

Central European Journal of Chemistry

DOI: 10.2478/s11532-006-0012-6 **Communication** CEJC 4(2) 2006 207-215

A new oxidation process. Transformation of gem-bishydroperoxides into esters

Alexander O. Terent'ev*, Maxim M. Platonov, Alexander V. Kutkin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Leninsky Prospect 47, Moscow, Russia

Received 2 November 2005; accepted 8 February 2006

Abstract: A new oxidation process has been found where α,ω -dicarboxylic acid esters and ω -hydroxycarboxylic acid esters are formed on heating gem-bishydroperoxides in alcohol in the presence of BF₃·Et₂O. By addition of H₂O₂ to this reaction α,ω -dicarboxylic acid esters are formed almost selectively. © Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.

Keywords: Oxidation, gem-bishydroperoxides, α,ω -dicarboxylic acid esters, ω -hydroxycarboxylic acid esters, hydrogen peroxide, boron trifluoride

1 Introduction

In recent years, interest in organic gem-bishydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Previously we reported a new effective method for the synthesis of gem-bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use's of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.

^{*} E-mail: terentev@ioc.ac.ru

2 Results and discussion

In this paper we report a new oxidation process where gem-bishydroperoxides 1, 4, 7, 10 are transformed into α,ω -dicarboxylic acid esters 2, 5, 8, 11 and ω -hydroxycarboxylic acid esters 3, 6, 9, 12. This transformation proceeds by refluxing the gem-bishydroperoxide in alcohol with BF₃·Et₂O (Scheme 1). The reaction is of further interest since the BF₃·Et₂O complex has also been used for the synthesis of gem-bishydroperoxides in Et₂O as solvent.

Scheme 1 Boron trifluoride catalyzed transformation of gem-bishydroperoxides into esters.

An important feature of the transformation of gem-bishydroperoxides into α,ω -dicarboxylic acid esters and ω -hydroxycarboxylic acid esters is that in accordance with the reaction stoichiometry the preparation of α,ω -dicarboxylic acid esters $\mathbf{2}$, $\mathbf{5}$, $\mathbf{8}$, $\mathbf{11}$ cannot simply be a monomolecular reaction. The synthesis of these esters from bishydroperoxides $\mathbf{1}$, $\mathbf{4}$, $\mathbf{7}$, $\mathbf{10}$ demands an additional atom of oxygen plausibly donated by a second molecule of bishydroperoxide via intermolecular transfer (Scheme 2).

Scheme 2 α, ω -Dicarboxylic acid esters synthesis via transfer of active oxygen.

A number of the experiments have shown, that the yields of α,ω -dicarboxylic acid esters **2**, **5**, **8**, **11** and ω -hydroxycarboxylic acid esters **3**, **6**, **9**, **12** are comparable with each other (Table 1). In the reaction mechanism, one molecule of bishydroperoxide is a donor of active oxygen, and the other molecule is an acceptor. The ω -hydroxycarboxylic acid esters **3**, **6**, **9**, **12** are probably formed as the result of a Baeyer-Villiger rearrangement. The requirement for this rearrangement is that the molecule contains only one O-O fragment.

Consequently, the bishydroperoxide must undergo transformation into the monoperoxide with a loss of oxygen before a Baeyer-Villiger rearrangement is possible in this reaction.

The mechanism for the synthesis of α,ω -dicarboxylic acid esters 2, 5, 8, 11 is probably similar to the mechanism suggested earlier [11] and differs mainly in that the obtained acids are esterified during the reaction.

Table 1 The synthesis of α,ω -dicarboxylic acid esters **2**, **5**, **8**, **11** α,ω -hydroxycarboxylic acid esters **3**, **6**, **9**, **12** from gem-bishydroperoxides **1**, **4**, **7**, **10**^a.

Run	Bishydro- peroxide	Solvent	$BF_3 \cdot Et_2O$, eqv	Yields of α,ω -dicarboxylic acid esters, $\%^b$	Yields of ω -hydroxycar-boxylic acid esters, $\%^b$
1	1	EtOH	1	2a , 26	3a , 32
2	1	EtOH	5	2a, 35	3a , 32
3	1	PrOH	1	2 b, 21	3 b, 37
4	1	PrOH	2	2 b, 23	3 b, 31
5	1	PrOH	5	2b , 36	3b , 35
6	1	BuOH	1	2c , 29	3c, 35
7	1	BuOH	5	2c , 36	3c, 45
8	1	BuOH	_ c	2c, 17	3c, 21
9	4	BuOH	5	5c , 35	6c , 41
10	7	BuOH	5	8c , 32	9c, 37
11	10	EtOH	5	11a , 34	12a , 31
12	10	PrOH	5	11b , 42	12b , 40
13	10	BuOH	5	11c , 41	12c, 37

 $[^]a$ Reaction conditions: reaction temperature for; EtOH - 76-78 $^{\circ}\mathrm{C},$ PrOH - 92-94 $^{\circ}\mathrm{C},$ BuOH - 106-108 $^{\circ}\mathrm{C};$ overall reaction time was 20 minutes.

 $Eqv=mol(BF_3 \cdot Et_2O) / mol(bishydroperoxide)$

The results from Table 1 show that the major factors influencing the yields of esters are $BF_3 \cdot Et_2O$ concentration and the ring size of gem-bishydroperoxide. The ester yields increased slightly with increasing $BF_3 \cdot Et_2O$ concentration and ring size. In reaction run 8, which was carried out in the absence of $BF_3 \cdot Et_2O$, esters **2c** and **3c** yields were approximately halved in comparison with other experiments with bishydroperoxide **1** (run 7). The maximum total yield of esters **11b+12b** (82 %) for run 12 was observed in the transformation of 1,1-bishydroperoxicyclododecane (**10**) in propanol.

A number of experiments were carried out with the addition of 5 eqv H_2O_2 with the purpose of studying the influence of an additional oxidizer on the ratio and yields of the esters (Table 2).

This resulted in the dibutylal kanedioats being the main products, where yields were 72-84 % and the formation of butyl ω -hydroxyalkanoats was almost completely suppressed; yields were less than 7 %.

Thus, in this study a new transformation of gem-bishydroperoxides is reported. The

 $^{^{}b}$ The yields were calculated from the isolated products.

 $[^]c$ BF3·Et2O was not used.

Run	Bishydroperoxide	Yields of dibutylal kanedioats, $\%^b$	Yields of butyl ω -hydroxyalkanoats, $\%^b$
1	1	2c , 72	3c , 6
2	4	5c , 81	6c , 7
3	7	8c , 84	9c , 6
4	10	11c , 80	12c, traces

Table 2 The synthesis of dibutylalkanedioats and butyl ω -hydroxyalkanoats from bishydroperoxides 1, 4, 7, 10 with use of $H_2O_2^a$.

gem-bishydroperoxides on heating in alcohols in the presence of BF₃·Et₂O gave α,ω -dicarboxylic acid esters and ω -hydroxycarboxylic acid esters with approximately equal yields. Addition of H₂O₂ to the reaction results in suppression of ω -hydroxycarboxylic acid esters formation. The reaction conditions are mild and do not demand the use of proton acids.

This transformation opens an opportunity for the application of gem-bishydroperoxides as oxidizers. From a practical point of view this reaction can find applications in the synthesis of complicated α,ω -dicarboxylics acid esters and ω -hydroxycarboxylics acid esters and for the preparation of anticorrosion compositions.

3 Experimental part

¹H NMR and ¹³C NMR spectra were recorded on Bruker AC-200, Bruker WM-250, Bruker AM-300. Analytical TLC: Silufol UV-254, Silpearl as the sorbent, starch as the binder. Column chromatography was performed on silica gel (63-200 mesh, Merk).

Melting points were determined on a Kofler hot stage.

Cycloalkanones and $BF_3 \cdot Et_2O$ (all of reagent grade) were used without additional purification. Solutions of H_2O_2 in Et_2O are prepared according to [12]. Solvents: petroleum ether, diethyl ether, ethanol, propanol and butanol were distilled before use.

Acetals for synthesis of bishydroperoxides were prepared in accordance with [11]. Bishydroperoxides 1, 4, 7, 10 were prepared in accordance with [10].

CAUTION. Bishydroperoxides **1**, **4** are shock and friction sensitive and consequently should be handled with care. These compounds are decomposed explosively on heating to 100 °C and above.

General procedure for α,ω -dicarboxylic acid esters 2, 5, 8, 11 and ω -hydroxycarboxylic acid esters 3, 6, 9, 12 synthesis from bishydroperoxides 1, 4, 7, 10

Gem-bishydroperoxide 0.5 g 1 (3.38 mmol), 4 (3.09 mmol), 7 (2.84 mmol), 10 (2.16 mmol) was dissolved in 5 ml of alcohol (EtOH, PrOH, BuOH). BF₃·Et₂O (1, 2 or 5 eqv) was

 $[^]a$ Reaction conditions: solvent - BuOH, temperature 106-108 $^{\circ}\mathrm{C},$ total reaction time 20 minutes, $\mathrm{H_2O_2}$

^{- 5} eqv, BF₃·Et₂O - 1 eqv. Eqv=mol(BF₃·Et₂O or H_2O_2) / mol(bishydroperoxide)

^b The yields were calculated from the isolated products.

added (in run 8, Table 1, BF₃·Et₂O was not used) and the mixture was heated to reflux (temperature EtOH - 76-78 °C, PrOH - 92-94 °C, BuOH - 106-108 °C) for 20 minutes. Dry potassium carbonate (fivefold molar excess as compared with BF₃·Et₂O) was added and the mixture was stirred for 20 minutes. The inorganic salts were filtered. The liquid was thoroughly evaporated for removal of alcohols traces. The esters were isolated by column chromatography using petroleum ether/diethyl ether (with an increasing diethyl ether gradient from 2 to 25 %).

Procedure for dibutylalkanedioats and butyl ω -hydroxyalkanoats synthesis from bishydroperoxides 1, 4, 7, 10

Gem-bishydroperoxide 0.5g **1** (3.38 mmol), **4** (3.09 mmol), **7** (2.84 mmol), **10** (2.16 mmol) was dissolved in BuOH (5ml). A 6 % ether solution of H_2O_2 (5 eqv) was added. The ether was evaporated at 10-15 Torr. $BF_3 \cdot Et_2O$ (1 eqv) was added and the mixture was refluxed (106-108 °C) for 20 minutes. The esters were isolated as described above.

Diethylhexanedioate (2a) [13]

NMR 1 H, 250 MHz (δ , CDCl₃): 1.18 (t, 6H, CH₃, J=7.2 Hz), 1.53-1.65 (m, 4H, CH₂CH₂COOEt), 2.18-2.32 (m, 4H, CH₂COOEt), 4.05 (q, 4H, OCH₂, J=7.2 Hz).

Ethyl 6-hydroxyhexanoate (3a) [14]

NMR 1 H, 500 MHz (δ , CDCl₃): 1.14 (t, 3H, CH₃, J=7.0 Hz), 1.24-1.32 (m, 2H, CH₂), 1.40-1.48 (m, 2H, CH₂), 1.49-1.57 (m, 2H, CH₂), 2.19 (t, 2H, CH₂COOEt, J = 7.3 Hz), 3.04-3.16 (br. s., 1H, OH), 3.49 (t, 2H, CH₂OH, J = 6.7 Hz), 4.01 (q, 2H, COOCH₂, J=7.0 Hz).

NMR ¹³C, 125 MHz (δ , CDCl₃): 13.9 (CH₃), 24.4, 25.1, 32.0, 34.0 (CH₂), 60.0, 61.9 (OCH₂CH₃, CH₂OH), 173,8 (C=O).

Dipropylhexanedioate (2b) [15]

NMR 1 H, 300 MHz (δ , CDCl₃): 0.93 (t, 6H, CH₃, J=7.3 Hz), 1.53-1.71 (m, 8H, CH₂), 2.24-2.38 (m, 4H, CH₂COOPr), 4.02 (t, 4H, COOCH₂, J=6.6 Hz).

NMR 13 C, 75.47 MHz (δ , CDCl₃): 10.4 (CH₃), 22.0, 24.5, 33.9 (CH₂), 66.0 (OCH₂Et), 173.5 (C=O).

Propyl 6-hydroxyhexanoate (3b) [16]

NMR ¹H, 300 MHz (δ , CDCl₃): 0.92 (t, 3H, CH₃, J=7.3 Hz), 1.28-1.71 (m, 8H, CH₂), 2.31 (t, 2H, CH₂COOPr, J = 7.0 Hz), 3.10-3.40 (br. s., 1H, OH), 3.72 (t, 2H, CH₂OH, J = 6.5 Hz), 4.03 (t, 2H, COOCH₂, J=6.6 Hz).

NMR ¹³C, 62.9 MHz (δ , CDCl₃): 10.0 (CH₃), 21.6, 24.4, 25.2, 31.9, 33.8 (CH₂), 61.8 (CH₂OH), 65.5 (OCH₂Et), 173.6 (C=O).

Dibutylhexanedioate (2c) [17]

NMR ¹H, 250 MHz (δ , CDCl₃): 0.90 (t, 6H, CH₃, J=7.1 Hz), 1.21-1.72 (m, 12H, CH₂), 2.25-2.35 (m, 4H, CH₂COOBu), 4.04 (t, 4H, COOCH₂, J=6.8 Hz).

Butyl 6-hydroxyhexanoate (3c) [18]

NMR ¹H, 200 MHz (δ , CDCl₃): 0.90 (t, 3H, CH₃, J=7.1 Hz), 1.22-1.67 (m, 10H, CH₂),

2.29 (t, 2H, CH₂COOBu, J=7.4 Hz), 3.2-3.4 (br.s, 1H, OH), 3.64 (t, 2H, CH₂OH, J=6.6 Hz), 4.02 (t, 2H, COOCH₂, J=6.6 Hz).

NMR 13 C, 62.9 MHz (δ , CDCl₃): 13.2 (CH₃), 18.7, 24.3, 25.0, 30.2, 31.8, 33.8 (CH₂), 61.6, 63.7 (OCH₂Pr, CH₂OH), 173,5 (C=O).

Dibutylheptanedioate (5c) [19]

NMR 1 H, 200 MHz (δ , CDCl₃): 0.89 (t, 6H, CH₃, J=7.1 Hz), 1.20-1.66 (m, 14H, CH₂), 2.26 (t, 4H, CH₂COOBu, J=7.4 Hz), 4.02 (t, 4H, COOCH₂, J=6.6 Hz).

NMR ¹³C, 62.9 MHz (δ , CDCl₃): 13.5 (CH₃), 19.0, 24.5, 28.4, 30.5, 33.9, (CH₂), 63.9 (OCH₂Pr), 173.3 (C=O).

Butyl 7-hydroxyheptanoate (6c)

NMR 1 H, 250 MHz (δ , CDCl₃): 0.89 (t, 3H, CH₃, J=7.2 Hz), 1.26-1.70 (m, 12H, CH₂), 2.26 (t, 2H, CH₂COOBu, J = 7.2 Hz), 2.65-2.75 (br. s, 1H, OH), 3.57 (t, 2H, CH₂OH, J = 7.1 Hz), 4.03 (t, 2H, COOCH₂, J=6.7 Hz).

NMR 13 C, 62.9 MHz (δ , CDCl₃): 13.6 (CH₃), 19.0, 24.8, 25.3, 28.8, 30.5, 32.4, 33.9 (CH₂), 62.5, 64.0 (OCH₂Pr, CH₂OH), 173,8 (C=O).

Found (%): C, 65.61; H, 11.15. $C_{11}H_{22}O_3$. Calculated (%): C, 65.31; H, 10.96.

Dibutyloctanedioate (8c) [17]

NMR ¹H, 250 MHz (δ , CDCl₃): 0.90 (t, 6H, CH₃, J=7.2 Hz), 1.24-1.69 (m, 16H, CH₂), 2.26 (t, 4H, CH₂COOBu, J=7.4 Hz), 4.03 (t, 4H, COOCH₂, J=6.6 Hz).

NMR ¹³C, 62.9 MHz (δ , CDCl₃): 13.4 (CH₃), 19.0, 24.6, 28.6, 30.6, 34.0, (CH₂), 63.9 (OCH₂Pr), 173.4 (C=O).

Butyl 8-hydroxyoctanoate (9c)

NMR 1 H, 250 MHz (δ , CDCl₃): 0.89 (t, 3H, CH₃, J=7.2 Hz), 1.21-1.68 (m, 14H, CH₂), 2.25 (t, 2H, CH₂COOBu, J = 7.2 Hz), 3.25-3.37 (br. s, 1H, OH), 3.54 (t, 2H, CH₂OH, J = 7.1 Hz), 4.02 (t, 2H, COOCH₂, J=6.8 Hz).

NMR 13 C, 62.9 MHz (δ , CDCl₃): 13.5 (CH₃), 18.9, 24.7, 25.4, 28.6, 28.9, 30.5, 32.5, 34.1 (CH₂), 62.4, 63.9 (OCH₂Pr, CH₂OH), 173.8 (C=O).

Found (%): C, 66.90; H, 11.39. $C_{12}H_{24}O_3$. Calculated (%): C, 66.63; H, 11.18.

Diethyldodecanedioate (11a) [20]

M.p. = 15.5 - 16.5 °C. (m.p. = 16.7 - 17.2 °C [20])

NMR 1 H, 250 MHz (δ , CDCl₃): 1.17-1.65 (m, 22H, CH₂, CH₃), 2.25 (t, 4H, CH₂COOEt, J=7.3 Hz), 4.09 (q, 4H, COOCH₂, J=7.2 Hz).

Ethyl 12-hydroxydodecanoate (12a) [21]

M.p. = 23-24.5 °C. (m.p. = 24-25 °C [21])

NMR 1 H, 200 MHz (δ , CDCl₃): 1.16-1.70 (m, 21H, CH₂,CH₃), 2.28 (t, 2H, CH₂COOEt, J=7.3 Hz), 2.36-2.56 (br. s., 1H, OH), 3.63 (t, 2H, CH₂OH, J=6.7 Hz), 4.12 (q, 2H, COOCH₂CH₃, J=6.7 Hz).

Dipropyldodecanedioate (11b) [20]

M.p. = 11.5-12.5 °C. (m.p. = 12.7 - 13.4 °C [20]).

NMR ¹H, 300 MHz (δ , CDCl₃): 0.92 (t, 6H, CH₃, J=7.3 Hz), 1.20-1.69 (m, 20H, CH₂), 2.30(t, 4H, CH₂COOPr, J=7.3 Hz), 4.03 (t, 4H, OCH₂, J=6.7 Hz).

NMR ¹³C, 75.47 MHz (δ , CDCl₃): 10.4 (CH₃), 22.0, 25.0, 29.1, 29.2, 29.3, 34.3 (CH₂), 65.7 (OCH₂Et), 173.8 (C=O).

Propyl 12-hydroxydodecanoate (12b)

NMR ¹H, 300 MHz (δ , CDCl₃): 0.92 (t, 3H, CH₃, J=7.3 Hz), 1.10-1.75 (m, 20H, CH₂), 2.30 (t, 2H, CH₂COOPr, J = 7.0 Hz), 2.30-2.50 (br. s., 1H, OH), 3.53 (t, 2H, CH₂OH, J = 6.6 Hz), 4.03 (t, 2H, COOCH₂, J=6.7 Hz).

NMR ¹³C, 75.47 MHz (δ , CDCl₃): 10.4 (CH₃), 22.1, 25.1, 29.2-29.8 (7C), 30.9, 34.5 (CH₂), 64.1 (CH₂OH), 65.8 (OCH₂Et), 174.0 (C=O).

Found (%): C, 69.95; H, 11.49. $C_{15}H_{30}O_3$. Calculated (%): C, 69.72; H, 11.70.

Dibutyldodecanedioate (11c) [20]

NMR 1 H, 200 MHz (δ , CDCl₃): 0.92 (t, 6H, CH₃, J=7.1 Hz), 1.21-1.68 (m, 24H, CH₂), 2.27 (t, 4H, CH₂COOBu, J=7.5 Hz), 4.06 (t, 4H, COOCH₂, J=6.5 Hz).

Butyl 12-hydroxydodecanoate (12c)

NMR 1 H, 200 MHz (δ , CDCl₃): 0.93 (t, 3H, CH₃, J=7.2 Hz), 1.18-1.70 (m, 22H, CH₂), 2.29 (t, 2H, CH₂COOBu, J=7.4 Hz), 2.59-2.81 (br. s., 1H, OH), 3.65 (t, 2H, CH₂OH, J=6.8 Hz), 4.06 (t, 2H, COOCH₂, J=6.6 Hz).

NMR 13 C, 50.32 MHz (δ , CDCl₃): 13.7 (CH₃), 19.1, 24.9, 29.1-29.8 (8C), 30.6, 34.3 (CH₂), 62.9, 64.1 (OCH₂Pr, CH₂OH), 174.0 (C=O).

Found (%): C, 70.63; H, 11.51. $C_{16}H_{32}O_3$. Calculated (%): C, 70.54; H, 11.84.

Acknowledgment

This work is supported by the Russian Foundation for Basic Research (Grant No. 06-03-32243; 06-04-49683) and the Russian Science Support Foundation.

References

- [1] K. Tsuchiya, Y. Hamada, A. Masuyama, M. Nojima, K.J. McCullough, H.-S. Kim, Y. Shibata and Y. Wataya: "Synthesis, Crystal Structure and Anti-Malarial Activity of Novel Spiro-1,2,4,5-Tetraoxacycloalkanes", *Tetrahedron Lett.*, Vol. 40, (1999), pp. 4077–4080.
- [2] T. Ito, T. Tokuyasu, A. Masuyama, M. Nojima and K.J. McCullough: "Synthesis of novel macrocyclic peroxides by bis(sym-collidine)iodine (I) hexafluorophosphate-mediated cyclization of unsaturated hydroperoxides and unsaturated alcohols", *Tetrahedron*, Vol. 59, (2003), pp. 525–536.

- [3] Y. Nonami, T. Tokuyasu, A. Masuyama, M. Nojima, K.J. McCullough, H.-S. Kim and Y. Wataya: "Synthesis, crystal structure and antimalarial activity of functionalized spiro-1,2,4,5-tetraoxacycloalkanes from unsaturated hydroperoxy acetals", *Tetrahedron Lett.*, Vol. 41, (2000), pp. 4681–4684.
- [4] H.-S. Kim, K. Tsuchiya, Y. Shibata, Y. Wataya, Y. Ushigoe, A. Masuyama, M. Nojima and K. McCullough: "Synthetic methods for unsymmetrically-substituted 1,2,4,5-tetraoxanes and of 1,2,4,5,7-pentoxocanes", *J. Chem. Soc.*, *Perkin Trans.* 1, (1999), pp. 1867–1870.
- [5] A.O. Terent'ev, A.V. Kutkin, Z.A. Starikova, M.Yu. Antipin, Yu.N. Ogibin and G.I. Nikishin: "New preparation of 1,2,4,5-Tetraoxanes", Synthesis, (2004), pp. 2356–2366.
- [6] C.W. Jefford and A.J.J. Boukouvalas: "Efficient preparation of 1,2,4,5-Tetroxanes from Bis(trimethylsilyl)peroxide and Carbonyl Compounds", *Synthesis*, (1988), pp. 391–393.
- [7] B.A. Šolaja, N. Terzić, G. Pocsfalvi, L. Gerena, B. Tinant, D. Opsenica and W.K. Milhous: "Mixed Steroidal 1,2,4,5-Tetraoxanes: Antimalarial and Antimycobacterial Activity", J. Med. Chem., Vol. 45, (2002), pp. 3331–3336.
- [8] J.L. Vennerstrom, H-N. Fu, W.Y. Ellis, A.L. Ager, J.K. Wood, S.L. Andersen, L. Gerena and W.K. Milhous: "Dispiro-1,2,4,5-tetraoxanes: A New Class of Antimalarial Peroxides", J. Med. Chem., Vol. 35, (1992), pp. 3023–3027.
- [9] Y. Dong, H. Matile, J. Chollet, R. Kaminsky, J.K. Wood and J.L. Vennerstrom: "Synthesis and Antimalarial Activity of 11 Dispiro-1,2,4,5-tetraoxane Analogues of WR 148999. 7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadecanes Substituted at the 1 and 10 Positions with Unsaturated and Polar Functional Groups", J. Med. Chem., Vol. 42, (1999), pp. 1477–1480.
- [10] A.O. Terent'ev, A.V. Kutkin, M.M. Platonov, Y.N.Ogibin and G.I.Nikishin: "A new method for the synthesis of bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes", *Tetrahedron Letters*, Vol. 44, (2003), pp. 7359–7363.
- [11] A.O. Terent'ev and S.V. Chodykin: "New transformation of cycloalkanone acetals by peracids α, ω dicarboxylic acids synthesis", Cent. Eur. J. Chem., Vol. 3, (2005), pp. 417–431. http://www.ingentaconnect.com/content/cesj/cejc/2005/00000003/0000003/art00005; http://www.citeulike.org/article/250155.
- [12] I. Saito, R. Nagata, K. Yuba and T. Matsuura: "Synthesis of α -silyloxyhydroperoxides from the reaction of silyl enol ethers and hydrogen peroxide", *Tetrahedron Lett.*, Vol. 24, (1983), pp. 1737–1740.
- [13] R. Ballini and G. Bosica: " α -Nitrocycloalkanones as a Source of α, ω -Dicarboxylic Acid Dimethyl Esters", Tetrahedron, Vol. 53, (1997), pp. 16131–16138.
- [14] N.M. Yoon, C.S. Pak, H.C. Brown, S. Krishnamurthy and T.P. Stocky: "Selective Reductions. XIX. The Rapid Reaction of Carboxylic Acids with Borane-Tetrahydrofurane. A Remarkably Convenient Procedure for the Selective Conversion of Carboxylic Acids to the corresponding Alcohols in the Presence of Other

- Functional Groups", J. Org. Chem., Vol. 38, (1973), pp. 2786–2792.
- [15] A.I. Vogel: "Physical properties and Chemical Constitution. Part XIII. Aliphatic Carboxylic Esters", J. Chem. Soc., (1948), pp. 624–644.
- [16] A. Kumar, R.A. Gross and D. Jendrossek: "Poly(3-hydroxybutyrate)-depolymerase from *Pseudomonas lemoignei*: Catalysis of Esterification in Organic Media", *J. Org. Chem.*, Vol. 65, (2000), pp. 7800–7806.
- [17] T. Nishiguchi, Y. Ishii and S. Fujisaki: "Selective monoesterification of dicarboxylic acids catalysed by ion-exchange resins", *J. Chem. Soc.*, *Perkin Trans.* 1, (1999), pp. 3023–3027.
- [18] A.G. Bayer: ε -Hydroxycaproic acid esters, GB 774687, 1957; Chem. Abstr., Vol. 51, (1957), p. 16521.
- [19] H. Serwy: "The freezing temperature of organic substances", Bull. Soc. Chim. Belg., Vol. 42, (1933), pp. 483–501.
- [20] L. Marosi and W. Schlenk: "Langkettige Carbonsäureester: Schmelzpunkte, Regeln für das Auftreten des Vertikaltypes der Kristallstruktur, Inkremente des großen Netzebenenabstandes", Justus Liebigs Ann. Chem., (1973), pp. 584–598.
- [21] M.-L. Alcaraz, L. Peng, P. Klotz and M. Goeldner: "Synthesis and Properties of Photoactivatable Phospholipid Derivatives Designed to Probe the Membrane-Associate Domains of Proteins", J. Org. Chem., Vol. 61, (1996), pp. 192–201.