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Abstract

This paper proposes an interval based approach for localizing a group of underwater robots with unsynchronized
clocks. We use sonar communication and consider that the travel time of the sonar waves cannot be neglected,
e.g. when the robots are fast and far-spaced. Therefore we cannot suppose that we measure a true distance
between robots at the same time, but between robots at different times. Moreover, as the clocks of the robots
are unsynchronized, the emitting and receiving times of the sonar waves are uncertain. To solve this problem, we
cast the state equations of our robots as a constraint satisfaction problem and consider the sonar measurements
as intertemporal constraints on uncertain times. We introduce the notion of interval of function to encompass the
robots trajectory and clock with their uncertainty. We then use interval propagation to successively contract these
intervals around the true position and clock of the robots. Several test cases are provided, with both simulated and

experimental results.
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I

Introduction

This paper proposes a new approach to localize a group of Au-
tonomous Underwater Vehicles (AUVs). Localizing AUVs can be
particularly difficult underwater as there is no installed infrastructure.
AUVs can only access the GPS on the surface as the electro-magnetic
waves can hardly penetrate water. The only tools available underwa-
ter are dead-reckoning and acoustical localization systems. To solve
this problem, many probabilistic approaches have been studied [24][4],
that usually consider the robots close to each other and moving slowly
enough so that the displacement of the sonar signal can be consider
negligible compared to the precision of the localization [26]. The dis-
tance between the robots is measured, and the triangular inequalities
are solved to localize the robots [17]. This of course implies that the
clocks of each robot have to be perfectly synchronized [18].

In our approach, we consider fast and far-spaced AUVs so that the
displacement of the sonar wave can no longer be considered negligible.
The measured distance is therefore between the positions of the robots
at different times. Moreover we consider the clocks of the robots to be
unsynchronized so that the emitting and receiving times are uncertain.
We also consider our system to be completely decentralized, meaning
that each robot will only localize itself using the data received from the
few other robots that are in range of communication.

*E-mail: Aymeric.Bethencourt@ensta-bretagne.fr
TE-mail: LucJaulin@ensta-bretagne.fr

Two approaches can be considered to solve this problem. As pre-
sented above, the first approach is probabilistic. If the system is linear,
the problem can be solved using for instance a Kalman Filter, and if
the problem is non-linear, an Extended Kalman Filter (EKF) [19] or
a Sequential Monte Carlo (SMC) method [24] can be considered.

The second approach is ensemblist. When the problem is linear, El-
lipsoids and Polytopes [13] can be particularly efficient. However, for
non-linear systems, only intervals and sub-pavings have been proven
efficient [15]. The principle is to wrap the solution in an interval enclos-
ing its uncertainty, then to successively contract this interval around the
solution until a fixed point is reached. For this, we use contractors that
are associated to the equations of our system. The advantage of this
approach compared to probabilist methods is that the solution is en-
closed in an interval. Therefore the results are guaranteed. Moreover
Interval analysis is particularly efficient for non-linear systems when the
number of equations in far superior to the number of variable, which is
often the case in localization applications [14][5].

The originality of this paper is to deal with the inter-temporal aspect of
our constraints with uncertain times. To solve this problem, we con-
sider the position and clock of the robots as intervals of trajectories
(functions of R — R") and cast the equations as a constraint satisfac-
tion problem.

This paper is organized as follows. Section Il proposes a simple and
new formulation for cooperative localization with inter-temporal con-
straints on uncertain times. Section Ill presents the basic notions of
constraint propagation and introduces tubes (intervals of trajectories),
which is used in section IV to solve our problem. Finally section V pro-
vides three test cases, with both simulated and experimental results,
and Section VI concludes the paper.
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|2. Problem Statement

Let us first describe our cooperative localization problem. For a robot
i in our group or swarm, consider the state equations of the robot as
follows:

x; = f(x;, u;) + ny
yi = g(x;)

(evolution equation) (1)

(observation equation)

where x; is the state vector of the robot i, u; its inputs or commands,
y; its outputs or measures, and f and g respectively the evolution and
observation functions. ny is the state noise. The uncertainty on y; will
be represented by an interval around its unknown value. Notice that
the observation function usually depends on the state of the robot at
the current time. The originality of our approach is to consider a sonar
communication between the robots, which will be represented as an
inter-temporal constraint between the states of the robot at different
times. We consider that each ping encloses the estimated position
box of the emitting robot, along with the interval around the emitting
time in the robot’s clock.

Formulation. An intertemporal relation (or ping for short) corre-
sponds to a 4-tuple p = (a, b, i, j) where a € R corresponds to
the emission time, b € R to the reception time, i € {1,..., m} the
emitting robot, and j € {1,..., m} the receiver. Due to the causal-
ity, we have b > a, or equivalently (a, b) is an element of the t-plane
[3]. Denote by p (k) the k" ping, and by t the true time. We denote by
T = h; (t) the clock function [23] which for an absolute time t matches
the inner time T of the robot i. Notice that h; is strictly increasing when
no re-synchronization happens and piecewise increasing when it does.
Forie{1,....,m},teRandk € {1,..., knax}, We have:

() xi (1) = (xi (1), ui (1) + ny (1)

(i) g (xiw (a (k) xju (b (k) a(k),b(k)) =0

(i) C:l(k) = hy (a (k) (2)
(v) b (k) = hj (b (k)

0 () =1+ (1)

(i) corresponds to the state equations of the i-th robots. The state noise
n, () is assumed to be bounded.
(ii) is the inter-temporal observation function so that g : R” xR” xR xR
is here:

g(x1,x2,a,b):||x1—x2H—c*(b—a) (3)

where c is the speed of sound. Using the Euclidean norm, (ii) can be
re-written as

e e @) — e (6 (K1)
< 0l “m_¢+mmwm—%mmmf W

(ili) & (k) corresponds to the local time of the robot i (k) (i.e. the emitter
has emitted the k" ping).

(iv) b (k) corresponds to the local time of the robot j (k) (i.e. the receiver
has received the k" ping).

(v) ny, (t) is the clock noise and is assumed to be bounded.

Notice that for all k, we know exactly: @ (k) , b (k), i (k), j (k).

The advantage of such formalism is that it can encompass many previ-
ous formalisms of ensemblist localization [14][5] and also takes into
consideration inter-temporal constraints on uncertain times. To our
knowledge, such formalism has never been considered before. This

AUV 1

AUV 2

Emission time t = a(k)

/\

c*(b(k)-a(k))

Reception time t = b(k)

Figure 1. When robot 1 sends a sonar signal, it is received by robot 2 after
b(k) — a(k) seconds. Both robots have moved during this time.
Therefore the measurement is the distance from robot 1 at a(k) to
robot 2 at b(k).

formalism can also be applied to Simultaneous Localization and
Mapping (SLAM) by considering only one robot. Landmarks could be
considered as stationary robots. Measurements with the GPS above
surface could also be considered as a measurement of the robot to
itself.

When an AUV send a sonar ping k at t = a(k) received by another
AUV at time t = b(k), the distance between the two AUV can be
measured as ¢ * (b(k) — a(k)) where c is the celerity of the sound.
Therefore the measurement between the two robots is inter-temporal.
It is between the position of AUV 1 at a(k) and the position of AUV 2
at b(k). Figure 1 illustrates the principle. Notice that these times are
uncertain, as the clocks of the robots might not be synchronized. We
initially only know an interval (which may be very large) around the clock
function h of each robot and are going to contract it to re-synchronize
the clock. To our knowledge, this problem cannot be easily solved using
standard Monte Carlo methods.

3. constraint propagation

The domains we consider in our problem are sets enclosing the true
value for the variables. Depending on the nature of the set Z to which
an unknown variable z belongs, the domain can have different repre-
sentations. Forinstance, if Z is finite, the domain for z can be described
by extension. When Z is a lattice, the domain for z can be represented
by intervals or by a union of intervals (also called sub-paving) [22]. In our
context, the trajectories x and h belong to a lattice and their domains
will be represented by tubes (interval of trajectories). To contract these
tubes, we use constraint satisfaction, a numerical method to solve non-
linear problems such as SLAM [5][7]. This section presents the princi-
ple of constraint propagation and extends the technique to tubes.

3.1. Lattices

A lattice (€, <) is a partially ordered set, closed under least upper and
greatest lower bounds (see [11], for more details). The least upper
bound (or infimum) of x and y is called the join and is denoted by
x V y. The greatest lower bound (or supremum) is called the meet
and is written as x A y.
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Example: The set R” is a lattice with respect to the partial order relation
gvenbyx <y & Vie {1,...,n},x < y; We have

XAy = (X1 Ayi,..., X Ay,) and

xVy=(xVyi,...,X: Vyn)

where x; A y; = min (x;, y;) and x; V y; = max (x;, y;) -

Alattice € is complete if for all (finite of infinite) subsets A of &, the least
upper bound (denoted AA) and the greatest lower bound (denoted
V.A) belong to A. When a lattice £ is not complete, it is possible to add
new elements (corresponding to the supremum or infimum of infinite
subsets of £ that do not belong to £) to make it complete. For instance,
the set R is not a complete lattice whereas R = R U {—o0, 00} is.
By convention, for the empty set, we set Al = VE and VI = AE.
The product of two lattices (€1, <1) and (&, <3) is the lattice (£, <)
defined as the set of all (a1, a2) € & x & with the order relation
(01, 02) < (b1, bz) 54 ((01 < b1) and (02 <5 bz)) .

3.2. |Intervals

An interval [x] is defined as the set of real numbers x between the
lower bound x and upper bound X.

X =[xx]={x € Rx<x<x}

This representation has several advantages: It allows us to rep-
resent random variables with imprecise probability density func-
tions, deal with uncertainties in a reliable way and last but fore-
most, it is possible to contract the interval around all feasible
values given a set of constraints ( i.e. equations or inequali-
ties).

A closed interval (or interval for short) [x] of a complete lattice €
is a subset of £ which satisfies [x] = {x € £| A[x] < x < V[x]}.
Both @ and £ are intervals of €. An interval is a sub-lattice of &.
I€ denotes the set of all intervals of £ An interval [x] of £ wil
also be denoted by [x] = [A[x], V[x]lc. For example, the sets @ =
[00, —o0lr; R = [—00, o0lg; [0, 1] and [0, ook are intervals of R,
the set {2, 3,4, 5} = [2, 5] is an interval of the set of integers N and
the set {4,6,8,10} = [4, 10],y is an interval of 2N.

The intersection of two non-empty closed intervals [x] and [y] satisfies:

XIn[yl= {[max{z(’ g}bmin{’?r g} if max{x, E_J} < min{x, §}

otherwise

Example: [1,3]N[2,5] =2, 3]

The union of two non-empty closed intervals [x] and [y] satisfies:
[x]UTy] = [min{x, y}, max{x, §}]

Example: [1,3]U[5,7]=[1,7]

3.3. Intervals Arithmetic

We can apply arithmetic operators and functions to intervals to
obtain all feasible values of the variable. For example, consider
a real a and [x] a non-empty interval. Then

o= {2

[, ax]

ifa>0
ifa<0

\\//—
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For two intervals [x] and [y] and an operator ¢ € {+, —, *, /}, we
define [x] ¢ [y] as the smallest interval containing all feasible values for
x o ywhenx € [x]and y € [y]or

eolyl=[{xoy e Rx € x|y € [yl}]

In the case of closed intervals, we have

[X]+ [yl =[x+

yx—g
X=lyl=x—g.x—y]

The inversion is given by

6 itly] =[0.0]
(1/g.1/y]
[1/g,00of tfy=0andg>0
]—o00,1/g] ify<0andg=0
]—o00,00 ify<0andg>0

Wyl =

and the division by

Xy) = [x]+ (1ly))

These rules are simplified for punctual intervals, in which case we return
to the rules of arithmetic on reals. Therefore Interval arithmetic can be
considered as an extension of the arithmetic on reals.

For example:

[—1,3]+[2,7)=[1,10]

[~1,3]=[2,7] = [-8,1]
(—1,3)[2.7] = [-7,21]
[—1,3)2,7] = [-1/2,3/2]

The image of f([x]) of an interval by a function f is f([x]) = {f(x)|x €
[x]}. This image might not be an interval. Indeed, if f is not continuous
f([x]) is a union of intervals. The interval extension is defined as the
function returning the interval hull [f]([x]) = [{f(x)|x € [x]}].

The interval extension of elementary functions can be directly written
in accordance to its bounds. For example, for a non-empty interval [x],
the exponential function [exp]([x]) = [exp x, exp X].

In case of non-monotonic functions, the situation is a little bit
more complicated. Indeed [cos|([—m, 7t]) = [—1,1] differs from
[cos(—m), cos(m)] = [—1,—1]. Specific algorithms can be con-
structed for the interval evaluation of such functions. [8]

3.4. Contractors

Consider n, real variables x; € R, i € {1,..., ns} linked by ny rela-
tions (or constraints) of the form :

filxi,x2, . xn,) = 0,7 € {1,...,ns} 5)
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whereby f; denotes the function for each coordinate j. We know that
each variable x; belong to a domain X;. To simplify we consider the
domains as intervals, noted [x;]. We define x = (x1, x2, ..., X,,) " and
the domain for x as [x] = [x1].[x2]...[xs,]. We also note f the function
which coordinates functions are the f;. We can therefore re-write (5) in
a vector form f(x) = 0 and this represents a constraint satisfaction
problem (CSP) that we can call & and write

& (f(x) =0,x € [x)

Therefore a CSP is composed of a set of variables, domains containing
these variables, and constraints. The solution S of & is defined as

S = {xe [x]|f(x) = 0}

Contracting a CSP & consists in replacing the domain [x] with a smaller
domain [x'] without changing the solution set. We have S C [x'] C [x].
We define the optimal contraction of & as the operation replacing [x] by
the smallest box containing S. An operator that allows the contraction
of &is called a contractor.

Many problems of estimation, control, robotics, ...etc can be repre-
sented as constraint satisfaction problems (CSP) [2],[9] and many
contractors (called minimal) can be applied to optimally contract the
domains depending on the class of the problem [10]. Several min-
imal contractors have been developed over years — Gauss elimina-
tion, Gauss-Seidel Algorithm, Krawczyk method, Newton algorithm,
..etc[158] The one we are going to use in our localization prob-
lem is the forward-backward contractor [6] which contracts the do-
mains of the CSP & : (f(x) = 0,x € [x]) by isolating each
constraint separately. We suppose that each constraint has a form
fi(x1, X2, ..., xa,) = 0, and that the function f; can be broken down
to a series of operations involving operators and elementary functions
suchas +, —, %, /, sin, cos, exp, ...etc Then we can break down the
constraint into primary constraints.

In our example of localization with the distance measurement (4) be-
tween AUVSs, the associated constraint can be written as

d= \/(Xt =X+ (i —y;)? (6)

S0 we can break it down to primary constraints by introducing interme-
diate variables :

[1:—X/-

12=X1+i1

132[5

4 =—y; (7)
i5=yi+i4

is = i2

i7 =13+ g

d=Vi

The initial domains associated with the intermediate variables iy are
] — 00; 00]. A method to contract § with the constraint is to contract
each primitive constraint until the contractor reaches a fixed point. This
is the principle of constraint propagation introduced by Waltz [25]. For
constraints involving two variables and a function, such as the square

root, two steps of contraction are made by rewriting the constraint: one
from the direct image of the function and the other from the inverse.
Therefore, in our example, the constraint d = /i can be re-written in
two forms :

d=Vi

iz = d?

and then the contractions are :

[d] = [d]n/[i7]

[i7] = [i7]n[d?]

For constraints linking three variables with a binary operation such as
addition, there are three ways to rewrite the constraint. Let’s consider
the constraint i; = i3 + ig with for example the initial intervals
[i3] = [—00,2],[ig] = [—o0,3] and [i7] = [4,00]. We can easily
contract these intervals without removing any feasible value:

i7 =103+ i5g — i7 €[4, 00N ([—00,2] +[—00,3)
=[4, 00]N[—00,5] =[4.5]

i3 =1i7— g — i3 €[—00,2]N (4, 00] — [—00, 3])

[—00,2]N[1,00] =[1,2]

i7 = i3 = z €[00, 3] N (4, 00] + [0, 2))

=[—00,3]N[2,00] =2, 3]

is

We obtain much smaller intervals for [i5] = [1, 2], [is] = [2, 3] and
[i7] =14, 5]

The same principle is applied for all primary constraints (7) in order to
contract the intervals around the values of (6). The sequence of con-
tractions made by the forward-backward algorithm is optimal to max-
imize the contraction. The forward-backward algorithm presented in
Table 1 will be used for every distance measurement, i.e. sonar recep-
tion of an AUV.

3.5. Tubes

In our system, we consider the distance measurements to be inter-
temporal, i.e. between a emission time by AUV1, and a different recep-
tion time by AUV2. This means that we need to enclose the position
and clock of the robots at the reception time but also at the emission
time. We shall now present tubes which are an ensembilist vision of a
random signal. They will enclose the whole history of the AUVs trajec-
tory and clock function.

Tube. The set F" of all functions from R to R” is a complete lattice
with the following partial order x < y < Vt € R, x(t) < y(t). A tube
[X] (see, e.g., [16], [20]) is an interval [x~, x*] of F", i.e., a pair of two
functions x~, x* such that for all t, x™ (¢) < x™ (t). The set of all tubes
of F" is denoted by IF".

An element x of F" belongs to the tube [x] if Vt, x (t) € [x](t). Figure
2 presents a function x € F' which is inside the tube [x]. This tube
gives us information related to the unknown function x.
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IX1(t,) 7

Algorithm Crp (in : box, inout : [x], [X])

/| Forward steps
1 |[i] = =[x
2 |lig] := [xi] + [in]
3 |li3]:=[8]
4 |[ia] = [~yjl
5 |lis] == [yi] + [ia]
6 |lis]:=[i3]
7 i) = [i3] + [is]
8 |[d]:=[d]n~/[i7]

/| Bacward steps
9 |liz]:= [i7]N[d]
10([is] := [i3] 0 ([i7] = [i6))
111 [i6] := [i6] N ([i7] = [i3)
12/[is] = [is] N (sqr (i)
13lyd] =Tyl N (is] = [ia))
141[ia] :=[ia] 0 (i5] = [y])
15[y;] :=[y;] N —ia]
16| [i2] := [i2] N (sqr~"[i3])
171l := D] 0 (2] = [i])
18] (] =[] 1 (2] )
19]]:= b1 n ]

x(t)
X1, 8D
]

Figure 2. Atube [x] of R which encloses the function x

Interval evaluation of a tube. If x is a function from R to R” (i.e

x € F"), we define

x([t) = {x(t), t € [t]}.

The interval evaluation of a tube [x] is defined by

M) =] K

te(t]

\\//—
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i.e., [x] ([t]) is the smallest box which encloses all boxes [x] (t)
It is easy to prove that

,t et

xex, telt]=>x(t) e

X (2D

and that no box smaller than [x] ([t]) satisfies this property.

Tube arithmetic. We can extend some classical operations we have
on functions of F", such as sums, multiplication, image of a function,
...etc to tubes. It suffices to use the classical notion of interval arith-
metic and inclusion functions [21] for all t. An arithmetic on tubes is
thus a direct extension of interval arithmetic. As in the case of interval
computation, the result of an operation on tubes contains all results of
the same operation performed on the enclosed elements of F".
Integral. Consider two numbers t;, t, such that t, > t; > 0. The
integral of a tube [x] over an interval [y, t,] is defined by

/Tz [x](t)dT = {Irzx(r)dr such that x € [x]} .

Since t, > t;1, we deduce from the monotonicity of the integral operator

that
/rfz X](7)dT = [/tfz x (1)dT, /tt2 x* (r)dr] .

From the definition of tube integrals, we have

xe[x]=>/tzx(‘r)d‘rejtz[x](‘r)dr

Moreover, the interval primitive defined by fot [x](t) dT defines a
tube that vanishes for t = 0.

3.6. Constraint propagation on tubes

Tube contractor. Consider a constraint on trajectories of the form
L(x). A contractor associated with the constraint £ is an operator

[X] <5 [y]

where [x] and [y] are tubes, such that

vt, [x](t) C [y](t) (contraction)
XEE()([))(] = x € [y] (completeness)

We call C* is the minimal contractor for L that returns the smallest
tubes [y] that are consistent with the constraint £.

Minimal tube contractor. Contractors on tubes are built in a sim-
ilar way to what is done for its interval counterpart. The constraint
L(x1, ..., Xp) With xy, ..., x, in IF " is first rewritten as p equivalent form
X1 = f1 (XQ, ...,Xp) — X2 = fz(X1,X3'...,Xp) & ... (in a similar
way to what is done for constraints involving real numbers). The tube
arithmetic is then used to automatically generate the contractors.

Proposition 1. The minimal contractor associated with the constraint
x < yorVt 0,00, x(t) < y(t)is
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Figure 3. (a) represents the trajectory x and its tube [x], (b) the trajectory y and
its tube [y], and (c) illustrates the meet and join of them.

<

XY _ [ XAy
ly] x™ vy~ yT]
Proof. x < y so according to the independence theorem, we can fin

a such that y = x + a with @ > 0. Therefore we can contract the
associated tube

[yl =Ty N (x] +[a])
S yl=ly Vi +a)y" A +a7)
= yl=[y" Vi +0),y" A"+ o0)
= [yl=ly" vx.y"]
since [a] = [0, oo[. By considering x = y + a with a < 0, we can

prove that [x] = [x~, x™ A y*] the same way.
Figure 3 illustrates the contractions.

Proposition 2. The minimal contractor associated with the constraint
x =yorVt €0, 00, x(t) = y(t)is

o [ vyt Ayt
S\ (Y] VYT Xt Ay
Proof. As x = y, any given elements of x and y cannot exceed

each other's range. Both variables will share a new interval equal to the
intersection of their respective intervals

] =[xnly]
=KW=k vy x" Ay’

The same is proven for y.

vi®)
N /
X1t
t

(b)

|
|

(©

e  BO
N\

—

__//k

\\//
£

Figure 4. Inter-temporal constraint propagation on tubes. The purple area is
the contracted tube.

Proposition 3. The minimal contractor associated with a translation
(delay) YVt € [0, oo[, x(t) = y(t — T) is

Cueta ( i ) = ( X () Vy (t— 1) x () Ay*(t—1)]
"\ [y] [ (t+7) V y(8), X (t+ 1) A y*(D)]

Proof. The proof is immediate considering Proposition 2.
Fig. 4 illustrates this notion. The purple area represents the tube
() Vy~(t = 1), xT(6) Ayt (t = 7))

|4. Cooperative localization as a constraint

satisfaction problem

The cooperative localization problem we described in equation 2 can
be considered as a constraint satisfaction problem on tubes and thus
we shall apply the contractors presented in section Ill.

Let's consider a group of multiple AUVs. For any AUV j in our group, we
can contract the tubes [x;] and [h;] using the integral contractor from
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[, 0o
(before)

Figure 5. lllustration of the contraction on the position box and on the clock
interval.

constraints (2i) and (2v):

ille) = [x)i0) [ (Tl (D0 + n(e))dr  (8)

[h71(6) = [h;](6) 0 [ (1 + ] (1)) dt (9)

These contractors are available for any t; and because of the state
noise and clock noise, the width of tubes [x;] and [h;] will keep on
growing if nothing is done. However when the robot receives a sonar
communication (called ping), equations (2ii), (2iii) and (2iv) will be avail-
able as constraints on [x;] and [h;] and enable us to contract them
punctually at each ping reception.

Let's consider a robot i emitting a ping received by robot j. Each ping
contains the estimated position box [x;] of the emitting robot, along
with the interval around the time [a(k)] robot i sent the ping k in its
own clock; so each time j receives a sonar ping from a robot i, the
receiving robot j has data on [a (k)], [b(k)], [Xiw](a (k). [Xju](b (K)),
[yiw)(a (k). [y ] (b (k) and it can apply the forward-backward algo-
rithm presented in section Ill on equation 4 to contract these intervals.
Fig. 5 illustrates the contractions made by the forward-backward al-
gorithm. The purple area represents the interval enclosing the solu-
tion x4 (b (k))). Before receiving the ping, an interval [x;] ([b (k))])
(before) is known from the contracted tube [x;] (contractor 8). This
interval can be contracted to [x;x)] (b (k))]) (after) by intersecting it
with the solutions of (2ii), which contracts the position of the robot. No-
tice that the purple area can also be contracted to the red doted form.
This translates in the forward-backward algorithm as a contraction of
[c* (b(k) — a (k))] thus [b(k)] and the clock as illustrated in section V.
Fig. 14 also illustrates different cases of contraction.
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Figure 6. 1. Both the position and the clock are contracted. 2. Only the position
is contracted. 3. Only the clock is contracted.

| 5. Test cases

In all the test cases, we consider fast and far-spaced AUVs defined by
the following evolution equation:

ui(t). cos(un(t))

Xi(t) = up(t). sin(ui(t)

+ ny (1)

where u(t) and up(t) are the components of vector u,(t). They are
respectively the given speed and steering command to robot i. The
vector x; contains the abscissa x; and ordinate y; of the robot i. ny (t)
is the state noise.

5.1. Simple example with 2 AUVs.

Let us first demonstrate the contractions with a simple example involv-
ing only two AUVs. The AUVs follow a circular trajectory such that :

xi () = 10(““)

cost

xo(t) = 1O(sln(t+71))

cos(t + )

The state and clock noises are considered higher for the receiving robot
than for the emitting robot to clearly illustrate the contraction.

For AUV 1, n, (t) = 0.1t and n, (t) = 0.01¢
For AUV 2, n, (t) = t and ny, (t) = 0.1t
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Figure 7. Simple example with two AUV moving on a circular trajectory. AUV 1
emits, AUV 2 receives.

AUV 1 starts at (10,0)7 and AUV 2 at (—10,0)". Fig. 7 illustrates
this example. We consider the celerity of the sound ¢ = 100 m/s to
simplify.

Using (8) and (9) the AUVs can estimate their position and clock over
time thanks to the tubes enclosing the real value. However, the width
of the tubes will increase indefinitely if nothing is done.

AUV 1 sends a sonar ping k = 0 at what it thinks is t = 1 s in its own
clock. This is what we note @(0) = 1 s which is not the real time a(0).
However using the inverse tube of [h4], we can get an interval [a(0)]
enclosing the real emitting time. Using the tube [x7] and [y+], we can
then get intervals [x1]([@(0)]) and [y+]([a(0)]) enclosing the position of
AUV 1 when emitting the signal.

In our example, we obtained:

a)  [a(0)]  [al(a@)]) [y:](a(0)])
1.00 [0.99,1.01] [5.21,5.59] [8.26,8.57]

AUV 2 receives the transmission from AUV 1 at what it thinks is t =
1.37 s. This is what we note b(0) = 1.37 s which is not the real time
b(0). However using the inverse tube of [h,], we can get an interval
[b(0)] enclosing the real emitting time. Using the tube [x,] and [y>], we
can then get intervals [x2]([b(0)]) and [y2]([b(0)]) enclosing the position
of AUV 2 when receiving the signal.

In our example, we obtained:

b0)  [b(0)] []([b(0)]) [y2]([b(0))
1.37 [1.22,1.51] [—4.67,0.90] [—11.49, —8.16]

We can then apply our forward-backward algorithm on (4) to contract
the intervals of AUV 2. The output is as follow (the contracted values
have been emphasized):

b(0)  [b(0)] []([(b(0)) ly2]([b(0))
1.23 [1.22,1.23] [—4.67,—1.25] [—11.49, —9.98]

1.25 o

15158

kil

Figure 8. Clock re-synchronization. The purple area represents the tube [h](t)
obtained for AUV 2 in Ex.1. The red line represents an hypothetical
clock function T = h(t) (chosen arbitrarily) enclosed in it. When the
tube is contracted, the function is punctually re-synchronized to the
center of the tube.

We notice that the box around the position on AUV 2 at the reception of
the signal has been properly contracted. The interval enclosing the real
time of reception was also contracted which allow us to re-synschronize
the clock from 1.37 s to 1.23 s at the reception of the signal. Fig. 8
illustrates the principle of clock re-synchronization. We then use the
integral contractors (8) and (9) to propagate the constraint to the rest
of the tube. All the results of this simulation will be shown in Fig. 14 and
the procedure will be explained step by step at the end of this article.

5.2. Full simulation with 6 AUVs.

Let us now consider a group a 6 simulated AUVs following two circular
trajectories:

Vie {1,2,3}x(t) = 10(5‘” - 10)

cost

sint
i 4,5,6},x;(t) =10
Vie{ }oxi(t) (cost)

All other parameters are the same than in Example 1. Each robot is
equipped with a simulated data pinger with a range of 5m emitting
its position box and clock interval every 10 seconds. Any robot at a
distance more than this range will not receive the ping. We suppose
that AUVs i = 1,2 and 3 go to the surface when x;(t) < —9m.
Therefore they can access the GPS to contract their position box and
clock interval. AUV 4,5 and 6 however never go to the surface and
have to localize themselves using only the received pings from other
AUVs. The simulation is presented in Fig. 9 and results for AUV 4 in
Fig. 10-(2).

We illustrated the method with online propagation only, meaning that
we contracted the tubes only in the direction of time increasing. How-
ever it is possible to consider offline propagation as well, in which we
retro-propagate the contractions in decreasing time once the simula-
tion or experiment is done. Fig. 10-(3) illustrates the principle. Offline
localization allow us to contract the tubes of the AUVs with much better
accuracy but is only useful once the experiment is over.

This simulation runs in realtime on a 3.2 GHz dual core processor.

240



PALADYN Journal of Behavioral Robotics

Figure 9. 3D simulation of the robots. The position of the AUV is rep-
resented by the boxes. The red line shows robots that are in
range of communication and the blue circles represent the displace-
ment of the sonar wave. A video of this simulation is available on
http://aymericbethencourt.com/swarm/

1@ , ;

1(b)

Figure 10. Contracted tubes for (a) [h4]and (b) [x4]if (1) there is no ping, (2) two
pings with online propagation, (3) two pings with offline propagation.

5.3. Sea testing with 2 real AUVs.

Let us now demonstrate the capacity on our algorithm at sea with the
two AUVs from the company CISCREA presented in Fig. 11. As no
regulator was implemented onboard, we had to command the AUVs
with a joystick, make them follow approximate circles and reconstruct
their trajectories by measuring the command u; from the joystick every
0.001 s. AUV1 was staying at the surface so it could continuously use
its GPS to contract its position and synchronize its clock. AUV 2 was
staying underwater communicating with AUV 1 through a data pinger.

\\//-
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Figure 11. The two CISCREA AUVs used for sea testing.

N

TR

Figure 12. Sea testing in the port of Brest, France. The blue trajectory repre-
sents AUV 1 staying at the surface. The red trajectory represents
AUV 2 staying underwater. Both AUV were commanded with a joy-
stick. The green lines represent sonar pings when the AUV are in
range.

Before putting the robots in the water, we purposefully unsynchronized
the clock of AUV 2 so it would be drifted 2 seconds forward. The tra-
jectories of the AUVs and sonar pings are represented in Fig. 12 and
the result of the contractions on the position and clock of AUV 2 are
presented in Fig. 13.

We notice that on the first ping received by AUV 2, its position is con-
tracted and its clock re-synchronized to be only 0.1 s apart from AUV
1. However the following pings only contracted the position but not
the clock any more as the state noise was too high compared to the
clock drift. This shows the limits of our algorithm as the two first test
cases were considering a high clock drift of 0.1 s per second. In actual
AUVs, the clock only drifts a few picoseconds per second. Therefore,
on small length missions like presented in these test cases, there is no
effective contractions on actual clocks drift, except if the the clocks are
initially drifted for a few seconds before the start of the mission. We
could also imagine long term missions of several months, or consider
AUVs staying asleep at the bottom of the ocean for several months
before awakening with their clock drifted for a few seconds.

241



PALADYN Journal of Behavioral Robotics

@

450

400

350

300

250

200

T T T T T 1
800 1,000 1,200 1,400 1,600

(b)

1,500

1,000

500

T T T T T T 1
400 600 800 1,000 1,200 1,400 1,600

Figure 13. Result of the contracted tubes for (a) the ordinate of AUV 2 and (b)
its clock (with a zoom on the important area).

| 6. Conclusion

Localizing a group of AUVs while synchronizing their clocks is a diffi-
cult problem, mainly due to the inter-temporal constraints on uncertain
times. To solve the problem, this paper has first introduced the notion
of tube, which encompasses the information needed to guarantee pos-
sible associations upon trajectories. Then, an arithmetic has been de-
veloped around this notion, and some minimal contractors have been
proposed.

Then we treated our cooperative localization problem as a constraint
satisfaction problem and contracted the boxes around the positions
of the AUVs and their clock using a forward-backward algorithm on
the inter-temporal measurements with sonar pings. Several test cases
were provided, proving the efficiency of the algorithm when the uncer-
tainty on the position and the clock drift had the same order of mag-
nitude. However we also shown that the algorithm was ineffective at
contracting the clock when the orders of magnitude were too far apart,
especially on short term missions with accurate clocks.

As with most interval-based methods, the proposed approach could be
combined with probabilistic methods [1] and made robust with respect
to outliers by relaxing a given number of constraints [12].

Finally, in order to share our research with the community, we integrated
Tubes, their properties, operators and minimal contractors presented in
this article to IBEX (Interval-Based EXplorer), a powerful library for in-

terval computation. You can download IBEX and our tube integration on
http://www.emn.fr/z-info/ibex/ The source codes for the test cases are
available on http://AymericBethencourt.com/swarm/ along with videos
of the simulation and experiment.
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