

Central European Journal of Chemistry

DOI: 10.2478/s11532-006-0001-9 **Research article** CEJC 4(2) 2006 351-362

Bifunctional sulfur-silicon podands as new nucleophilic ionophores in acyl transfer reactions. Influence of monovalent cations on the reaction kinetics

Bogusława Łęska^{1*}, Grzegorz Schroeder¹, Błażej Gierczyk¹, Volodimir I. Rybachenko²

¹ Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland

² Institute of Physical Organic and Coal Chemistry, NAS, 340114 Donetsk, Ukraine

Received 30 August 2005; accepted 18 November 2005

Abstract: Two bifunctional sulfur-silicon nucleophilic ionophores 3-(trimethoxysilyl)-propanethiol (Nu1) and 3-(tri-2-methoxyethoxysilyl)-propanethiol (Nu2) were used as reagents in the acyl transfer reaction studied by kinetic methods. Nuclear magnetic resonance (NMR) and electro-spray ionisation mass spectrometry (ESI MS) were used for determination of the stoichiometry and stability constants of the complexes made by the podands and lithium or sodium ions in acetonitrile solution.

© Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.

Keywords: Si-podand, 3-(trimethoxysililo)-propanethiol, 3-(tri-2-methoxyethoxysililo)-propanethiol, acyl transfer reaction, ionophores

1 Introduction

The di- and tripodands with boron, phosphorus, sulfur or silicon as a central atom (Fig. 1) were previously studied by spectroscopic methods [1–9]. Stable complexes form between the ions and neutral molecules. In the presence of protons, ions or small organic molecules, podands with $CH_3(OCH_2CH_2O)_n$ substituents can form host-guest complexes in molec-

^{*} E-mail: bogunial@amu.edu.pl

ular channels or cavities. Systems of this type were successfully applied in phase transfer catalysis or as specific solvents in organic reactions [5–9].

$$\begin{array}{c} R \\ R \\ \end{array} \begin{array}{c} X \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c}$$

Fig. 1 Di- and tri-podands with polyoxaalkyl substituents.

The bifunctional podands 3-(trimethoxysilyl)-propanethiol (Nu1) and 3-(tri-2-methoxysilyl)-propanethiol (Nu2) comprise a new class of reagents in organic chemistry characterized by two different functional groups. The -S-H functional group determines the nucleophilic character of the molecule and the Si(OR)₃ functional group permits complexation of ions and small neutral molecules as well as formation of dimers and polymers in the presence of water. The bifunctional character of the molecules studied promotes the formation of organic monolayer films on the surface of silver by self-assembly. Further modifications of such monolayers were produced through formation of complexes with different metals on the surfaces [10].

The effect of different factors determining the mechanism of the proton, electron, methyl group or acyl group transfer has been an important problem of contemporary chemistry and biochemistry [11–16]. For the last few years, this group has conducted research on the mechanism of the acyl transfer reaction [17–25]. By systematically investigating the formation of the guest-host type between multiple nucleophiles and different ions, a particularly strong effect of alkali metal ions on the kinetics of the acyl group transfer reaction was observed [26].

This manuscript presents the nucleophilic properties of the ionophores studied, determined by nuclear magnetic resonance (NMR) and electro-spray ionisation mass spectrometry (ESI MS) methods. Moreover, the kinetics and mechanisms of acyl transfer reactions to bifunctional podands from 4-(2-(4-dimethylaminophenyl)ethenyl)-1-acetoxypyridinium tetraphenylborate (El) in acetonitrile are discussed. In earlier publications from this research group, 4-(2-(4-dimethylaminophenyl)ethenyl)-1-acetoxypyridinium tetraphenylborate (El) was used as a model system in investigation of the acyl group transfer reaction [17–21]. The compounds studied in this research formed complexes with different ions as ionophores. The effect of alkaline ions on the kinetics of the reactions of interest was analysed and discussed. The structures of the two Nu1 and Nu2 nucleophilic ionophores and the El electrophilic molecule used in the kinetic studies are illustrated in Fig. 2.

$$MeO$$
 MeO
 MeO

Fig. 2 Compounds studied.

2 Experimental

2.1 Synthesis

The compound 3-(trimethoxysilyl)-propanethiol (Nu1) was used as commercial product (Aldrich) after vacuum distillation. 3-(Tri-2-methoxyethoxysilyl)-propanethiol (Nu2) was prepared in high yield (ca 90 %) by transesterification reaction of 3-(trimethoxysilyl)-propanethiol (Nu1) with ethylene glycol monomethylether with dibuthyltin oxide as a catalyst in benzene as solvent. The obtained product was purified by vacuum distillation. The electrophile: 4-(2-(4-dimethylaminophenyl)ethenyl)-1-acetoxypyridinium tetraphenylborate (E1) was synthesised by the procedure described earlier [24].

2.2 Preparation of complexes

Me₄NClO₄, LiClO₄ and NaClO₄ were used as commercial products. Lithium and sodium salts were used after drying for 6h at 100 °C. The solutions of the complexes for ESIMS studies were obtained by dissolving the respective salts and nucleophiles in acetonitrile as a solvent.

2.3 NMR measurements

 1 H, 23 Na and 7 Li NMR spectra were recorded using a Varian Gemini 300 spectrometer, operating at 300.075, 79.371 and 116.619 MHz, respectively. Detailed acquisition parameters were reported elsewhere [19]. All spectra were measured in CD₃CN at 25 $^{\circ}$ C. The concentration of podands was prepared to be 0.1 M. Samples were prepared in an anhydrous atmosphere using carefully dried LiClO₄ and NaClO₄. The rate constants of

complex formation between podands and ions (log K) were determined from the value of the chemical shift measured for a lithium or sodium ion [27, 28].

2.4 Mass spectrometry

The ESI MS spectra were recorded on a Waters/Micromass (Manchester, UK) ZQ mass spectrometer equipped with a Harvard Apparatus syringe pump. The measurements were conducted for the acetonitrile solutions of Nu1 or Nu2 (5×10^{-4} mol dm⁻³) with Li⁺ and Na⁺ cations (10^{-3} mol dm⁻³) added separately. The samples were infused into the ESI source using the Harvard pump at a flow rate 20 μ dm³ min⁻¹. The capillary, lens, and extractor ESI source potentials were set at 3 kV, 0.5 kV, and 4 V, respectively. In the ESI mass spectra, the cone voltage was 30 V. The source temperature was 120 °C and the desolvation temperature was 300 °C. Nitrogen was used as the nebulizing and desolvation gas at flow-rates of 80 and 300 dm³ h⁻¹, respectively.

2.5 Kinetic studies

The acyl transfer reaction between Nu1 or Nu2 and El was studied by the kinetic method. The kinetic runs were conducted using a diode array spectrophotometer (Hewlett Packard) with the cell block thermostated to ± 0.1 °C. The kinetic runs were completed under pseudo-first-order conditions with the nucleophile concentration in large excess relative to that of E1 (1x10⁻⁴ M) and a constant concentration of MClO₄ (0.05 M), where M=Li, Na or Me₄N. The observed rate constants were calculated from the traces of product exhibiting absorbance at a wavelength of 520 nm as time was varied. The observed rate constant, k_{obs} , depends on the initial nucleophile (Nu) concentration and is given by the equation:

$$k_{obs} = k[Nu] + k_{-} \tag{1}$$

The second order rate constants for the forward (k) reactions were calculated by linear least-squares fit of the variation of k_{obs} with the concentration of the nucleophiles. The activation parameters were calculated by linear least-squares fit of ln k plotted against 1/T.

3 Results and discussion

The ¹H NMR chemical shifts for obtained compounds Nu1 and Nu2 are collected in Table 1.

ESI mass spectrometric results obtained for the complexes of Nu1 and Nu2 with various monovalent metal cations are shown in Table 2. The ESI MS spectra recorded in the negative ion mode (m/z = (Nu-H)⁻) for the nucleophile solutions, Nu1 and Nu2, in acetonitrile exhibited signals that were assigned to the deprotonated molecules of podands. Addition of lithium or sodium ions into the nucleophile solutions caused the appearance of strong peaks observed in the positive ion mode, $m/z = (Nu_{10r2}+M)^+$, that

Compounds	¹ H NMR chemical shift [ppm]						
	H_1	H_2	H_3	H_4	H_{5}	H_6	H_{7}
Nu1	1.34 (t)	2.55 (q)	1.72 (m)	0.75 (m)	3.57 (s)	-	-
Nu2	1.32 (t)	2.51 (q)	1.73 (m)	0.75 (m)	3.70 (m)	3.52 (m)	3.25 (s)

Table 1 ¹H NMR chemical shifts of silicon-sulfur podands.

Table 2 ESI mass spectrometry data for complexes of nucleophiles with lithium or sodium cations.

Cation	$\mathrm{m/z}$					
	Nu1	Nu2				
	195 (Nu-H) ⁻	327 (Nu-H) ⁻				
Li+	203 (NuLi) ⁺	$335 (NuLi)^+$				
Na+	399 (Nu ₂ Li) ⁺ 219 (NuNa) ⁺ 415 (Nu ₂ Na) ⁺	351 (NuNa) ⁺				

were assigned to the relevant complexes formed. The Nu2 podand is an ionophore with the polyoxaalkyl substituents, CH₃OCH₂CH₂O, and was observed to form the 1:1 complex only with lithium and sodium ions in acetonitrile, while Nu1, having the substituent CH₃O, formed two types of complexes, 1:1 and 2:1, with monovalent ions.

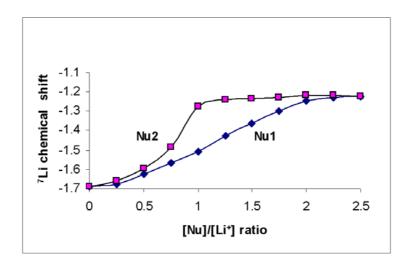
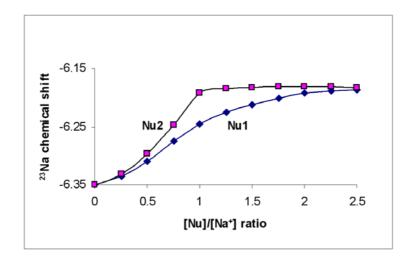



Fig. 3 Variation in the ⁷Li chemical shifts as function of [Nu]/[Li⁺] ratio for Nu1 orNu2.

The NMR titration of nucleophile solutions by solutions of LiClO₄ and NaClO₄ in acetonitrile was illustrated in Figs. 3 and 4, respectively. For the systems studied, the NMR titration curves were different for Nu1 than for Nu2. Nu2 formed only the 1:1 complex with lithium or sodium cations, while Nu1 formed the 1:1 and 2:1 complexes

⁽s) – singlet, (m) – multiplet, (t) – triplet, (q) – quintet

Fig. 4 Variation in the ²³Na chemical shifts as function of [Nu]/[Na⁺] ratio for Nu1 or Nu2.

with both lithium and sodium cations. The chemical shift in the spectra of complexes with lithium and sodium ions, described as a function of the $[Nu]/[M^+]$ ratio, was constant for Nu1 when the $[Nu]/[M^+]$ ratio was equal to 2, while for Nu2 the chemical shift was constant when the $[Nu]/[M^+]$ ratio was equal to 1. The logK values for 1:1 and 2:1 complexes were calculated from the NMR titration experiment (Table 3).

Table 3 Stability constants measured in acetonitrile for 1:1 ($\log K_1$) and 1:2 ($\log K_2$) complexes [Nu:M⁺] between podands and lithium or sodium ions.

	[Nu1 : Li ⁺]	[Nu1 : Na ⁺]	[Nu2 : Li ⁺]	[Nu2 : Na ⁺]
$log K_1$	0.8 ± 0.4	0.6 ± 0.4	2.8 ± 0.2	2.3 ± 0.2
$log K_2$	0.8 ± 0.4	1.0 ± 0.4	_	_

The proposed structures of the 1:1 and 2:1 complexes of RSi(OCH₂CH₂O)₂CH₃ with Li+ cations, where R=Et or Ph, were presented in a previous publication [29]. The influence of the R group on the structures of the complexes was not significant. The ionophoric properties were determined by the number of oxygen atoms in the polyoxaalkyl chains of the podand.

The Nu1 complexes with lithium and sodium ions of the 1:1 and 2:1 stoichiometry were characterised by similar stability constants that were low in magnitude. However, the complexes formed between Nu2 and the same ions were strong. The PM5 (parametric method 5) semiempirical calculations for Nu1 and Nu2 [16] revealed the occurrence of a hydrogen bond -S-H...O (ca. 2.60 Å) in the podand molecules studied. The stabilization of the Nu2 molecule by the two types of hydrogen bonds, -S-H...O-Me and -S-H....O-Si-, was greater than that of Nu1, which implied that the sulfur atom of Nu1 was more nucleophilic than the sulfur atom of Nu2.

The compounds having thiol groups were acyl group acceptors. Thus, the bifunc-

tional sulfur-silicon podands had the same properties. The -S-H groups of podands were acceptors that participated in the acylation reaction in the presence of donors containing the -COMe group.

The kinetics acyl transfer reactions between Nu1 or Nu2 and El were also studied by ultraviolet-visible (UV-VIS) spectroscopy. The influence of the ions on the kinetics of the transfer of the acyl group to the ionophores was studied. The spectrometric and NMR methods demonstrated that the use of the ionophores promoted the formation of stable complexes with metal ions. Two types of the reactions and possible reaction pathways were proposed (Fig. 5.). The rate constants (k) and activation parameters of the reaction conducted in acetonitrile between Nu1 + El (Table 4), and between Nu2 + El (Table 5) were measured.

The high value calculated for the equilibrium constant of the reaction, $K = k/k_{-}$, implied that the k- values (backward reactions) were relatively insignificant.

$$\begin{array}{c} \text{RO}_{\text{SS}} \\ \text{RO}_{\text{OR}} \\ \text{RO}_{$$

Fig. 5 Mechanism of acyl transfer processes conducted in acetonitrile when (a) the nucleophilic ionophores do not form complexes with the ion; and (b) the nucleophilic ionophores form complexes with the ion.

Two types of reactions were observed. The first type was the reaction that occurred when the salts did not form complexes with the ionophores, while the second type of reaction was observed when lithium or sodium perchlorate formed complexes with ionophoric substrates. The secondary rate constant of the acyl group transfer reaction conducted in the presence of Me_4NClO_4 at 25 °C was 2.7 times greater for Nu1 than for Nu2. Therefore, Nu1 was a stronger nucleophile than Nu2.

Table 4 Rate constants (k) and activation parameters (\pm standard deviation) of the reaction between Nu1 and El in acetonitrile.

Temp.	$10^6 \text{ k}_{obs} \text{ (s}^{-1})$		10^4 k	$\Delta \mathrm{H}^{\neq}$	$\Delta S^{ eq}$	ΔG^{\neq}			
				$(\mathrm{M}^{-1}\ \mathrm{s}^{-1})$	$(kJ \text{ mol }^{-1})$	$(J \text{ mol}^{-1} \text{ deg}^{-1})$	$(kJ \text{ mol }^{-1})$		
[Nu1] M	0.01 M	0.02 M	0.04 M						
$Nu1+El + Me_4NClO_4(0.05M)$									
$25~^{\circ}\mathrm{C}$	600	1120	2070	487.9 ± 1.3	17.4 ± 1.2	-212 ± 4	80.5 ± 1.2		
$35~^{\circ}\mathrm{C}$	986	1650	2940	650.4 ± 3.4					
$45~^{\circ}\mathrm{C}$	1462	2321	3900	809.4 ± 6.7					
	$Nu1+El + LiClO_4 (0.05M)$								
25 °C	48	94	178	43.1 ± 6.1	19.8 ± 6.7	-224 ± 22	86.5 ± 6.7		
$35~^{\circ}\mathrm{C}$	80	141	279	66.7 ± 1.1					
$45~^{\circ}\mathrm{C}$	122	212	352	75.7 ± 5.2					
$Nu1+El + NaClO_4 (0.05M)$									
$25~^{\circ}\mathrm{C}$	63	116	220	52.3 ± 1.2	11.0 ± 1.7	-252 ± 5	86.1 ± 1.7		
$35~^{\circ}\mathrm{C}$	90	154	284	64.7 ± 2.5					
45 °C	142	220	363	73.6 ± 6.9					

Table 5 Rate constants (k) and activation parameters (\pm standard deviation) of the reaction between Nu2 and El in acetonitrile.

Temp.	$10^6 \text{ k}_{obs} \text{ (s}^{-1})$		10^4k (M ⁻¹ s ⁻¹)	ΔH^{\neq} (kJ mol $^{-1}$)	ΔS^{\neq} (J mol $^{-1}$ deg $^{-1}$)	ΔG^{\neq} (kJ mol $^{-1}$)			
[Nu1] M	0.01 M	$0.02~\mathrm{M}$	0.04 M	,	,	,			
$Nu1+El + Me_4NClO_4(0.05M)$									
25 °C	230	406	770	180 ± 2	24.3 ± 3.4	-197 ± 11	83.1 ± 3.4		
$35~^{\circ}\mathrm{C}$	520	755	1230	237 ± 3					
$45~^{\circ}\mathrm{C}$	712	1062	1775	355 ± 3					
	$Nu2 + El + LiClO_4 (0.05M)$								
$25~^{\circ}\mathrm{C}$	47	87	170	41.2 ± 0.5	26.7 ± 4.0	-201 ± 13	86.6 ± 4.0		
35 °C	76	144	274	65.9 ± 0.1					
$45~^{\circ}\mathrm{C}$	130	220	390	86.4 ± 0.5					
$Nu2+El+NaClO_4 (0.05M)$									
$25~^{\circ}\mathrm{C}$	25	68	149	41.2 ± 0.5	18.2 ± 1.0	-230 ± 3	86.7 ± 1.0		
$35~^{\circ}\mathrm{C}$	71	130	223	52.6 ± 0.2					
45 °C	120	195	330	69.6 ± 0.1					

The value calculated for ΔG^{\neq} that described the combined changes in entropy and enthalpy in the acyl group transfer reaction to Nu2 was 2.6 kJ mol⁻¹ greater than the value measured for the reaction with Nu1. The difference resulted from the difference in the potential barrier height between the two reactions ($\Delta H^{\neq}=69 \text{ kJ mol}^{-1}$) and from a significant contribution of the entropy effect ($T\Delta S^{\neq}=4.3 \text{ kJ mol}^{-1}$). The acyl group transfer reaction from the electrophile to podands in the presence of cations not undergoing complexation was controlled by entropy. In this reaction, a significant change in solvation was observed between the initial and the transient state. Additionally, ΔS^{\neq} was composed of large, negative values.

The secondary rate constants decreased significantly in the reaction between the salt containing ions capable of complex formation and the ionophores of podands. In the type of reaction in which the Nu-M⁺ complex formed, the nucleophilic character of the sulfur atom, influencing the acyl group transfer constant, decreased. In the reactions in which the cations formed complexes, the value of ΔG^{\neq} was 6.0 times or 3.5 kJ mol-1 greather than for reactions in which the cations were not able to form complexes with the ionophores Nu1 or Nu2. For reactions conducted in the presence of lithium ions in both systems (with Nu1 and Nu2), the potential barrier increased by 2.4 kJ mol⁻¹. In the presence of sodium ions the, value ΔH^{\neq} decreased by 5.5 and 6.4 times, respectively, for Nu1 and Nu2.

The formation of complexes of the ionophore and lithium or sodium ions has no significant effect on the differences in solvation between the initial and transient state.. In the reactions in which complexes formed, the transient state was better solvated than in the reactions conducted in the presence of the ammonium salt.

The mechanism of the acyl group transfer was coupled with the proton transfer from S-H onto the basic oxygen atom, $O \leftarrow N$ -, and partly to the other basic centre of the molecule, the NMe₂ group. The formation of complexes between the ionophore and the ions present in the solution significantly affected the kinetics of the acyl group transfer reaction and thus can provide an effective method for controlling the reaction kinetics.

4 Conclusion

Investigation of reactions with participation of nucleophilic ionophores permits explanation of the effect of complexation processes on the direction of the reaction. The kinetics of the acyl transfer reaction was determined by the metal cations that did not take part in the process through a metal, cation-assisted, mechanism. The complex formation was related to changes in the electron density and charge distribution.

Complex formation can be an effective method for controlling the course of chemical reactions. Control of chemical reactions by the conscientious formation of complexes is a less complicated approach than proposed previously as it does not involve the need to change the solvent or introduce new substituents.

References

- [1] B. Brzezinski, B. Różalski, G. Schroeder, F. Bartl and G. Zundel: "Excess proton hydrate structures with large proton polarizability in the channel of trioxaalkyl phosphate", J. Chem. Soc., Farad. T, Vol. 94, (1998), pp. 2093–2096.
- [2] G. Schroeder, B. Gierczyk and B. Łęska: "Inorganic Esters of Ethylene Glycols Macrocyclic Ligands", *J. Incl. Phenom.*, Vol. 35, (1999), pp. 327–335.
- [3] B.Gierczyk, G. Schroeder, G. Wojciechowski, B. Różalski, B. Brzezinski and G. Zundel: "FTIR and multinuclear magnetic resonance studies of tris(oxaalkyl) borates and their complexes with Li⁺ and Na⁺ cations", *Phys. Chem. Chem. Phys.*, Vol. 1, (1999), pp. 4897–4901.
- [4] B. Łęska, I. Kałużna, B. Gierczyk, G. Schroeder, P. Przybylski and B. Brzezinski: "Kinetic studies of complexation reaction of polyoxaalkyl phosphates with Fe (III) in ethanol", *J. Mol. Struct.*, Vol. 643, (2002), pp. 9–19.
- [5] B. Gierczyk, B. Łęska, B. Brzezinski and G. Schroeder: "Podand solvents for organic reactions", *Supramol. Chem.*, Vol. 14, (2002), pp. 497–502.
- [6] A. Maia, D. Landini, B. Łęska and G. Schroeder: "Silicon polypodands: power-ful metal cation complexing agents and solid-liquid phase-transfer catalysts of new generation", *Tetrahedron Lett.*, Vol. 44, (2003), pp. 4149–4151
- [7] B. Łęska, B. Gierczyk, K. Eitner, V.I. Rybachenko and G. Schroeder: "Studies of silicon podand solvents", *Supramol. Chem.*, Vol. 16, (2004), pp. 303–310.
- [8] A. Maia, D. Landini, B. Łęska and G. Schroeder: "Silicon polypodands: a new class of efficient solid-liquid phase-transfer catalysts", *Tetrahedron*, Vol. 60, (2004), pp. 10111–10115.
- [9] A. Maia, D. Landini, C. Betti, B. Łęska and G. Schroeder: "Catalytic activity and anion activation in S_N2 reactions promoted by complexes of silicon polypodands. Comparision with traditional polyethers", New J. Chem., Vol. 29, (2005), pp. 1195–1198.
- [10] B. Łeska, G. Schroeder, T. Łuczak, P. Przybylski, R. Pankiewicz, M. Bełtowska-Brzezinska and B. Brzezinski: "Structure and electrochemical reactivity of 3-mercaptopropyl-tris-(3-oxabutoxy)-silane adsorbed on silver surface", *Thin Solid State*, in press
- [11] R. Cacciapaglia and L. Mandolini: "Specific transition state stabilization by metal ions in reactions of functionalized crown ethers", *Pure Appl. Chem.*, Vol. 65, (1993), pp. 533–538.
- [12] M. Meng and D.T. Chuang: "Site-directed mutagenesis and functional analysis of the active-site residues of the E2 component of bovine branched-chain alpha-keto acid dehydrogenase complex", *Biochemistry*, Vol. 33, (1994), pp. 12879–12885.
- [13] C.J. O'Connor and R.H. Barton: "Acyl Transfer Isomerization of Glycerol 1,2-Dibutyrate and Propane-1,2-diol 1-Butyrate", Aust. J. Chem., Vol. 51, (1998), pp. 455–460.
- [14] Z. Mouloungui and S. Pelet: "Study of the acyl transfer reaction: Structure and

- properties of glycerol carbonate esters", Eur. J. Lipid Sci. Tech., Vol. 103, (2001), pp. 216–222.
- [15] H.K. Oh and J. Jeong: "Kinetics and Mechanism of the aminolysis of thiophenyl 2-thiopheneacetates in acetonitrile", *B. Kor. Chem. Soc.*, Vol. 22, (2001), pp. 1123–1127.
- [16] I. Lee and D.D. Sung: "Theoretical and Physical Aspects of Stepwise Mechanisms in Acyl-Transfer Reactions", *Curr. Org. Chem.*, Vol. 8, (2004), pp. 557–567.
- [17] V.I. Rybachenko, G. Schroeder, B. Łęska, K.Yu. Chotii, R.G. Semenowa, R.A. Makarowa and L.W. Griebieniuk: "Kinetics of dimethylcarbonyl group reaction for N-, O- acylic salt system and theirs oxides", *Theor. Exp. Chem.*, Vol. 33, (1997), pp. 143–148.
- [18] V.I. Rybachenko, G. Schroeder, K.Yu. Chotii, V.V. Kovalenko, B. Łęska and A.N. Redko: "Rate and equilibrium of acetyl exchange reactions between pyridines and pyridine N-oxides", *Theor. Exp. Chem.*, Vol. 36, (2000), pp. 334–337.
- [19] V.I. Rybachenko, G. Schroeder, K.Yu. Chotii, E.W. Titov, V.V. Kovalenko, B. Łęska and L.W. Griebieniuk: "Acetyl Exchange between Pyridine N-Oxides in Acetonitrile Solutions: An Attempt to Apply the Marcus Equation to Acetyl Transfer", Russ. J. Gen. Chem., Vol. 71, (2001), pp. 1608–1615.
- [20] G. Schroeder, V.I. Rybachenko, K.Yu. Czotii, V.V. Kovalenko, L.W. Griebieniuk, B. Łęska and K.Eitner: "Rate and Equilibrium Constants of Dimethylcarbamoyl Transfer between Pyridine N-Oxides", Russ. J. Gen. Chem., Vol. 73, (2003), pp. 455–462.
- [21] V.I. Rybachenko, G. Schroeder, K.Yu. Czotii, B. Łęska, V.V. Kovalenko and A.N. Redko: "Effect of Acyl Group Structure on Kinetics of Exchange between O-Nucleophiles", *Theor. Exp. Chem.*, Vol. 39, (2003), pp. 359–363.
- [22] V.I. Rybachenko, G. Schroeder, V.M. Gokhfel'd, K.Yu. Chotii, V.V. Kovalenko and B. Łęska: "Rate and equilibrium constants of transfer of the dimethylcarbamoyl group between substituted pyridines and their N-oxides", *Russ. J. Gen. Chem.*, Vol. 74, (2004), pp. 1597–1604.
- [23] V.I. Rybachenko, G. Schroeder, K.Yu. Chotii, B. Łęska and A.N. Redko: "Reaction of Acetyl and Benzoyl Chlorides with Pyridines and Pyridine N-Oxides", Russ. J. Org. Chem., Vol. 40, (2004), pp. 412–416.
- [24] V.I. Rybachenko, G. Schroeder, E.W. Titov, K.Yu. Chotii, R.G. Semenowa and R.A. Makarowa: "Acyl transfer from N-acyl(N-acyloxy)pyridine salts", *Zhurnal Obszcziej Chimii*, Vol. 66, (1996), pp. 1007–1011.
- [25] R. Pankiewicz, G. Schroeder, B. Gierczyk, B. Brzezinski and F. Bartl: "Multinuclear NMR and FTIR studies of new polyoxaalkyl esters of lasalocid and their complexes with lithium and sodium cations", *Biopolymers*, Vol. 65, (2002), pp. 95–110.
- [26] G. Schroeder, B. Łęska, B. Gierczyk and V.I. Rybachenko: "Spectroscopic and kinetic characterization of aza-15-crown-5 ether O←N styryl pyridine as Polyfunctional receptor", Pol. J. Chem., Vol. 75, (2001), pp. 1947–1953.
- [27] R.M. Izatt, J.S. Bradshaw, K. Pawlak, R.L. Breuning and B.J. Tarbet: "Thermody-

- namic and kinetic data for macrocycle interaction with neutral molecules", *Chem. Rev.*, Vol. 92, (1992), pp. 1261–1354.
- [28] H. Tsukube, H. Furuta, A. Odani, Y. Takede, Y. Kudo, Y. Inoue, Y. Liu, H. Sakamoto and K. Kimura: "Physical Methods in Supramolecular Chemistry", In: J.L. Atwood, J.E.D. Davies, D.D. Macnicol and F. Voegtle (Eds.): Comprehensive Supramolecular Chemistry, Elservier Science Ltd., Oxford, 1996, pp. 425–482.
- [29] M. Bełtowska–Brzezinska, T. Łuczak, B. Gierczyk, K. Eitner, B. Brzezinski, R. Pankiewicz and G. Schroeder: "Studies of lithium and sodium complexation by silicon podand solvents", *J. Mol. Struct.*, Vol. 607, (2002), pp. 77–86.