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Abstract: A new oxidation process has been found where α,ω-dicarboxylic acid esters and ω-
hydroxycarboxylic acid esters are formed on heating gem-bishydroperoxides in alcohol in the presence of
BF3·Et2O. By addition of H2O2 to this reaction α,ω-dicarboxylic acid esters are formed almost selectively.
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1 Introduction

In recent years, interest in organic gem-bishydroperoxides has increased sharply with

respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Previously

we reported a new effective method for the synthesis of gem-bishydroperoxides based

on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes

[10]. This methodology has readily made these compounds accessible and has opened an

opportunity for their wider use in organic synthesis. Presently, the chemistry for the use’s

of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances

possess a high content of active oxygen not being used in oxidation processes.
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2 Results and discussion

In this paper we report a new oxidation process where gem-bishydroperoxides 1, 4, 7, 10

are transformed into α,ω-dicarboxylic acid esters 2, 5, 8, 11 and ω-hydroxycarboxylic acid

esters 3, 6, 9, 12. This transformation proceeds by refluxing the gem-bishydroperoxide in

alcohol with BF3·Et2O (Scheme 1). The reaction is of further interest since the BF3·Et2O

complex has also been used for the synthesis of gem-bishydroperoxides in Et2O as solvent.

n = 1 (1, 2, 3), 2 (4, 5, 6), 3 (7, 8, 9), 7 (10, 11, 12)

R = Et (a), Pr (b), Bu (c)

Scheme 1 Boron trifluoride catalyzed transformation of gem-bishydroperoxides into es-

ters.

An important feature of the transformation of gem-bishydroperoxides into α,ω-dicar-

boxylic acid esters and ω-hydroxycarboxylic acid esters is that in accordance with the

reaction stoichiometry the preparation of α,ω-dicarboxylic acid esters 2, 5, 8, 11 cannot

simply be a monomolecular reaction. The synthesis of these esters from bishydroperoxides

1, 4, 7, 10 demands an additional atom of oxygen plausibly donated by a second molecule

of bishydroperoxide via intermolecular transfer (Scheme 2).

Scheme 2 α,ω-Dicarboxylic acid esters synthesis via transfer of active oxygen.

A number of the experiments have shown, that the yields of α,ω-dicarboxylic acid

esters 2, 5, 8, 11 and ω-hydroxycarboxylic acid esters 3, 6, 9, 12 are comparable with each

other (Table 1). In the reaction mechanism, one molecule of bishydroperoxide is a donor of

active oxygen, and the other molecule is an acceptor. The ω-hydroxycarboxylic acid esters

3, 6, 9, 12 are probably formed as the result of a Baeyer-Villiger rearrangement. The

requirement for this rearrangement is that the molecule contains only one O-O fragment.
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Consequently, the bishydroperoxide must undergo transformation into the monoperoxide

with a loss of oxygen before a Baeyer-Villiger rearrangement is possible in this reaction.

The mechanism for the synthesis of α,ω-dicarboxylic acid esters 2, 5, 8, 11 is probably

similar to the mechanism suggested earlier [11] and differs mainly in that the obtained

acids are esterified during the reaction.

Table 1 The synthesis of α,ω-dicarboxylic acid esters 2, 5, 8, 11 α,ω-hydroxycarboxylic

acid esters 3, 6, 9, 12 from gem-bishydroperoxides 1, 4, 7, 10a.

Run Bishydro- Solvent BF3·Et2O, Yields of α,ω-dicarbo- Yields of ω-hydroxycar-
peroxide eqv xylic acid esters, %b boxylic acid esters, %b

1 1 EtOH 1 2a, 26 3a, 32
2 1 EtOH 5 2a, 35 3a, 32
3 1 PrOH 1 2b, 21 3b, 37
4 1 PrOH 2 2b, 23 3b, 31
5 1 PrOH 5 2b, 36 3b, 35
6 1 BuOH 1 2c, 29 3c, 35
7 1 BuOH 5 2c, 36 3c, 45
8 1 BuOH - c 2c, 17 3c, 21
9 4 BuOH 5 5c, 35 6c, 41
10 7 BuOH 5 8c, 32 9c, 37
11 10 EtOH 5 11a, 34 12a, 31
12 10 PrOH 5 11b, 42 12b, 40
13 10 BuOH 5 11c, 41 12c, 37

a Reaction conditions: reaction temperature for; EtOH - 76-78 ◦C, PrOH - 92-94 ◦C, BuOH - 106-108 ◦C; overall

reaction time was 20 minutes.

Eqv=mol(BF3·Et2O) / mol(bishydroperoxide)

b The yields were calculated from the isolated products.

c BF3·Et2O was not used.

The results from Table 1 show that the major factors influencing the yields of esters

are BF3·Et2O concentration and the ring size of gem-bishydroperoxide. The ester yields

increased slightly with increasing BF3·Et2O concentration and ring size. In reaction

run 8, which was carried out in the absence of BF3·Et2O, esters 2c and 3c yields were

approximately halved in comparison with other experiments with bishydroperoxide 1 (run

7). The maximum total yield of esters 11b+12b (82 %) for run 12 was observed in the

transformation of 1,1-bishydroperoxicyclododecane (10) in propanol.

A number of experiments were carried out with the addition of 5 eqv H2O2 with the

purpose of studying the influence of an additional oxidizer on the ratio and yields of the

esters (Table 2).

This resulted in the dibutylalkanedioats being the main products, where yields were

72-84 % and the formation of butyl ω-hydroxyalkanoats was almost completely sup-

pressed; yields were less than 7 %.

Thus, in this study a new transformation of gem-bishydroperoxides is reported. The
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Table 2 The synthesis of dibutylalkanedioats and butyl ω-hydroxyalkanoats from bishy-

droperoxides 1, 4, 7, 10 with use of H2O
a
2.

Run Bishydroperoxide Yields of Yields of butyl
dibutylalkanedioats, %b ω-hydroxyalkanoats, %b

1 1 2c, 72 3c, 6
2 4 5c, 81 6c, 7
3 7 8c, 84 9c, 6
4 10 11c, 80 12c, traces

a Reaction conditions: solvent - BuOH, temperature 106-108 ◦C, total reaction time 20 minutes, H2O2

- 5 eqv, BF3·Et2O - 1 eqv. Eqv=mol(BF3·Et2O or H2O2) / mol(bishydroperoxide)

b The yields were calculated from the isolated products.

gem-bishydroperoxides on heating in alcohols in the presence of BF3·Et2O gave α,ω-

dicarboxylic acid esters and ω-hydroxycarboxylic acid esters with approximately equal

yields. Addition of H2O2 to the reaction results in suppression of ω-hydroxycarboxylic

acid esters formation. The reaction conditions are mild and do not demand the use of

proton acids.

This transformation opens an opportunity for the application of gem-bishydroperoxides

as oxidizers. From a practical point of view this reaction can find applications in the syn-

thesis of complicated α,ω-dicarboxylics acid esters and ω-hydroxycarboxylics acid esters

and for the preparation of anticorrosion compositions.

3 Experimental part

1H NMR and 13C NMR spectra were recorded on Bruker AC-200, Bruker WM-250, Bruker

AM-300. Analytical TLC: Silufol UV-254, Silpearl as the sorbent, starch as the binder.

Column chromatography was performed on silica gel (63-200 mesh, Merk).

Melting points were determined on a Kofler hot stage.

Cycloalkanones and BF3·Et2O (all of reagent grade) were used without additional pu-

rification. Solutions of H2O2 in Et2O are prepared according to [12]. Solvents: petroleum

ether, diethyl ether, ethanol, propanol and butanol were distilled before use.

Acetals for synthesis of bishydroperoxides were prepared in accordance with [11].

Bishydroperoxides 1, 4, 7, 10 were prepared in accordance with [10].

CAUTION. Bishydroperoxides 1, 4 are shock and friction sensitive and consequently

should be handled with care. These compounds are decomposed explosively on heating

to 100 ◦C and above.

General procedure for α,ω-dicarboxylic acid esters 2, 5, 8, 11 and ω-hydro-

xycarboxylic acid esters 3, 6, 9, 12 synthesis from bishydroperoxides 1, 4, 7,

10

Gem-bishydroperoxide 0.5 g 1 (3.38 mmol), 4 (3.09 mmol), 7 (2.84 mmol), 10 (2.16 mmol)

was dissolved in 5 ml of alcohol (EtOH, PrOH, BuOH). BF3·Et2O (1, 2 or 5 eqv) was



A.O. Terent’ev et al. / Central European Journal of Chemistry 4(2) 2006 207–215 211

added (in run 8, Table 1, BF3·Et2O was not used) and the mixture was heated to reflux

(temperature EtOH - 76-78 ◦C, PrOH - 92-94 ◦C, BuOH - 106-108 ◦C) for 20 minutes.

Dry potassium carbonate (fivefold molar excess as compared with BF3·Et2O) was added

and the mixture was stirred for 20 minutes. The inorganic salts were filtered. The liquid

was thoroughly evaporated for removal of alcohols traces. The esters were isolated by

column chromatography using petroleum ether/diethyl ether (with an increasing diethyl

ether gradient from 2 to 25 %).

Procedure for dibutylalkanedioats and butyl ω-hydroxyalkanoats synthesis

from bishydroperoxides 1, 4, 7, 10

Gem-bishydroperoxide 0.5g 1 (3.38 mmol), 4 (3.09 mmol), 7 (2.84 mmol), 10 (2.16 mmol)

was dissolved in BuOH (5ml). A 6 % ether solution of H2O2 (5 eqv) was added. The

ether was evaporated at 10-15 Torr. BF3·Et2O (1 eqv) was added and the mixture was

refluxed (106-108 ◦C) for 20 minutes. The esters were isolated as described above.

Diethylhexanedioate (2a) [13]

NMR 1H, 250 MHz (δ, CDCl3): 1.18 (t, 6H, CH3, J=7.2 Hz), 1.53-1.65 (m, 4H,

CH2CH2COOEt), 2.18-2.32 (m, 4H, CH2COOEt), 4.05 (q, 4H, OCH2, J=7.2 Hz).

Ethyl 6-hydroxyhexanoate (3a) [14]

NMR 1H, 500 MHz (δ, CDCl3): 1.14 (t, 3H, CH3, J=7.0 Hz), 1.24-1.32 (m, 2H, CH2),

1.40-1.48 (m, 2H, CH2), 1.49-1.57 (m, 2H, CH2), 2.19 (t, 2H, CH2COOEt, J = 7.3 Hz),

3.04-3.16 (br. s., 1H, OH), 3.49 (t, 2H, CH2OH, J = 6.7 Hz), 4.01 (q, 2H, COOCH2,

J=7.0 Hz).

NMR 13C, 125 MHz (δ, CDCl3): 13.9 (CH3), 24.4, 25.1, 32.0, 34.0 (CH2), 60.0, 61.9

(OCH2CH3, CH2OH), 173,8 (C=O).

Dipropylhexanedioate (2b) [15]

NMR 1H, 300 MHz (δ, CDCl3): 0.93 (t, 6H, CH3, J=7.3 Hz), 1.53-1.71 (m, 8H, CH2),

2.24-2.38 (m, 4H, CH2COOPr), 4.02 (t, 4H, COOCH2, J=6.6 Hz).

NMR 13C, 75.47 MHz (δ, CDCl3): 10.4 (CH3), 22.0, 24.5, 33.9 (CH2), 66.0 (OCH2Et),

173.5 (C=O).

Propyl 6-hydroxyhexanoate (3b) [16]

NMR 1H, 300 MHz (δ, CDCl3): 0.92 (t, 3H, CH3, J=7.3 Hz), 1.28-1.71 (m, 8H, CH2),

2.31 (t, 2H, CH2COOPr, J = 7.0 Hz), 3.10-3.40 (br. s., 1H, OH), 3.72 (t, 2H, CH2OH, J

= 6.5 Hz), 4.03 (t, 2H, COOCH2, J=6.6 Hz).

NMR 13C, 62.9 MHz (δ, CDCl3): 10.0 (CH3), 21.6, 24.4, 25.2, 31.9, 33.8 (CH2), 61.8

(CH2OH), 65.5 (OCH2Et), 173.6 (C=O).

Dibutylhexanedioate (2c) [17]

NMR 1H, 250 MHz (δ, CDCl3): 0.90 (t, 6H, CH3, J=7.1 Hz), 1.21-1.72 (m, 12H, CH2),

2.25-2.35 (m, 4H, CH2COOBu), 4.04 (t, 4H, COOCH2, J=6.8 Hz).

Butyl 6-hydroxyhexanoate (3c) [18]

NMR 1H, 200 MHz (δ, CDCl3): 0.90 (t, 3H, CH3, J=7.1 Hz), 1.22-1.67 (m, 10H, CH2),
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2.29 (t, 2H, CH2COOBu, J=7.4 Hz), 3.2-3.4 (br.s, 1H, OH), 3.64 (t, 2H, CH2OH, J=6.6

Hz), 4.02 (t, 2H, COOCH2, J=6.6 Hz).

NMR 13C, 62.9 MHz (δ, CDCl3): 13.2 (CH3), 18.7, 24.3, 25.0, 30.2, 31.8, 33.8 (CH2),

61.6, 63.7 (OCH2Pr, CH2OH), 173,5 (C=O).

Dibutylheptanedioate (5c) [19]

NMR 1H, 200 MHz (δ, CDCl3): 0.89 (t, 6H, CH3, J=7.1 Hz), 1.20-1.66 (m, 14H, CH2),

2.26 (t, 4H, CH2COOBu, J=7.4 Hz), 4.02 (t, 4H, COOCH2, J=6.6 Hz).

NMR 13C, 62.9 MHz (δ, CDCl3): 13.5 (CH3), 19.0, 24.5, 28.4, 30.5, 33.9, (CH2), 63.9

(OCH2Pr), 173.3 (C=O).

Butyl 7-hydroxyheptanoate (6c)

NMR 1H, 250 MHz (δ, CDCl3): 0.89 (t, 3H, CH3, J=7.2 Hz), 1.26-1.70 (m, 12H, CH2),

2.26 (t, 2H, CH2COOBu, J = 7.2 Hz), 2.65-2.75 (br. s, 1H, OH), 3.57 (t, 2H, CH2OH, J

= 7.1 Hz), 4.03 (t, 2H, COOCH2, J=6.7 Hz).

NMR 13C, 62.9 MHz (δ, CDCl3): 13.6 (CH3), 19.0, 24.8, 25.3, 28.8, 30.5, 32.4, 33.9 (CH2),

62.5, 64.0 (OCH2Pr, CH2OH), 173,8 (C=O).

Found (%): C, 65.61; H, 11.15. C11H2203. Calculated (%): C, 65.31; H, 10.96.

Dibutyloctanedioate (8c) [17]

NMR 1H, 250 MHz (δ, CDCl3): 0.90 (t, 6H, CH3, J=7.2 Hz), 1.24-1.69 (m, 16H, CH2),

2.26 (t, 4H, CH2COOBu, J=7.4 Hz), 4.03 (t, 4H, COOCH2, J=6.6 Hz).

NMR 13C, 62.9 MHz (δ, CDCl3): 13.4 (CH3), 19.0, 24.6, 28.6, 30.6, 34.0, (CH2), 63.9

(OCH2Pr), 173.4 (C=O).

Butyl 8-hydroxyoctanoate (9c)

NMR 1H, 250 MHz (δ, CDCl3): 0.89 (t, 3H, CH3, J=7.2 Hz), 1.21-1.68 (m, 14H, CH2),

2.25 (t, 2H, CH2COOBu, J = 7.2 Hz), 3.25-3.37 (br. s, 1H, OH), 3.54 (t, 2H, CH2OH, J

= 7.1 Hz), 4.02 (t, 2H, COOCH2, J=6.8 Hz).

NMR 13C, 62.9 MHz (δ, CDCl3): 13.5 (CH3), 18.9, 24.7, 25.4, 28.6, 28.9, 30.5, 32.5, 34.1

(CH2), 62.4, 63.9 (OCH2Pr, CH2OH), 173.8 (C=O).

Found (%): C, 66.90; H, 11.39. C12H2403. Calculated (%): C, 66.63; H, 11.18.

Diethyldodecanedioate (11a) [20]

M.p. = 15.5-16.5 ◦C. (m.p. = 16.7-17.2 ◦C [20])

NMR 1H, 250 MHz (δ, CDCl3): 1.17-1.65 (m, 22H, CH2, CH3), 2.25 (t, 4H, CH2COOEt,

J=7.3 Hz), 4.09 (q, 4H, COOCH2, J=7.2 Hz).

Ethyl 12-hydroxydodecanoate (12a) [21]

M.p. = 23-24.5 ◦C. (m.p. = 24-25 ◦C [21])

NMR 1H, 200 MHz (δ, CDCl3): 1.16-1.70 (m, 21H, CH2,CH3), 2.28 (t, 2H, CH2COOEt,

J=7.3 Hz), 2.36-2.56 (br. s., 1H, OH), 3.63 (t, 2H, CH2OH, J=6.7 Hz), 4.12 (q, 2H,

COOCH2CH3, J=6.7 Hz).
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Dipropyldodecanedioate (11b) [20]

M.p. = 11.5-12.5 ◦C. (m.p. = 12.7 - 13.4 ◦C [20]).

NMR 1H, 300 MHz (δ, CDCl3): 0.92 (t, 6H, CH3, J=7.3 Hz), 1.20-1.69 (m, 20H, CH2),

2.30(t, 4H, CH2COOPr, J=7.3 Hz), 4.03 (t, 4H, OCH2, J=6.7 Hz).

NMR 13C, 75.47 MHz (δ, CDCl3): 10.4 (CH3), 22.0, 25.0, 29.1, 29.2, 29.3, 34.3 (CH2),

65.7 (OCH2Et), 173.8 (C=O).

Propyl 12-hydroxydodecanoate (12b)

NMR 1H, 300 MHz (δ, CDCl3): 0.92 (t, 3H, CH3, J=7.3 Hz), 1.10-1.75 (m, 20H, CH2),

2.30 (t, 2H, CH2COOPr, J = 7.0 Hz), 2.30-2.50 (br. s., 1H, OH), 3.53 (t, 2H, CH2OH, J

= 6.6 Hz), 4.03 (t, 2H, COOCH2, J=6.7 Hz).

NMR 13C, 75.47 MHz (δ, CDCl3): 10.4 (CH3), 22.1, 25.1, 29.2-29.8 (7C), 30.9, 34.5

(CH2), 64.1 (CH2OH), 65.8 (OCH2Et), 174.0 (C=O).

Found (%): C, 69.95; H, 11.49. C15H3003. Calculated (%): C, 69.72; H, 11.70.

Dibutyldodecanedioate (11c) [20]

NMR 1H, 200 MHz (δ, CDCl3): 0.92 (t, 6H, CH3, J=7.1 Hz), 1.21-1.68 (m, 24H, CH2),

2.27 (t, 4H, CH2COOBu, J=7.5 Hz), 4.06 (t, 4H, COOCH2, J=6.5 Hz).

Butyl 12-hydroxydodecanoate (12c)

NMR 1H, 200 MHz (δ, CDCl3): 0.93 (t, 3H, CH3, J=7.2 Hz), 1.18-1.70 (m, 22H, CH2),

2.29 (t, 2H, CH2COOBu, J=7.4 Hz), 2.59-2.81 (br. s., 1H, OH), 3.65 (t, 2H, CH2OH,

J=6.8 Hz), 4.06 (t, 2H, COOCH2, J=6.6 Hz).

NMR 13C, 50.32 MHz (δ, CDCl3): 13.7 (CH3), 19.1, 24.9, 29.1-29.8 (8C), 30.6, 34.3

(CH2), 62.9, 64.1 (OCH2Pr, CH2OH), 174.0 (C=O).

Found (%): C, 70.63; H, 11.51. C16H3203. Calculated (%): C, 70.54; H, 11.84.
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