

Central European Journal of Chemistry

DOI: 10.2478/s11532-006-0005-5 Research article CEJC 4(2) 2006 299-316

Formation and multinuclear magnetic resonance investigation of silylammonium tetracarbonylcobaltate contact ion pairs

Attila Sisak^{1*}, Gábor Szalontai²

Research Group for Petrochemistry, Hungarian Academy of Sciences, H-8200 Veszprém, Hungary

Department of Silicate and Materials Engineering, NMR laboratory, University of Veszprém, H-8200 Veszprém, Hungary

Received 29 September 2005; accepted 1 December 2005

Abstract: Silylcobalt tetracarbonyls were reacted with various amines (B) in non-polar solvents to form silylammonium tetracarbonylcobaltate contact ion pairs formulated as $[BSiR_3^+, {}^-Co(CO)_4]$. The compounds were characterized by IR and multinuclear magnetic resonance spectroscopy both in solution and in solid state. Their properties are analogous to the known ion pairs $[BH^+, {}^-Co(CO)_4]$ and to amine adducts of halosilanes as well.

© Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.

Keywords: Silyammonium tetracarbonylcobaltates, contact ion pairs, multinuclear magnetic resonance, $^{29}Si\ CP/MAS$

1 Introduction

Several carbonylmetallate salts exist in the form of contact ion pairs [1]. Among the carbonylcobaltates, the ion pairing phenomenon is well documented. The changes in the structure and reactivity of alkali metal tetracarbonylcobaltate salts were explained by the pairing or separation of the ions depending on the solvents and or ligands added [2–5]. The properties of variously substituted ammonium salts of tertacarbonylcobaltate were investigated and discussed exhaustively. The contact ion pair character of their Me₃NH⁺ and Et₃NH⁺ salts both in non-polar solvents and in solid state has been

^{*} E-mail: sis014@almos.vein.hu

demonstrated [6]. Analogous results were obtained for a number of amine adducts of $HCo(CO)_3L$ (L = CO, triaryl phosphine) complexes [7, 8]. Ion pairing was found also in the case of $R_3PH^+[Co(CO)_4]^-$ complexes, the intermediates of the phosphine substitution of $HCo(CO)_4$ [9].

The interaction of silylcobalt tetracarbonyls and amines was initially reported by Aylett [10] and then followed by MacDiarmid [11]. $B_2 SiH_3^+[Co(CO)_4]^-$ (B = py, NMe₃) was formed from $H_3 SiCo(CO)_4$ [10] while $R_3 SiCo(CO)_4$ gave $BSiR_3^+[Co(CO)_4]^-$ (R = Me, Et, Cl) type ion pairs with $B = NMe_3$ [11]. The compounds formed were characterized by their IR spectra recorded either in polar solvents, or in the solid state. The authors concluded that the separated $[Co(CO)_4]^-$ ion was present in the compounds [10, 11]. We described earlier that $R_3 SiCo(CO)_4$ (R = alkyl or aryl) complexes formed contact ion pairs with nitrogen bases in some non-polar solvents [12–14]. The $\nu(CO)$ infrared spectra of these species were in accordance with a C_{3v} symmetry analogous to the ammonium tetracarbonylcobaltates mentioned above (cf. ref. [6]). Such compounds may also appear as intermediates in catalytic reactions [15–17]. Till now, however, no contact ion pairs with a silicon–cobalt interaction have been isolated. In this paper we describe our preparative, kinetic and spectroscopic results concerning silylammonium tetracarbonylcobaltates.

2 Results

2.1 Synthesis and IR spectra

Silylcobalt tetracarbonyls (1) were reacted with an excess of various amines (B) in toluene or dichloromethane generally at -15 to +20 °C to form contact ion pairs 2 according to eq. (1) (Chart 1).

	R	₃ SiCo(Co	$O)_4 + B$		e or CH ₂ Cl ₂	-	Co(CO) ₄]	(1)
ho R ₃	_		${ m Et_3N}$	${ m Et_2NH}$	NH	NSiMe ₃		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(symbol)		(py)			(pip)	(tmspip)	(quinuclidine)	(dabco)
Me_3	1A				2 a	2 b		
Me_2Cl	1B		2c					
Et_3	1C		2d				2e	
Ph_3	1D	2f	2g	2h	2i		2j	2k
$(OSiMe_3)_3$	1E						21	

Chart 1

We propose the formulation $[BY^+, {^-Co(CO)_4}]$ (Y = H, SiR₃) for the contact ion pairs instead of $BY^+[Co(CO)_4]^-$ which will be used for solvent-separated ion pairs.

The solvents used in this study were aprotic and slightly polar ($\varepsilon_{20^{\circ}C} < 10$). Oxygencontaining aprotic solvents like ethers were inapplicable since they react with silylcobalt complexes [13, 15, 16].

Reaction (1) was usually monitored by IR spectroscopy but conductivity measurements have been made as well. Adding one equivalent of quinuclidine to a 0.001 M solution of $\mathbf{1C}$ in $\mathrm{CH_2Cl_2}$, increased the conductivity by about one order of magnitude. For $\mathbf{2e}$, however, proved unambiguously as a non-electrolyte on the basis of its molar conductivity of $\Lambda_{\mathbf{2e}} = 1.55~\Omega^{-1}~\mathrm{cm^2}~\mathrm{mol^{-1}}$ (25.0 °C, $c = 0.001~\mathrm{M}$ in $\mathrm{CH_2Cl_2}$; for comparison: $\Lambda_{\mathrm{Bu4NClO4}} = 61.0~\Omega^{-1}~\mathrm{cm^2}~\mathrm{mol^{-}}$ under the same conditions, cf. refs. [18, 19]).

The IR spectra of $[BSiR_3^+, {^-Co(CO)_4}]$ and those of the mentioned $[BH^+, {^-Co(CO)_4}]$ ion pairs (cf. refs. [3, 4]) were very similar in the $\nu(CO)$ region concerning position of the bands and their relative intensities (Table 1).

Table 1 IR spectral data of 2 and some related complexes in the $\nu(CO)$ region	Table 1 IR spectral	data of 2 and	some related comp	plexes in the ν	(CO) region.
---	---------------------	---------------	-------------------	---------------------	--------------

Complex	$\nu({\rm CO})/{\rm cm}^{-1}$	Ref.	
2a	2020 w 1924s 1898 vs, br a		
$2\mathrm{b}$	$2018 \text{w} \ 1924 \text{s} \ 1900 \text{vs,br}^{\ a}$		
$[(tmspip)H^+, -Co(CO)_4]$	2018 w 1922s 1898vs, br a		
2c	2014 w 2020 sh 1892 vs,br a		
2d	$2019 \text{w} \ 1934 \text{s} \ 1895 \text{vs}^{\ b}$	[12]	
$2\mathrm{e}$	2020w 1931s 1897vs, br b		
2f	2010 w 1930 sh 1890 vs,br a		
$[pyH^+, -Co(CO)_4]$	$2016 \text{w} \ 1936 \text{s} \ 1903 \text{vs}^{\ b}$	[17]	
$2\mathrm{g}$	2016 w 1921 s 1895 vs,br a		
$2\mathrm{g}$	2016vw 1890vs,br a,c		
$Ph_4P^+[Co(CO)_4]^-$	1891vs, br ^a	[20]	
$2\mathrm{h}$	2010 w 1930 sh 1890 vs,br a		
2i	$2014 \mathrm{w}\ 1920 \mathrm{s}\ 1896 \mathrm{vs,br}^{\ a}$		
2j	$2014 \text{w} \ 1920 \text{s} \ 1898 \text{vs,br}^{\ a}$		
2k	2020 w 1933 s 1898 vs b		
[(quinuclidine) H^+ , $^-$ Co(CO) ₄]	2020 w, 1931 s, 1896 vs b	[7]	
21	$2019 \text{w} \ 1925 \text{s} \ 1896 \text{vs,br}^a$		

^a In dichloromethane:

The conversion of $\mathbf{1}$ depended on the properties of R, B and the solvent. In the case of the sterically less favorable amines (e.g. triethylamine), a higher excess is needed (up to 20-fold) to convert $\mathbf{1}$ to near quantitative yields of $\mathbf{2}$. If at least a ten-fold excess of amine was used, the polarity of the reaction medium was enhanced which resulted in

^b In toluene;

^c A 20-fold excess of triethylamine was added.

the appearance of the solvent-separated ion pair especially in dichloromethane (cf. refs. [8, 20], see Table 1). Quinuclidine and dabco gave the most stable complexes, thus, the products 2j, 2k, and 2l could be isolated, but no crystals suitable for an X-ray structure determination could be obtained till now. After dissolving 2j, 2k or 2l in toluene or dichloromethane, the formation of 1D or 1E, respectively, could not be detected.

The $\nu(CO)$ region IR spectra of the reaction mixture of **1C** and quinuclidine recorded at different temperatures are shown in Fig. 1. Beside **1C** and **2e**, absorptions of a third component can be seen in the spectrum at -30 °C (Fig. 1b, indicated by arrows), however, its concentration was very low at room temperature (Fig. 1c).

The complexes $[B\mathrm{SiR}_3^+, {}^-\mathrm{Co(CO)_4}]$ are very sensitive to air and humidity. They should be stored below -30 °C. The silylpyridinium tetracarbonylcobaltate contact ion pair $(\mathbf{2f})$ is particularly unstable thermally. Its decomposition to $\mathrm{Co_2(CO)_8}$ and other products could be observed by IR spectroscopy at 0 °C (cf. ref. [21]). Blue-violet decomposition products containing $\mathrm{Co(II)}$ precipitated also from the solutions of other 2 complexes when standing at room temperature for several hours (cf. ref. [22]). These properties limited the methods and the time for examinations of these complexes.

2.2 Kinetics

The initial rate of the reaction

$$1D + NEt_3 \longrightarrow 2Db$$
 (2)

was measured by IR spectroscopy at 20 °C in dichloromethane solution. Clear first order dependences were found for both of the starting materials, and the rate was independent of carbon monoxide (Table 2).

Table 2 The effects of the concentrations of $Ph_3SiCo(CO)_4$, triethylamine and carbon monoxide on the initial rate of reaction $(2)^a$

$[\mathrm{Ph_3SiCo(CO)_4}]/\mathrm{M}$	[triethylamine]/M	$10^5\mathrm{r/Ms^{-1}}$	$10^3 \text{k/M}^{-1} \text{s}^{-1^b}$
0.008	0.039	1.13	3.62
0.019	0.038	3.42	4.74
0.027	0.038	4.53	4.41
0.035	0.039	6.80	4.98
0.019	0.078	7.85	5.30
0.019	0.117	11.00	4.95
0.020^{c}	0.113	9.75	4.31
0.019	0.150	12.60	4.42

 $[^]a$ 20.0 °C, in dichloromethane, under Ar;

^b $k = r[Ph_3SiCo(CO)_4]^1[triethylamine]^1;$

 $[^]c$ PCO = 98.4 kPa.

2.3 NMR spectra

NMR data of several compounds $[BSiR_3^+, {^-}Co(CO)_4]$ and of some precursors are compiled in Table 3. The complexes **2b** and **2e** were prepared and investigated *in situ*. The spectra of the isolated complexes **2j**, **2k**, and **2l** were recorded both in solution and in solid state.

The effect of the ion-pairing on the ${}^{1}\mathrm{H}$ and ${}^{13}\mathrm{C}$ NMR spectra is similar to that found in the case of $[B\mathrm{H}^{+}, {}^{-}\mathrm{Co}(\mathrm{CO})_{4}]$ [7, 8]. Although the signals of the substituents of free and N-bound silicon atom differentiate from each other, no real tendency could be found concerning the chemical shift changes. Both the ${}^{1}\mathrm{H}$ and ${}^{13}\mathrm{C}$ signals are, however, solvent-dependent (Table 3). In contrast, ${}^{1}\mathrm{H}$ and ${}^{13}\mathrm{C}$ NMR resonances of the free amine could not be distinguished from those that were bound, only a broadening of the signals was observed (vide infra). At the same time, ${}^{13}\mathrm{C}$ signals for CO ligands were found only in the in situ prepared concentrated probes of 2e (compare with the related results for $[B\mathrm{H}^{+}, {}^{-}\mathrm{Co}(\mathrm{CO})_{4}]$, see refs. [7, 8]).

The 13 C 1 H 3 spectra of **1C**-quinuclidine system recorded at several temperatures are shown in Fig. 2. We observed three pairs of Si-ethyl signals, the intensive high-frequency pair belongs to the free (not N-bound) SiEt₃ group (cf. ref. [23]). Based on the chemical shift values, the two low-frequency pairs were assigned to the N-bound SiEt₃ group, the ratio of these latter ones was clearly temperature-dependent. Interestingly enough, signals of quinuclidine showed the same temperature dependence as one of the N-bound SiEt₃ pair indicating that this pair and the quinuclidine take part in the same exchange process ($vide\ infra$).

By increasing the temperature of the sample ([quinuclidine]:[$\mathbf{1C}$] = 1:1) stepwise to 358 K and then cooling it to 303 K resulted in the near disappearance of the signals for the free SiEt₃ groups. At the same time, the intensity of the N-bound SiEt₃ signals which were not involved in the exchange grew simultaneously (see Fig. 2a-d). The IR analysis of the sample showed the formation of $\mathbf{2e}$.

In the $^{13}C\{^{1}H\}$ spectra recorded in $CD_{2}Cl_{2}$, the signals of the *ortho*- and either the *meta*- (2j), or the *para*-carbon (2k) were split with an intensity ratio of $\approx 1:2$ at 298 K (Table 3).

A striking difference (a -37 to -50 ppm low-frequency shift) was observed in the position of the ²⁹Si resonances of the 1 complexes, and those of the relevant ion pairs 2. ²⁹Si CP/MAS spectra of 2j and 2k are shown in Fig 3.

The ⁵⁹Co spectra of **2e** and **2j**, recorded in toluene- d_8 and CD_2Cl_2 , respectively, exhibited intensive narrow resonances near to that of the solvated $[Co(CO)_4]^-$ ion [26], but they were definitely broader $(\Delta\nu_{1/2} = 180 \text{ and } 325 \text{ Hz}, \text{ respectively})$ (see Table 3). The ion pair $[(\text{quinuclidine})\text{H}^+, ^-Co(CO)_4]$ [7] was measured in CD_2Cl_2 and it showed a ⁵⁹Co resonance at -3078 ppm with a broadening similar to that of observed in the case of **2j**.

Table 3 NMR spectroscopic data of some complexes 2 and their precursors at 298 K.

	I .			
Compound	1 H-NMR, δ /ppm	$^{13}\text{C-NMR}, \delta/\text{ppm}$	29 Si-NMR, δ/ppm	59 Co-NMR, δ/ppm
1A	0.02 a	$8.3 (CoSiCH_3)^a$	44.36 a,b	
2b	-0.03 (s, ≈ 9 H, CoSiCH ₃); 0.04 (s, ≈ 9 H, NSiCH ₃); 1.35 (m, br 6H, CH ₂ - γ , CH ₂ - β); 2.53 (m, br 4H, CH ₂ - α) ^{a}	-0.2 (NSiCH ₃); 2.9 (CoSiCH ₃); 26.9 (CH ₂ - γ); 28.1 (CH ₂ - β); 47.5 (CH ₂ - α) ^a	-5.8 (CoSi); 3.7 (NSi) ^a	
1C	0.58 (q, 6H, SiCH ₂); 1.08 (t, 9H, CH ₃) c,d	8.8 (CH ₃); 12.5 (SiCH ₂); 200.1 (CO) c,e	54.9 c,e	
2 e	0.57 (m, 6H, SiCH ₂); 0.99 (m, 9H, CH ₃); 1.17 (m, br 6H, CH ₂ CH); 1.38 (m, br 1H, CH); 2.51 (m, br 6H, NCH ₂) ^d	6.8 (SiCH ₂) ^f ; 7.0 (CH ₃); ≈ 20.6 (CH) ^g ; 23.8 (br, CH ₂ CH); 46.7 (br, NCH ₂); 201.0 (CO) ^{d,e,h}	9.2 ^e	-3082 $br^{e,n}$ $(\Delta \nu \frac{1}{2} = 180 \text{ Hz})$
1D	7.1-7.8 (m, C_6H_5) ^{a,c} 7.2-7.7 (m, C_6H_5) ^{c,d}	128.7 (C_m); 130.3 (C_p); 136.2 (C_o); 139.1 (C_{ipso}), 199.6 (CO) ^{a,c} 127.9 (C_m); 129.6 (C_p); 135.4 (C_o); 138.2 (C_{ipso}); 198.8 (CO) ^{c,i}	26.5^d 26.5^j	
Quinuclidine	1.28 (m, 6H, CH_2CH); 1.49 (m, 1H, CH); 2.75 (m, 6H, NCH_2) ^a	21.4 (CH); 27.2 (CH_2CH); 48.2 (NCH_2) ^{a}		
2j	(m, 1H, CH); 2.52 (m, 6H,	20.6 (CH); 25.4 (CH_2CH); 47.4 (NCH ₂); \approx 128.7 (C_m) ^k ; 130.2 (C_p); 136.0 (C_o); 138.1 (C_{ipso}) ^{a,l}	-12.8 ^d	$-3080 \text{ br}^{d,n}$ $(\Delta \nu \frac{1}{2} = 325 \text{ Hz})$
	1.82 (m, 6H, CH_2CH); 2.06 (m, 1H, CH); 3.10 (m, 6H, NCH_2); 7.1-7.7 (m, 15H, C_6H_5) ^d	20.0 (CH); 24.2 (C H ₂ CH); 47.6 (NCH ₂); 128.3 (C_m , minor) m ; 128.4 (C_m , major) 130.4 (C_p); 135.4 (C_o , minor); 135.6 (C_o , major);136.5 (C_{ipso}) d,l	-13.0 ^j	

 $[^]a$ In C₆D₆; b Cf. ref. [23]; c Cf. ref. [24]; d In CD₂Cl₂; e In C₇D₈; f See Text and Fig. 2; g Covered by signals of C₇D₈; h At 303 K; i In CDCl₃; j 59Si CP/MAS; cf. ref. [25], k Covered by signals of C₆D₆; l No signals of CO ligands were found; m See text; n Cf. ref. [26].

Compound	$^{1}\text{H-NMR}, \delta/\text{ppm}$	$^{13}\text{C-NMR}, \delta/\text{ppm}$	$^{29}\mathrm{Si}$ - $^{59}\mathrm{Co}$ - NMR, NMR, δ/ppm δ/ppm
2k	2.84 (s,br 12H, CH_2); 7.1-7.7 (m, 15H, C_6H_5) ^{d}	46.6 (br, CH ₂); 128.3 (C _m); 130.2 (C _p , minor); 130.5 (C _p , major); 135.5 (C _o , minor); 135.6 (C _o , major);136.0 (C _{ipso}) ^{a,l}	
1E	$0.09 \text{ (s, 27 H, Si(CH_3)}_3^g$	1.3 ($OSi(CH_3)_3$); 198.6 (CO) ^{g}	-56.8 (CoSi); 11.0 (OSi(CH ₃) ₃) ^d
21	· · · · · · · · · · · · · · · · · · ·	1.7 ($OSi(CH_3)_3$); 20.3 (CH); 24.8 (CH_2CH_2CH); 47.8 (NCH_2) ^{d,l}	

Table 3 (continued) NMR spectroscopic data of some complexes **2** and their precursors at 298 K.

3 Discussion

3.1 Kinetics and spectroscopic properties

The present kinetic results are analogous to those obtained earlier for ethyloxirane [27] and isobutyraldehyde [28] as nucleophiles. A contact ion pair intermediate similar to 2 was suggested for the reaction of oxiranes with silylcobalt tetracarbonyls [27, 29, 30]. Furthermore, formation and properties of the ion pairs 2 are remarkably analogous to those of some known neutral pentacoordinated organosilicon compounds. Since tetracarbonylcobaltate is regarded as a pseudohalide [31], the similarity of 2 and amine adducts of halosilanes is plausible. The latter species were supposed as intermediates in amine catalyzed nucleophilic substitution as well as in racemisation of silanes, SiClR¹R²R³ [32]. Corriu and coworkers found a substitution rate law of first order both for chlorosilane and for the catalyst. Our kinetic results led to analogous conclusion, *i.e.* a nucleophilic attack of the amine on the Si-atom of 1 took place in reactions (1) and (2).

In contrast to the majority of neutral pentacoordinated organosilanes, no evidence was obtained that $\mathbf{2}$ would be formed reversibly. The temperature-dependent IR (Fig. 1) and 13 C 1 H 13 spectra (Fig. 2) recorded from the reaction mixtures of $\mathbf{1C}$ and quinuclidine in toluene indicated, however, some fluxionality of the system. Note, that the observed temperature-dependence of the 13 C 1 H 13 spectra is unusual in the sense that narrowing

 $[^]a$ In C₆D₆; b Cf. ref. [23]; c Cf. ref. [24]; d In CD₂Cl₂; e In C₇D₈; f See Text and Fig. 2; g Covered by signals of C₇D₈; h At 303 K; i In CDCl₃; j 59Si CP/MAS; cf. ref. [25], k Covered by signals of C₆D₆; l No signals of CO ligands were found; m See text; n Cf. ref. [26].

of the signals is detected at lower temperatures as if the system were already below the coalescence, but the signal of the other exchange site is still not seen. A likely explanation can be given by assuming a small intensity short-lived "silent" exchange partner whose broad signal is buried in the noise [33].

We concluded from the temperature-dependent 13 C spectra (Fig. 2a-c) that quinuclidine and one of the N-bound SiEt₃ pairs participate in an exchange process, whilst the other one does not. The former may be a transient species. Similar result could be inferred from the IR spectra demonstrated in Fig. 1, *i.e.* an intermediate detectable at low temperature is transformed into 2e. The unstable species may be described by the structure 3 (see Scheme 1). The IR spectra of 2e (and the other 2 complexes) – which indicates a C_{3v} symmetry of the $Co(CO)_4$ moiety – as well as the 29 Si and 59 Co resonances are in accordance with a contact ion-paired form (Scheme 1) taking into consideration the analogy of 2 and the compounds $[BH^+, ^-Co(CO)_4]$ (cf. refs. [7, 8]). Cobalt and silicon have a distorted trigonal bipyramidal coordination sphere in 2, *i.e.* amine and $Co(CO)_4$ are axially coordinated to silicon. The slow formation of 2 from 3 — which is in fast equilibrium with 1 and the amine (B) — is consistent with our kinetic results. By assuming a reversible dissociation of 2 to the isolated ion pair 5 (this equilibrium is far on the side of 2) the 59 Co spectra can be interpreted as well (vide infra).

The similarity of the ²⁹Si chemical shifts of **2** observed in solution and in the solid state supports the existence of a Co–Si interaction in both phases. The change of the ²⁹Si resonance in the pairs **1A-2b**, **1C-2e**, **1D-2j**, **1D-2k**, and **1E-2l** (see Table 3) is analogous to that observed in amine adducts of organosilanes in which the increase of the coordination number from four to five resulted in a considerable (generally –10 to –50 ppm) low-frequency shift of the ²⁹Si signals [32, 34].

In order to prove unambiguously the presence of contact ion pairs in the solid state, we have recorded ²⁹Si CP/MAS spectra of **2j** and **2k**. It is known that the presence of scalar and dipolar coupling between a spin-1/2 and a quadrupolar nuclei can be reflected in the line shape of the spin-1/2 nucleus [25, 35]. Several examples of the so called second order quadrupolar or residual dipolar effect concerning the ²⁹Si⁻⁵⁹Co spin-pair have already been reported [35]. However, we are not aware of any report concerning the line of a ²⁹Si nucleus coupled to two different quadrupolar nuclei (¹⁴N and ⁵⁹Co). Basically, the overall splitting pattern may be considered as the convolution of the different splittings. For 2j, the CP/MAS spectrum exhibits a complicated pattern indeed (see Fig. 3), however, only the effect of the spin-7/2 ⁵⁹Co nucleus can be proved unambiguously. Eight unequally distanced lines are expected if only the cobalt nucleus were "seen" by the ²⁹Si [25]. Although the observed transitions are not sufficiently resolved, deconvolution of the experimental lineshape supports the existence of eight resonances. As far as it can be judged from the width of the whole pattern ($\approx 300 \text{ Hz}$), the absolute value of the one-bond ²⁹Si-⁵⁹Co coupling is about 40-50 Hz. Coupling to the ¹⁴N nucleus could not be confirmed here, probably due to the fast ¹⁴N relaxation or reduced dipolar coupling i.e. the larger distance between the two nuclei (vide infra).

For 2k, the observed pattern is even more complicated (see Fig. 3), due to the fact

that in this case even coupling to the other quadrupole, the ¹⁴N nucleus is also mediated to the ²⁹Si by the residual dipolar effects. Apart from the sign of the quadrupolar shift, the ²⁹Si⁻¹⁴N spin-pair is believed to behave analogously to the ¹³C⁻¹⁴N pair, at least in the sense that an unsymmetrical doublet is expected due to the identical effects of the m = +/-1 states of the ¹⁴N spin (I = 1) on the ²⁹Si signal and to the opposite shift caused by the m = 0 ¹⁴N state [25]. Indeed, the observed pattern can be interpreted this way qualitatively. The two parts of the pattern are separated by more 150 Hz, which is definitely larger than the expected ²⁹Si⁻⁵⁹Co coupling or quadrupolar shift values, *i.e.* the whole pattern cannot be caused by the simple cross-overs of the J-coupled ²⁹Si⁻⁵⁹Co transitions. Concerning the whole width of the two parts of the pattern (\approx 300 and 265 Hz) the absolute value of the one-bond ²⁹Si⁻⁵⁹Co coupling is about 40-45 Hz.

The 59 Co- 14 N distances observed in analogous $[BH^+, ^-\text{Co}(CO)_4]$ (B = quinuclidine or dabco) complexes are different by 0.13 Å (they are 3.576 and 3.446 Å, respectively [7]) which confirms the possibility of a rather different residual dipolar coupling in **2j** and **2k**, too. This could explain, in part at least, the presence of the transferred quadrupolar effect of the 14 N nucleus in the dabco complex, **2k** and its absence from the 29 Si CP/MAS spectrum of the quinuclidine complex, **2j**.

It is known from the literature that both 1D [21], and $HCo(CO)_4[36]$ have ⁵⁹Co signals in the low-frequency region characteristic for the Co(-1) oxidation state [37]. The ⁵⁹Co shifts of 2e and 2j are also in this region. The ⁵⁹Co resonances are generally very broad unless there is tetrahedral, cubic or higher symmetry around the Co nucleus that cancels the quadrupolar relaxation contribution [37]. Note that in the case of equilibrium between a high and low symmetry species the line width will be heavily affected. Consequently, the position and line widths of the ⁵⁹Co signals of 2e and 2j are explainable with a structure like 2 and with the equilibrium $2 \rightleftharpoons 5$ which is far on the side of 2.

4 Conclusions

We have found that silylammonium tetracarbonylcobaltate contact ion pairs, $[BSiR_3^+, ^-Co(CO)_4]$ (2) are formed by the nucleophilic attack of amines on the Si-atom of silylcobalt tetracarbonyls (1). The IR and NMR spectra of the complexes 2 are in accordance with a C_{3v} symmetry of the $Co(CO)_4$ moiety and a distorted trigonal bipyramidal coordination sphere of Co and Si, *i.e.* amine and $Co(CO)_4$ are axially coordinated to silicon. To our knowledge, the complexes 2 are the first examples which may be regarded to have pentacoordinated silicon in a bonding interaction with a transition metal atom. Their properties are analogous to the known ion pairs $[BH^+, ^-Co(CO)_4]$ and to amine adducts of halosilanes as well.

5 Experimental

5.1 General

All manipulations involving air-sensitive compounds were carried out by the usual Schlenk technique using deoxygenated, dry solvents and gases as well as reaction vessels with magnetic stirring. Conductivity measurements have been performed using a Radelkis OK-102/0 type conductivity meter and an electrode of the type K-902 with a cell constant of 0.68 cm⁻¹ (Radelkis). Infrared spectra were recorded by using a 0.06-0.12 mm CaF₂ cuvette on Specord IR 75, Specord M 80 (Carl Zeiss, Germany) or Avatar 330 FT-IR (Thermo Nicolet, USA) spectrometers, which were calibrated with benzene (1959.6 cm⁻¹) and polystyrene (1601.4 cm⁻¹).

Silylcobalt tetracarbonyls [12, 23, 38] and N-trimethylsilyl-piperidine [39] were prepared by literature methods. Other amines were commercially available compounds which were dried by standard techniques [40] and distilled before use.

5.2 Synthesis of 2

To a solution of 1 (0.2 mmol) in toluene or dichloromethane (5 ml), a 1.1 to 20-fold excess of the amine was added dropwise at -15 to +20 °C. Probe(s) for IR spectroscopic analysis was taken from the reaction mixture.

In the cases of preparative runs, a 1.1-fold excess of quinuclidine or dabco was added in small portions to a solution of **1D** or **1E** (2.0 mmol) in dichloromethane (20 ml) at –15 °C. The solution was allowed to warm up to 0 °C after the addition was complete, stirred for 2 hours and stored in a refrigerator overnight. Then the mixture was filtered and the mother liquor was cooled to –78 °C for crystallization. **2j**, **2k** and **2l** gave white microcrystals. **2l** was also obtained from the hexane solution of **1E** from the addition of quinuclidine dissolved in hexane. The precipitate formed was recrystallized from toluene-dichloromethane (3:1).

2j: Yield: 64%. Anal. Calc. for $C_{29}H_{28}CoNO_4Si$: C, 64.31; H, 5.21; N, 2.59; Co, 10.88. Found: C, 64.0; H, 5.1; N, 2.5; Co, 10.6%.

2k. Yield: 73%. Anal. Calc. for $C_{28}H_{27}CoN_2O_4Si$: C, 61.70; H, 5.00; N, 5.14; Co, 11.00. Found: C, 62.1; H, 5.2; N, 5.3; Co, 10.5%.

2l: Yield: 86%. Anal. Calc. for $C_{20}H_{40}CoNO_7Si_4$: C, 41.57; H, 6.97; N, 2.42; Co, 10.20; Si, 19.44. Found: C, 41.2; H, 7.0; N, 2.5; Co, 10.1; Si, 19.8%.

5.3 Kinetics

Kinetic measurements were performed as described previously [33, 41]. The reaction was started by injecting triethylamine stock solution into the vigorously stirred solution of **1D** in dichloromethane. Samples for IR analysis were taken by a gas-tight syringe and filled through a three-way Hamilton valve and Teflon tubing into the 0.06-0.12 mm

CaF₂ cuvette. Molar absorbance of **1D** in dichloromethane at 2087 cm⁻¹, ε_M 1708 cm² mmol⁻¹.

5.4 NMR techniques

The NMR spectra were recorded on a Varian UNITY 300 spectrometer operating at 7.04 Tesla. For ¹H (300 MHz), ¹³C (75.4 MHz), ²⁹Si (59.59 MHz) spectra, we used a 5 mm Varian Broad Band probe and standard Varian software. Chemical shifts are shown and given relative to external TMS. In the case of ⁵⁹Co (70.84 MHz), K₃Co(CN)₆ was used as external reference. The solution state ²⁹Si NMR spectra were obtained either by direct measurement or by the DEPT technique making use of the two-bond ¹H-²⁹Si scalar couplings. Line widths of 2-3 Hz were common. The solid state ²⁹Si MAS spectra were recorded on a Doty XC5 probe using 5 mm o.d. zirkonia rotors. Chemical shifts were obtained by the substitution method, the proper ¹H: ²⁹Si cross polarization and ¹H decoupling conditions were checked with crystalline tetrakis(trimethylsilyl)silane. Samples were spun between 3000 and 8000 Hz. The 90° pulse width was 6 micros, the acquisition time 50 msecs. Relaxation delays of 30 and 5 sec were used in the direct MAS and CPMAS experiments, respectively. In the latter contact times of 3-4 msecs were applied.

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of the amines used were taken mostly from the literature [42].

Acknowledgment

The authors thank for the helpful discussions with Prof. F. Ungváry as well as financial support from the Hungarian Academy of Sciences and from the Hungarian Scientific Research Fund (Grants: OTKA T 31934 and T 34335).

References

- [1] B.T. Carter, M.P. Castellani, A.L. Rheingold, S. Hwang, S.E. Longacre, and M.G. Richmond: "Ion-pairing themodynamics for (η⁵-pentadienyl)Fe(CO)₂⁻ (pentadienyl = MeCp, C₅Me₅, C₅Ph₅, C₉H₇) and X-ray crystal structure of [(η⁵-C₅Ph₅)Fe(CO)₂][PPN]", Organometallics, Vol. 21, (2002), pp. 373–379 and refs. therein.
- [2] W. Edgell and S. Chanjamrsi: "Studies of solution character by molecular-spectroscopy. 8. Ion sites in solutions of NaCo(CO)₄ in several solvents doped with cryptand-C221", *J. Am. Chem. Soc.*, Vol. 102, (1980), pp. 147–155 and refs. therein.
- [3] P.S Braterman and A.E. Leslie: "Strong interaction between [Co(CO)₄]⁻ and Li⁺ or Na⁺ in diethyl ether; The system LiBr₂/Co₂(CO)₈/diethyl ether", *J. Organomet. Chem.*, Vol. 214, (1982), pp. C45–C49.
- [4] F. Haász, T. Bartik, V. Galamb and G. Pályi: "Alkylcobalt carbonyls 10. CO activation and phase-transfer-active coordination sites in organocobalt carbonyls

- mechanism of the reaction of benzyl halides and tetracarbonylcobaltate(-I)", Organometallics, Vol. 9, (1990), pp. 2773–2779.
- [5] C. Zucchi, G. Pályi, V. Galamb, E. Sámpár-Szerencsés, L. Markó, P. Li and H. Alper: "Cobalt-catalyzed carbonylation of benzyl halides using polyethylene glycols as phase-transfer catalysts", Organometallics, Vol. 15, (1996), pp. 3222–3231.
- [6] F. Calderazzo, G. Fachinetti, F. Marchetti and P.F. Zanazzi: "Preparation and crystal and molecular-structure of two trialkylamine adducts of HCo(CO)₄ showing a preferential NR₃H⁺···[(OC)₃Co(CO)]⁻ interaction", J. Chem. Soc. Chem. Comm., (1981), pp. 181–183.
- [7] L. Brammer, J.C. Mareque Rivas and C.D. Spilling: "An intramolecular N−H···Co hydrogen bond and a structure correlation study of the pathway for protonation of the Co(CO)₃L[−] anion (L = CO, PR₃)", J. Organomet. Chem., Vol. 609, (2000), pp 36–43 and refs. therein.
- [8] D. Zhao, F.T. Ladipo, J. Braddock-Wilking and L. Brammer: "Strengthening of N– H···Co hydrogen bonds upon increasing the basicity of the hydrogen bond acceptor (Co)", Organometallics, Vol. 15, (1996), pp. 1441–1445.
- [9] T. Bartik, T. Krummling, B. Happ, A. Sieker, L. Markó, R. Boese, R. Ugo, C. Zucchi and G. Pályi: "Intermediates and isomers in the substitution of cobalt carbonyl hydride with tertiary phosphorus ligands", Catal. Lett., Vol. 19, (1993), pp. 383–389
- [10] B.J. Aylett and J.M. Campbell: "Silylmanganese pentacarbonyl; the nature of the adducts of silyl compounds with tertiary amines", *J. Chem. Soc. Chem. Comm.*, (1967), p. 159.
- [11] J.F. Bald and A.G. MacDiarmid: "Silylammonium and silylphosphonium compounds by the reaction of amines and phosphines with silylcobalt tetracarbonyl", J. Organomet. Chem., Vol. 22, (1970), pp. C22–C24.
- [12] A. Sisak, F. Ungváry and L. Markó: "Kinetics and mechanism of the silation of dicobalt octacarbonyl by hydrosilanes. Effect of Lewis-bases on the reaction", *Organometallics*, Vol. 5, (1986), pp. 1019–1023.
- [13] A. Sisak, L. Markó, Z. Angyalosy and F. Ungváry: "Catalytic hydrosilylation of carbon monoxide with cobalt carbonyls", *Inorg. Chim. Acta*, Vol. 222, (1994), pp. 131–134.
- [14] A. Sisak: "Silylations of α , β -unsaturated and aromatic carbonyl compounds with cobalt carbonyls", *J. Organomet. Chem.y*, Vol. 586, (1999), pp. 48–53.
- [15] Y. Seki, S. Murai, I. Yamamoto and N. Sonoda: "Transition-metal reactions of silanes. 3. Co₂(CO)₈ catalyzed reactions of cyclic ethers with hydrosilanes and carbon-monoxide", *Angew. Chem. Int. Edit.*, Vol. 16, (1977), p. 789.
- [16] B.K. Nicholson and J. Simpson: "Reactions of tetracarbonylcobaltate(-I) with chlorosilanes in ether solvents", *J. Organomet. Chem.*, Vol. 155, (1978), pp. 237–244
- [17] A. Sisak, F. Ungváry and L. Markó: "Base-catalyzed reactions of cobalt carbonyls related to hydroformylation", *Acta Chim. Hung.*, Vol. 119, (1985), pp. 115–125.
- [18] W.J. Geary: "The use of conductivity measurements in organic solvents for the

- characterization of coordination compounds", *Coordin. Chem. Rev.*, Vol. 7, (1971), pp. 81–122.
- [19] R.J. LeSuer, C. Buttolph and W.E. Geiger: "Comparison of the conductivity properties of the tetrabutylammonium salt of tetrakis(pentafluorophenyl)borate anion with those of traditional supporting electrolyte anions in nonaqueous solvents", *Anal. Chem.*, Vol. 76, (2004), pp. 6395–6401.
- [20] C.H. Wei, T.M. Bockman and J.K. Kochi: "Charge-transfer salts of carbonylmetallates as outer-sphere ion-pairs in photochemical and thermal electron-transfer", *J. Organomet. Chem.*, Vol. 428, (1992), pp. 85–87.
- [21] F. Calderazzo, G. Pampaloni, M. Lanfranchi and G. Pelizzi: "Proton-mediated and carbonyl-mediated electron-transfer processes from the hexacarbonylvanadate(-1) anion", *J. Organomet. Chem.*, Vol. 296, (1985), pp. 1–13.
- [22] A. Sisak and L. Markó: "Mechanistic studies on the reactions of dicobalt octacarbonyl with hard Lewis bases", *J. Organomet. Chem.*, Vol. 330, (1987), pp. 201–206 and refs therein.
- [23] T.D. Tilley: "Transition-metal silyl derivatives", In: S. Patai and Z. Rappoport (Eds.): *The Chemistry of Organic Silicon Compounds*, J. Wiley, New York, 1989, pp. 1442–1444 and refs. therein.
- [24] B.T. Gregg and A.R. Cutler: "Reactivity of cobalt acetyl complexes (PR₃)(CO)₃CoCOCH₃ toward monohydrosilanes", *Organometallics*, Vol. 11, (1992), pp. 4276–4284.
- [25] R.K. Harris and A.C. Olivieri: "Quadrupolar effects transferred to spin-1/2 magic-angle spinning spectra of solids", Prog. Nucl. Mag. Res. Sp., Vol. 24, (1992), pp. 435–456.
- [26] R.K. Harris and B.E. Mann: *NMR and the Periodic Table*, Academic Press, London, 1978.
- [27] J. Kreisz, A. Sisak, F. Ungváry and L. Markó: "Reaction of silylcobalt tetracarbonyls with oxiranes. Kinetics and mechanism", *J. Organomet. Chem.*, Vol. 451, (1993), pp. 53–57.
- [28] I. Kovács, A. Sisak, F. Ungváry and L. Markó: "On the mechanism of the formation of silyl enol ethers from hydrosilanes and organic carbonyl compounds in the presence of cobalt carbonyls. Kinetic investigation of some reaction steps", *Organometallics*, Vol. 7, (1988), pp. 1025–1028.
- [29] T. Murai, F. Yasui, S. Kato, Y. Hatayama, S. Suzuki, Y. Seki, Y. Yamasaki, N. Sonoda, H. Kurosawa, Y. Kawasaki and S. Murai: "Cobalt carbonyl catalyzed reactions of cyclic ethers with a hydrosilane and carbon-monoxide a new synthetic reaction equivalent to nucleophilic oxymethylation", J. Am. Chem. Soc., Vol. 111, (1989), pp. 7938–7946.
- [30] M. Allmendinger, M. Zintl, R. Eberhardt, G.A. Luinstra, F. Molnar and B. Rieger: "Online ATR-IR investigations and mechanistic understanding of the carbonylation of epoxides the selective synthesis of lactones or polyesters from epoxides and CO", *J. Organomet. Chem.*, Vol. 689, (2004), pp. 971–979.

- [31] J.E. Ellis: "Reactivity patterns of metal-carbonyl anions and their derivatives", *J. Organomet. Chem.*, Vol. 86, (1975), pp. 1–56.
- [32] R.J.P. Corriu: "Hypervalent species of silicon structure and reactivity", *J. Organomet. Chem.*, Vol. 400, (1990), pp. 81–106 and refs. therein.
- [33] J.J. Delpuech: *Dynamics of Solutions and Fluid Mixtures*, J. Wiley, Chichester, 1995, chapter 3.
- [34] A.R. Bassindale, M. Borbaruah, S.J. Glynn, D.J. Parker and P.G. Taylor: "Modelling nucleophilic substitution at silicon using hypervalent silicon compounds based on di and tri halosilanes", *J. Organomet. Chem.*, Vol. 606, (2000), pp. 125–131 and refs. therein.
- [35] J.M. Geller, J.H. Wosnick, I.S. Butler, D.F.R. Gilson, F.G. Morin and F. Belanger–Gariepy: "X-ray diffraction, Raman spectroscopic, and solid-state NMR studies of the group 14 metal(tetracarbonyl)cobalt complexes Ph₃MCo(CO)₄ (M = Si, Sn, Pb)", Can. J. Chem., Vol. 80, (2002), pp. 813–820.
- [36] R.J. Klingler and J.W. Rathke: "High-pressure NMR investigation of hydrogen-atom transfer and related dynamic processes in oxo catalysis", *J. Am. Chem. Soc.*, Vol. 116, (1996), pp. 4772–4278.
- [37] W.V. Philipsborn: "Transition metal NMR spectroscopy a probe into organometal-lic structure and catalysis", *Pure Appl. Chem.*, Vol. 58, (1986), p. 513.
- [38] A.J. Chalk and J.F. Harrod: "Homogeneous catalysis IV. Some reactions of silicon hydrides in the presence of cobalt carbonyls", J. Am. Chem. Soc., Vol. 89, (1967), pp. 1640–1647.
- [39] C.A. Bruynes and T.K. Jurriens: "Catalysts for silylations with 1,1,1,3,3,3-hexamethyldisilazane", J. Org. Chem., Vol. 47, (1982), pp. 3966–3969.
- [40] W.L.F. Armarego and D.D. Perrin: *Purification of Laboratory Chemicals*, Butterworth, Oxford, 1996.
- [41] I. Kovács, F. Ungváry and L. Markó: "Kinetic investigation of the cleavage of normal-butyrylcobalt or isobutyrylcobalt tetracarbonyl with hydridocobalt tetracarbonyl or dihydrogen", *Organometallics*, Vol. 5, (1986), pp. 209–215.
- [42] The Aldrich Library of ¹³C and ¹H FT NMR Spectra, Aldrich Chemical Company, 1995.

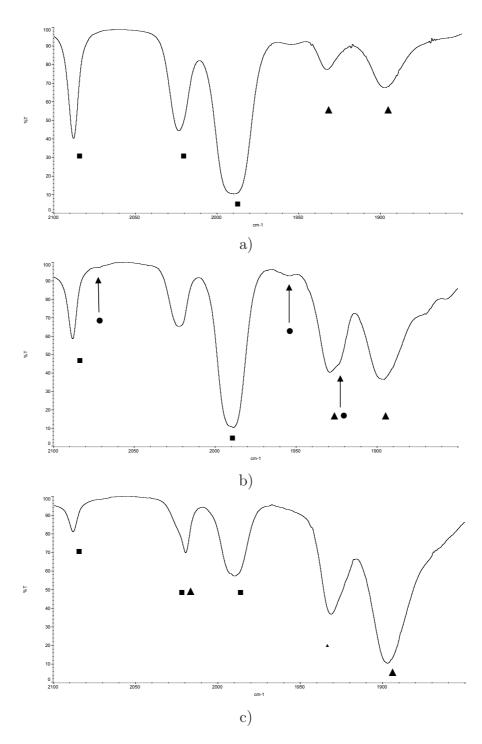


Fig. 1 IR spectra of the reaction mixture of 1C and quinuclidine in toluene (molar ratio = 1:1, [1C] = 0.1 M) in the ν (CO) region after 10 min (recorded at 25 °C) (a), after 30 min (recorded at - 30 °C) (b), and after 60 min stirring at 25 °C (recorded at 25 °C) (c). Symbols: 1C ■, 2e △, intermediate •.

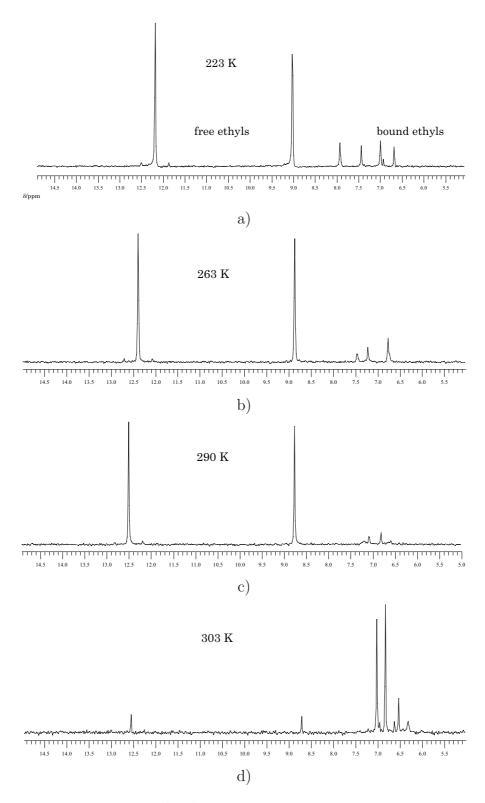
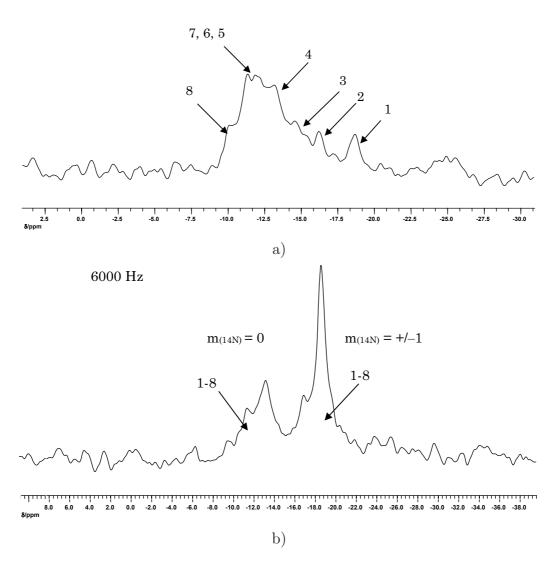
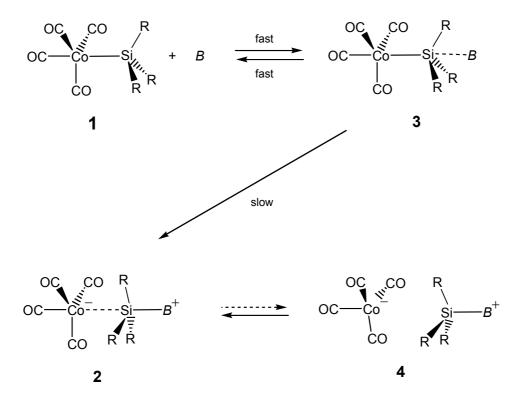




Fig. 2 Temperature-dependent $^{13}C\{^{1}H\}$ spectra of the reaction mixture of $\mathbf{1C}$ and quinuclidine recorded in toluene- $d_{8.}$ [$\mathbf{1C}$] = 0.5 M, molar ratio = 2:1 (\mathbf{a} - \mathbf{c}) or 1:1 (\mathbf{d}), magnetic field = 7.04 T. Only signals of the SiEt₃ moiety (free (high-frequency) and bound (low-frequency)) are shown (see Text).

 $3600~\mathrm{Hz}$

Fig. 3 ²⁹Si CP/MAS spectra of [(quinuclidine)SiPh₃⁺, $^{-}$ Co(CO)₄],**2j** (a), and [(dabco)SiPh₃⁺, $^{-}$ Co(CO)₄], **2k(b)**. Magnetic field = 7 T, temperature = 293 K. 5 mm ZrO₂ rotors. Rotation speeds as indicated.

 ${\bf Scheme~1~Possible~transformations~in~the~silylcobalt~tetracarbonyl/tertiary~amine~systems.}$