EHOMO)2 –0.626 0.624 0.958 0.998 1.000
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