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Abstract: A rapid method for calculating the time dependence of activities of individual radionuclides in
genetically coupled decay series has been proposed. The method is based on the mathematical procedure,
in which the matrix method is used for calculating a set of decay equations given in the vector form. The
developed method is computerized and uses the modern Scilab software. This simple method eliminates
certain drawbacks of older methods used previously for this purpose and is applicable to even solve
calculations which are not easily treatable with the older methods. Some practical examples of such
calculations are presented. Moreover, the new method is universal and it also enables a more general
approach to the problem of the calculation of decay series in nuclear chemistry.
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1 Introduction

For the calculation of activities of individual radionuclides in respective decay series, the

analytical solution can be found in literature [1–9], where activities of single members

of the series are computed by the method of variation of constants. As an example, the

calculation for a number of radioactive atoms for the third member of a decay family

N3(t) can be demonstrated:

N3(t) = N0
1 λ1λ2

(
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+

e−λ2t

(λ1 − λ2)(λ3 − λ2)
+

e−λ3t

(λ1 − λ3)(λ2 − λ3)

)
(1)
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where N0
1 is the number of atoms of the 1st member of series in time t = 0, and λi = decay

constant of the ith member of the family (i = 1, 2, 3). This solution is only for N0
1 > 0,

initial activities other members must be zero (N0
2 = N0

3 = 0).

This solution has two disadvantages, it is supposed that any two decay constants are

not equal (in the case of equality of two or more constants the solution has another form)

and more importantly, it is very labor intensive. In the formula given in Eq. 1, the third

member of the family is computed from the initial number of atoms of the first family

member. In the case that N0
2 and/or N0

3 are nonzero members, N3(t) must be calculated

separately from N0
2 and/or N0

3 . The resulting N3(t) is produced by the sum of N3(t) from

N0
1 , N0

2 and/or N0
3 .

Using Eq. 1 it becomes very time consuming for such a calculation for when n = 3

and for n greater than 3 the procedure becomes increasingly difficult.

Recently, several authors addressed the simulation and visualization of uranium and

thorium decay series for the purposes of teaching, environmental and geological explo-

ration of a decay series [7, 8]. They obtained various graphical presentations either in the

form of solid curve and column diagrams or animation [9]. It was also unambiguously

confirmed that the use of numerical methods in the activity calculation of decay series

systems with more than three nuclides is necessary. These methods still suffer from cer-

tain restrictions on the values of decay constants of the nuclides considered in the decay

series as given above.

The simple calculation method for the activity of the members for the decay series

presented in this paper is independent of the initial activities of the individual radionu-

clides or for the equality or non-equality of the single decay constants of interest. This

method is also suitable for simultaneous calculation of branching and mutually indepen-

dent decay series. We assume a nonzero activity for one or more radionuclides for a single

series in the closed system. From the point of view of the calculation, it is not important

whether we introduce the total activity, volume activity or specific activity.

2 Method

Eq. 2 schematically demonstrates the radioactive decay series, where the nuclide X1

decays to the nuclide X2, nuclide X2 decays to X3 etc. The λi denotes the individual

decay constants:

X1
λ1−→ X2

λ2−→ X3
λ3−→ (2)

Using Eq. 2 we can write down a set of equations:

dN1

dt
= −λ1N1

dN2

dt
= λ1N1 − λ2N2

...

dNn

dt
= λn−1Nn−1 − λnNn

(3)
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This set can be solved, for example, by the method of variation of constants.

However, the set for Eq. [3] can also be rewritten into the vector form:

−̇→
N = Λ

−→
N (4)

The solution of Eq. 4 is then expressed as [10]:

−→
N = etΛ−→N0 (5)

where
−→
N is the vector of the number of atoms,

−̇→
N is its derivation in time, and

−→
N0 is the

vector of the number of atoms in t = 0. The matrix of Λ is:

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 0 0 0 0 0

λ1 −λ2 0 0 0 0

0 λ2 −λ3 0 0 0

0 0 ... ... 0 0

0 0 0 λn−2 −λn−1 0

0 0 0 0 λn−1 −λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

For ith radionuclide with decay by α and β we can write down a set of equations:

...

dNi

dt
= λi−1Ni−1 − λiNi

dNi+1

dt
= pβiλiNi − λi+1Ni+1

dNi+2

dt
= pαiλiNi − λi+2Ni+2

dNi+3

dt
= λi+1Ni+1 + λi+2Ni+2 − λi+3Ni+3

...

(7)

and relevant rows of the matrix Λ have the form:

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

... ... 0 0 0 0 0

0 λi−1 −λi 0 0 0 0

0 0 pβiλi −λi+1 0 0 0

0 0 pαiλi 0 −λi+2 0 0

0 0 0 λi+1 λi+2 −λi+3 0

0 0 0 0 0 ... ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)
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where pαi and pβi are the probabilities of the α or β decay ith term. An example of Λ

matrix for independent series is:

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λx1 0 0 0 0 0 0

λx1 −λx2 0 0 0 0 0

0 0 −λy1 0 0 0 0

0 0 λy1 −λy2 0 0 0

0 0 0 λy2 0 0 0

0 0 0 0 0 −λz1 0

0 0 0 0 0 λz1 −λz2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where the ‘x’ series has two radionuclides, the ‘y’ series has two radionuclides and a third

stable nuclide and the ‘z’ series has two radionuclides.

The exponential function of the matrix is defined as [10]:

eM =

∝∑
k=1

Mk

k!
(10)

where M ∈ (R)nxn. For the calculation of this difficult formula, we use a mathematical

software which has a command for an exponential function of matrix. For each calculating

time step we let M = tΛ.

3 Results and discussion

There are four natural decay series which are composed of the radionuclides heavier than
206Pb [11]. According to the divisibility of the mass number of both the initial and

final nuclides by 4, the individual series are denoted as 4n+0 (from 232Th to 208Pb),

4n+1 (from 237Np to 209Bi), 4n+2 (from 238U to 206Pb) and 4n+3 (from 235U to 207Pb).

Nuclides from the 4n+1 series do not occur in nature due to their short half-lives in

comparison with the age of the Earth, but they can be produced artificially [4]. The

series 4n has 11 radionuclides, the series 4n+2 has 15 radionuclides, and the series 4n+3

has 13 radionuclides.

The time dependence of the activities of nuclides in a single series can be solved

with the help of Eq. 5. It is necessary to take into consideration scale differences in the

half-life, e.g., in 4n+0 the longest half-life has 232Th (1.4 · 1010 years) and the shortest
212Po (1.71 · 10−8 s), which is as many as 25 orders of magnitude. In the case that the

computed task contains radionuclides of several series, it is better to calculate single series

separately, even though Eq. 5 enables them to be calculated simultaneously.

Scilab software was used for the calculation (it also exists in the version for Win32 [12]).

This software is designed for mathematical calculations, including the exponential of ma-

trices.
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For the calculation of activities of decay series, it is advisable to omit radionuclides

with the shortest half-lives but to take into consideration their equilibrium activities with

the mother radionuclides, e.g. 216Po, 212Po in 4n+0 series, 217At, 213Po in 4n+1 series,
214Po in 4n+2 series and 215Po, 211Po in 4n+3 series.

For facilitating the individual calculations some functions have been created in the

Scilab software. These functions are listed in the Annex (List of file “fdecay.sci”). The

first example is shown for the decay series, which has two radionuclides with a given

half-life and nonzero initial activities for each radionuclide. A list of the batch file for the

calculation is given in the Annex (List of file“decay st1.sci”). The result of this calculation

for two unnamed radionuclides, as an output from Scilab software, is presented in Fig. 1.

The half-life of both the first (mother) and the second (daughter) radionuclide were

the same 1 time unit. This calculation method is equally valid for any coupled pair of

radionuclides with zero or nonzero initial activity of the second (daughter) radionuclide

with different half-lives.

Fig. 1 Time dependence of the activity of two genetically coupled radionuclides calculated

by the elaborated method.

The second example is the calculation of three radionuclides, 238U, 234U and 226Ra

from the decay series 4n+2, present in a sample of ground water. The initial activity

of 238U is 5 Bq·l−1. The activity ratio of 234U/238U is chosen as 10, i.e., the activity of
234U is 50 Bq·l−1, and the initial activity of 226Ra is 20 Bq·l−1. The other radionuclides

from this series are disregarded. A list of the batch file for the calculation is listed in

the Annex (List of file “decay s2.sci”) and the result of the calculation as an output from

Scilab software, is given in Fig. 2.
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Fig. 2 Time dependence of the activity of three genetically coupled radionuclides from

uranium decay series 4n+2 calculated by the elaborated method.

Fig. 3 Time dependence of the activity of six genetically coupled radionuclides from

uranium decay series 4n+3 calculated by the elaborated method.
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The third example is for six radionuclides from uranium decay series 4n+3, where the

third radionuclide, 227Ac has two types of decay (α and β). A list of the batch file for

the calculation is given in the Annex (List of file “decay s3.sci”). For greater clarity we

left out 231Th. The result for the calculation presented in Fig. 3 shows that the activity

was practically unchanged for 235U in the time span under consideration, the activities

of 231Pa, 227Ac and 223Ra gradually attain the activity of 235U, except 227Th and 223Fr.

The sum of the activities of these last two radionuclides is equal to the activity of 235U

at equilibrium. The difference in the activities of 227Th and 223Fr is due to the greater

differences of α and β decay probabilities for their 227Ac mother nuclide.

4 Conclusion

A computerized numerical method has been developed. This method enables the simulta-

neous calculation of the activity of any member for all of the uranium decay series at any

time or any time interval for various initial conditions. It has some advantages when the

number of nuclides in a decay series is higher than 2. The method is universal and easy,

and it makes it possible to calculate activities in cases where the initial activities of the

daughter nuclides have nonzero values. It is applicable also in a hypothetic case where,

in any decay series, two or more decay constants are equal. The used Scilab software

allows the presentation of the calculated activity values in a direct graphical or tabulated

form, as desired. The proposed method can be used advantageously in environmental or

geological studies where the natural radionuclides, especially U or Th decay series are

used.
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Annex

Source code listing of the batch file ”fdecay.sci”:

// functions, version 2.4 25.1.2007 jl

//conversion of vector of half times to vector of decay constants

//input parameters: T - vector of half times

function L=T2L(T)

L=[];

for i=1:length(T),

if T(i)>0 then L(i)=log(2)/T(i);

else L(i)=0;

end;
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end;

endfunction;

//generate of decay matrix from decay vector

//input parameters: L - vector of decay constants

function LL=L2LL(L)

LL=[];

for i=1:length(L)

for j=1:length(L)

LL(i,j)=0;

if i==j then LL(i,j)=-L(i); end;

if i-j==1 then LL(i,j)=L(j); end;

end;

end;

endfunction;

//correct of decay matrix for radionuclide with both type of decay

//input parameters: LL - decay matrix, i - index of radionuclide

// pb - probability of betas decay of radionuclide i

function LL=LLc(LL,i,pb)

n=size(LL)

if n(1)>i then LL(i+1,i)=-LL(i,i)*pb; end;

if n(1)>=i+2 then

LL(i+2,i)=-LL(i,i)*(1-pb);

LL(i+2,i+1)=0;

end;

if n(1)>=i+3 then

LL(i+3,i+1)=-LL(i+1,i+1);

LL(i+3,i+2)=-LL(i+2,i+2);

end;

endfunction;

//convert of initial activities vector to initial atom number vector

//input parameters: a - vector of activities, L - vector of decay constants

function n=A2N(a,L)

n=[];

for i=1:length(a),

n(i)=a(i)/L(i);

end;

endfunction;

// solve decay series by matrix method
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//input parmeters: LL - matrix of decay constants,

//n0 - initial vector of atom nubers, t - vector of time steps

function nn=decay(LL,n0,t)

nn=[];

for i=1:length(t),

n=expm(t(i)*LL)*n0;

for j=1:length(n0),

nn(i,j)=n(j); end; end;

endfunction;

//convert of result atom number vector(matrix) to result activity vector(matrix)

//input parameters: n - vector of numbers of atoms,

//L - vector of decay constants

function a=N2A(n,L)

a=[];

[ni,nj]=size(n);

for i=1:ni,

for j=1:nj,

a(i,j)=n(i,j)*L(j);

end;

end;

endfunction;

End of the list of file ”fdecay.sci”:

Source code listing of the batch file ”decay st1.sci”:

//load of the functions

;exec("[PATH]\ fdecay.sci");

//declares

T=[ //declare vector of half times of decay series

1; //half time of the first radionuclide

1; //half time of the second radionuclide

];

a0=[1000 400]’; //declare vector of initial activities

t=[0:.1:10]’; //declare of time vector

//conversion and calculates

L=T2L(T); //conversion of vector of half times to vector of decay constants

LL=L2LL(L); //conversion of vector of decay constant to the matrix
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//conversion vector of initial activities to vector of initial atom numbers:

n0=A2N(a0,L);

nn=decay(LL,n0,t); //calculate of vectors of atom number in time steps

na=N2A(nn); //conversion vectors of atom numbers to activities

// plot of the results

xbasc() //reset of graph window

xset("default"); //default parameters of graph window

xtitle(",’time [units]’,’activity [Bq]’) //set graph titles

//plot

plot2d(t,na,style=[-1,-2]...

leg="The first radionuclide@The second

radionuclide");

End of the list of file ”decay st1.sci”.

Source code listing of the batch file ”decay s2.sci”:

//load of the functions

;exec("[PATH]\fdecay.sci");

//declares

sy=365.24219*24*60*60; //sec per year

T=[ // declare vector of half times [s]

4.46e9*sy; //U

-238

2.45e5*sy; //U -234

1600*sy; //Ra-226

];

t=[0:400*sy:16000*sy]’; //declare of time vector

a0=[5 50 20]’; //declare vector of initial activities [Bq/l]

//conversion and calculates

L=T2L(T); //conversion halftime to decay constants

LL=L2LL(L); //conversion decay constant vector to the matrix
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n0=A2N(a0,L); //conversion initial activities to number of atoms

nn=decay(LL,n0,t); //calculate of atom number vectors in time steps

na=N2A(nn); //conversion atom numbers to activities

// plot of the results

xbasc() //reset of graph window

xset("default"); //default parameters of graph window

xtitle(",’time [y]’,’activity [Bq/l]’) //set graph titles

plot2d(t/sy,na,logflag=’nn’,style=[-1 -2 -3], leg="U238@U234@Ra226"); //plot

End of the list of file ”decay s2.sci”.

Source code listing of the batch file ”decay s3.sci”:

//load of the functions

;exec("[PATH]\fdecay.sci");

//declares

T=[ //declare vector of half times of 4n+3 decay series [y]

7.03e8; //U -235 1

3.27e4; //Pa-231 2

21.8; //Ac-227 3

18.9/365.24219; //Th-227 4

22/60/24/365.24219; //Fr-223 5

11.4/365.24219; //Ra-223 6

];

ns3=3; // index of Ac-227

ps3b=0.986; // probability of beta decay of Ac-227

a0=[950 0 0 0 0 0]’; //declare vector of initial activities

t=[0:6e3:3e5]’; //declare of time vector

//conversion and calculates

L=T2L(T); //conversion of vector of half times to vector of decay constants

LL=L2LL(L); //conversion of vector of decay constant to the matrix

LL=LLc(LL,ns3,ps3b); //correct the matrix for alpha and beta decay of Ac-227

//conversion vector of initial activities to vector of initial atom numbers

n0=A2N(a0,L);

nn=decay(LL,n0,t); //calculate of vectors of atom number in time steps
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na=N2A(nn); //conversion vectors of atom numbers to activities

// plot of the results

xbasc() //reset of graph window

xset("default"); //default parameters of graph window

xtitle(",’time [y]’,’activity [Bq]’) //set graph titles

plot2d(t,na,logflag=’nn’,style=[-1 -2 -3 -4 -5 -6],...

leg="U235@Pa231@Ac227@Th227@Fr223@Ra223"); //plot

End of the list of file ”decay s3.sci”.
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