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Abstract: In this paper we consider a parametric eigenvalue problem related to a vibrating string which is
constructed out of two di�erent materials. Using elementary analysis we show that the corresponding princi-
pal eigenvalue is increasing with respect to the parameter. Using a rearrangement technique we recapture a
part of our main result, in case the di�erence between the densities of the two materials is su�ciently small.
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namics of the non-principal eigenvalues of the system.
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1 Introduction
The eigenvalue problem associated with a vibrating string, �xed at the ends, is formulated as follows: −u′′ + f (x)u = λu in (a, b)

u(a) = u(b) = 0,
(1)

where f (x) denotes the density of the string. Recall that by a solution to (1) wemean a pair (λ, u) ∈ R×H1
0(a, b)

which satis�es the following integral equation:

b∫
a

u′v′dx +
b∫
a

f (x)uvdx = λ
b∫
a

uvdx, ∀v ∈ H1
0(a, b). (2)

If the string is made of N di�erent materials (i. e. the non-isotropic case) with respective non-negative
densities α1, . . . , αN , then f (x) =

∑N
j=1 αjχEj such that:

(i) Each Ei is a measurable subset of (a, b).
(ii) ∀i ≠ j : αi ≠ αj.
(iii) ∀i ≠ j : Ei ∩ Ej = ∅.
(iv)

⋃N
j=1 Ej = (a, b).
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Fig. 1. Initial and terminal locations of the high-density region.

In this case, the di�erential equation in (1) becomes

−u′′ +

 N∑
j=1

αjχEj

 u = λu,

and if we further assume α1 = min {αj | 1 ≤ j ≤ N}, then we obtain

−u′′ +

 N∑
j=2

(αj − α1)χEj

 u = (λ − α1)u. (3)

In this paper we will focus on the case N = 2. Thus, after renaming the coe�cients, (3) becomes:

−u′′ + α χE u = λu. (4)

More precisely, we will study a particular family of eigenvalue problems of type (4): −u′′ + αχ(t,t+A)(x)u = λu in (0, π)

u(0) = u(π) = 0,
(5)

where 0 < t ≤ 1
2 (π − A), and A is a prescribed positive constant such that A < π. The restriction on the

parameter t ensures that the midpoint of the interval (t, t + A) will not exceed π/2.
In the physical context described at the beginning of this section, equation (5) displays the eigenvalue

problem associated with a non-isotropic vibrating string, �xed at the ends, which is constructed out of two
di�erent materials. Moreover, the part of the string occupying the region (t, t + A) is made of the material
with larger density. As the parameter t moves away from zero and approaches its ultimate value 1

2 (π − A),
the region of higher density moves from the far left position towards the middle of the string, as depicted in
Figure 1 above.

It is well known that (5) has in�nitely many eigenvalues: 0 < λ1(t) < λ2(t) ≤ λ3(t) ≤ · · · → ∞. It is the
very �rst one, i. e. λ1(t), called the principal eigenvalue, that is of interest to us. The variational formulation
of λ1(t) is as follows:

λ1(t) = inf
u∈H1

0(0,π), ‖u‖2=1

 π∫
0

u′2 dx + α
π∫

0

χ(t,t+A)(x)u2 dx

 . (6)

The in�mum in (6) is achieved by a unique positive function ut. The pair (λ1(t), ut) ∈ [0,∞) × H1
0(0, π) is

called the principal eigenpair corresponding to (5). In the particular case of α = 0, the principal eigenpair,
which is obviously independent of t, turns out to be (1,

√
2/π sin x). Indeed, the formulation (6), when α = 0,

con�rms λ1 = 1. To see this, consider the Fourier sine series of any u ∈ H1
0(0, π):

u(x) =
∞∑
n=1

an sin(nx),
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where

an =
2
π

π∫
0

u(x) sin(nx) dx.

On the other hand,

u′(x) =
∞∑
n=1

nan cos(nx).

Whence
π∫

0

u2 dx = π2

∞∑
n=1

an2 and
π∫

0

u′2 dx = π2

∞∑
n=1

nan2.

So,
∫ π
0 u

2dx ≤
∫ π
0 u

′2dx. This, in turn, implies λ1 ≥ 1. On the other hand, using the test function v(x) =√
2/π sin x in (6), we deduce λ1 ≤ 1. Thus, λ1 = 1, as expected.
The main result of this article is the following:

Theorem 1.1. For α > 0, the function λ1 : (0, π−A2 )→ R is strictly increasing.

The physical interpretation of Theorem 1.1 is that the principal frequency λ1(t) of the string increases as the
region with larger density moves from the left end of the interval (0, π) towards the middle.

Remark 1.1. The eigenvalue problem (1) can be interpreted in a di�erent context as well. Indeed, (1) is a scaled
version of the one dimensional steady state Schrödinger eigenvalue problem governing a particle of mass m,
moving in a potential V(x):  −(~/2m)u′′ + V(x)u = Λu in (a, b)

u(a) = u(b) = 0,

where ~ denotes the Planck constant. Therefore, the physical interpretation of the assertion in Theorem 1.1, in
this new context, is that the principal energy corresponding to the potential αχ(t,t+A) is strictly increasing as t
moves from 0 to (π − A)/2.

Wemention that monotonicity results regarding eigenvalues—and functions of eigenvalues (such as λ2/λ1)—
of elliptic operators have been extensively investigated in the literature; however, they have been mostly of
isoperimetric type, for example, see [1–4, 6, 13, 16–22, 24, 25]. There are few papers that address monotonic-
ity of the eigenvalues with respect to a parameter related to the body of the object under study. Some papers
investigate the behaviour of the eigenvalues with respect to a parameter which is placed in the boundary con-
ditions, see for example [7] and [15]. Our work is primarily motivated by [11] (also, see [23] and [10]), where
the authors address a problem similar to the one in this note, but in higher dimensions. The advantage of our
paper is that the analysis used is elementary andnearly self-contained, hence easily accessible to awide spec-
trum of mathematicians and engineers. Theorem 4.3 in Section 4 is somewhat similar to Theorem 2.2 in [9],
yet bearing a major di�erence; namely, the maximization problem in [9] is performed over a rearrangement
class generated by a prescribed positive function whose graph has no �at sections. In particular, it cannot be
a characteristic function, in contrast to the case considered in this note.

In a follow up paper we will generalize Theorem 1.1 in two ways. First, we will prove that the same result
holds even if the Dirichlet boundary conditions are replaced with the Robin boundary conditions:−u′(0) + γ1u(0) = 0

u′(π) + γ2u(π) = 0,

where γ1 and γ2 are positive constants. Second, we prove that the same result as in Theorem 1.1 can be ob-
tained for the p-Laplacian version of (5): −(|u|p−2u′)′ + αχ(t,t+A)(x)|u|p−2u = λ|u|p−2u in (0, π)

u(0) = u(π) = 0.
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However, we are not certain whether the same result holds for the Neumann boundary conditions, see [12] in
this regard.

2 Preliminaries
Our �rst result in this section is an estimate which will prove to be quite useful. Henceforth, C stands for a
universal constant whose value may vary from one step to another.

Lemma 2.1. Consider the boundary value problem: −u′′ + f (x)u = g(x) in (a, b)

u(a) = u(b) = 0,
(7)

where f ∈ L∞(a, b) and g ∈ L2(a, b). Then

‖u‖∞ ≤ C
(
‖f‖∞ ‖u‖22 + ‖g‖2 ‖u‖2

)1/2
. (8)

Furthermore, if f (x) is not identically zero, then:

‖u‖∞ ≤ C‖f‖1/2∞
(
‖u‖2 +

‖g‖2
2‖f‖∞

)
. (9)

Proof. We begin by multiplying the di�erential equation in (7) by u, and integrating the result over (a, b), to
obtain:

‖u′‖22 +
b∫
a

fu2 dx =
b∫
a

gu dx.

Applying the Hölder inequality to the right hand side of the last equation yields:

‖u′‖22 +
b∫
a

fu2 dx ≤ ‖g‖2 ‖u‖2,

hence,
‖u′‖22 ≤ ‖f‖∞ ‖u‖22 + ‖g‖2 ‖u‖2. (10)

On the other hand, since u(x) =
∫ x
a u

′(t) dt, we derive:

|u(x)| ≤
x∫
a

|u′(t)| dt ≤
√
b − a ‖u′‖2, x ∈ [a, b]. (11)

From (10) and (11) we deduce (8). The derivation of (9) from (8) is straightforward.

Corollary 2.2. Let (λ1(t), ut) be the principal eigenpair corresponding to the eigenvalue problem (5). Then:
(i) λ1(t) ≤ C.
(ii) ‖ut‖∞ ≤ C.

Proof. Inequality (2.2) readily follows from De�nition (6). To prove (2.2), we apply (9), with f (x) = αχ(t,t+A)(x)
and g(x) = λ1(t)ut(x). Hence, keeping in mind that ‖ut‖2 = 1, we obtain

‖ut‖∞ ≤ Cα1/2
(
1 + 1

2α λ1(t)
)
. (12)

The inequality (12) coupled with λ1(t) ≤ C implies (2.2).
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Lemma 2.3. Given t ∈ (0, π), the following estimate holds:

|λ1(t + h) − λ1(t)| ≤ C|h|, (0 < |h| � 1) (13)

Proof. Fix a su�ciently small h. From (6), we obtain

λ1(t + h) ≤
π∫

0

u′t
2 dx + α

π∫
0

χ(t+h,t+h+A)(x)u2t dx

=
π∫

0

u′t
2 dx + α

π∫
0

χ(t,t+A)(x)u2t dx + α
π∫

0

(
χ(t+h,t+h+A)(x) − χ(t,t+A)(x)

)
u2t dx

= λ1(t) + α
π∫

0

(
χ(t+h,t+h+A)(x) − χ(t,t+A)(x)

)
u2t dx. (14)

Since ut ∈ L∞(0, π), from (14) we infer

λ1(t + h) − λ1(t) ≤ C|h|. (15)

Similarly, one can derive

λ1(t) ≤ λ1(t + h) + α
π∫

0

(
χ(t,t+A)(x) − χ(t+h,t+h+A)(x)

)
u2t+h dx. (16)

From Corollary 2.2, we have ‖ut+h‖∞ ≤ C. Thus, (16) implies

λ1(t) − λ1(t + h) ≤ C|h|. (17)

The inequality (13) follows from (15) and (17).

Lemma 2.4. Given t ∈ (0, π), the following limit holds:

lim
h→0
‖ut+h − ut‖∞ = 0. (18)

Proof. Fix t ∈ (0, π), and consider a numerical sequence (hn) such that hn → 0. We will show that (ut+hn )
converges uniformly to ut, which proves the lemma. To this end, we set Un = ut+hn , λ

(n) = λ1(t + hn), In =
(t + hn , t + hn + A), and I = (t, t + A). For each n we have: −U′′

n + αχIn (x)Un = λ(n)Un in (0, π)

Un(0) = Un(π) = 0
(19)

Multiplying the di�erential equation in (19) by Un, integrating the result over (0, π), and �nally using ‖Un‖2 =
1 we obtain:

‖U′
n‖22 + α

π∫
0

χIn (x)U
2
n dx = λ(n) (20)

Knowing that λ(n) ≤ C, from (20)we infer that (Un) is bounded inH1
0(0, π). Thus, (Un) contains a subsequence—

still denoted (Un)—such that Un → U weakly in H1
0(0, π), for some U ∈ H1

0(0, π). Moreover, the same subse-
quence converges uniformly to U in (0, π). Now, we return to (20) and pass n to in�nity, keeping in mind that
by Lemma 2.3, λ(n) → λ1(t). Hence:

λ1(t) ≥ ‖U′‖22 + α
π∫

0

χI(x)U2 dx. (21)
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On the other hand, since ‖U‖2 = 1, we can apply (6) to deduce that

λ1(t) ≤ ‖U′‖22 + α
π∫

0

χI(x)U2 dx. (22)

Therefore, from (21) and (22) we get:

λ1(t) = ‖U′‖22 + α
π∫

0

χI(x)U2 dx.

Whence, by uniqueness of eigenfunctions, we infer that U = ut.

Lemma 2.5. The function λ1 : (0, 12 (π − A))→ R is di�erentiable, and

λ′1(t) = α(u2t (t + A) − u2t (t)). (23)

Proof. We shall show that
λ′1(t+) = α(u2t (t + A) − u2t (t)). (24)

To this end, we proceed along the same lines as in the proof of Lemma 2.3. After �xing 0 < h � 1, and setting
Ih = (t + h, t + h + A) and I = (t, t + A), one can derive

λ1(t + h) ≤ λ1(t) + α
π∫

0

(
χIh (x) − χI(x)

)
u2t dx. (25)

From (25), we obtain
λ1(t + h) − λ1(t)

h ≤ α
π∫

0

(
χIh (x) − χI(x)

)
h u2t dx. (26)

Inequality (26) in turn implies

lim sup
h→0+

λ1(t + h) − λ1(t)
h ≤ α(u2t (t + A) − u2t (t)). (27)

On the other hand,

λ1(t) ≤ λ1(t + h) + α
π∫

0

(χI(x) − χIh (x))u
2
t+h dx.

So,
λ1(t) − λ1(t + h)

h ≤ α
π∫

0

(
χI(x) − χIh (x)

)
h u2t+h dx. (28)

We will return to (28), but at this point we shall show:

lim
h→0+

1
h

t+h∫
t

u2t+h dx = u2t (t). (29)

To this end,

1
h

t+h∫
t

u2t+h dx − u2t (t) =
1
h

t+h∫
t

(u2t+h(x) − u2t (x))dx +
1
h

t+h∫
t

(u2t (x) − u2t (t))dx. (30)

From Lemma 2.4 we infer that the �rst integral on the right hand side of (30) tends to zero as h tends to zero.
The second integral clearly tends to zero as well. This �nishes the proof of our claim (29). Similarly, one can
show:

lim
h→0+

1
h

t+h+A∫
t+A

u2t+h dx = u2t (t + A). (31)
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In view of (29) and (31), we infer from (28):

lim sup
h→0+

λ1(t) − λ1(t + h)
h ≤ α(u2t (t) − u2t (t + A)). (32)

From (32) and (27) we deduce (24).
Using similar arguments as above, one can also show:

λ′1(t−) = α(u2t (t + A) − u2t (t)). (33)

The combination of (24) and (33) implies (23).

3 Proof of Theorem 1.1
Proof. (Theorem 1.1) In view of Lemma 2.5, we need to show:

ut(t + A) > ut(t), ∀t ∈ (0, (π − A)/2).

To this end, we �x t ∈ (0, (π − A)/2), and let m denote the midpoint of the interval I(t) = (t, t + A). For
x ∈ (0,m), let xm denote the re�ection of x relative to m, i. e. xm = 2m − x. Next, we introduce the function:

w(x) = ut(x) − ut(xm), x ∈ (0,m).

Note that if we show w(t) < 0, then we are done. As we shall see, a stronger result will be proved; namely, w
is negative in the entire interval (0,m). We prove this claim in two steps. First we show that w is non-positive
on its domain, and this, in turn, paves the path toward the second step which is the application of the strong
maximum principle to draw the conclusion that w is in fact negative in (0,m).

Let us observe that:

−w′′(x) + αχI(t)(x)w(x) = −(u′′t (x) − u′′t (xm)) + αχI(t)(x)(ut(x) − ut(xm))
= −u′′t (x) + αχI(t)(x)ut(x) − (−u′′t (xm) + αχI(t)(xm)ut(xm))
= λ1(t)ut(x) − λ1(t)ut(xm) = λ1(t)w(x),

since χI(t)(x) = χI(t)(xm). Moreover, w(m) = 0 and w(0) < 0, since u(0) = 0 and u(0m) = u(2m) > 0. Therefore,
we have:  −w′′ + αχI(t)(x)w = λ1(t)w in (0,m)

w(0) = w0 < 0, w(m) = 0.
(34)

To show w is non-positive, it su�ces to show that w+ := max{0, w(x)} is identically zero in (0,m). Clearly,
w+ ∈ H1

0(0,m), hence, from (34), we deduce:
m∫
0

w+′2 dx + α
m∫
0

χI(t)(x)w+2 dx = λ1(t)
m∫
0

w+2 dx. (35)

From (35) we infer λ1(t) ≥ λ̃, where λ̃ is the principal eigenvalue of the following problem: −Z′′ + αχI(t)(x)Z = λZ in (0,m)

Z(0) = Z(m) = 0.

However, λ1(t) < λ̃, which follows from the variational formulation of λ1(t), noting that H1
0(0,m) is triv-

ially embedded intoH1
0(0, π), by extending the elements ofH1

0(0,m) to be zero in (0, π)\(0,m). So,wederive a
contradiction: λ̃ ≤ λ1(t) < λ̃.Whence,w+ is identically zero in (0,m), as desired. This provesw is non-positive.
Finally, the strong maximum principle applied to the boundary value problem (34) implies w is negative in
(0,m), which completes the proof of the theorem.
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4 Further discussion
From Theorem 1.1, we infer λ1(t) < λ1((π − A)/2), for all 0 < t < (π − A)/2. In this section we discuss how this
result can be obtained using rearrangement inequalities, provided that α is small enough. We start with the
following:

Lemma 4.1. Let (λ1, u) denote the principal eigenpair for the eigenvalue problem: −S′′ + αχI(x)S = λS in (0, π)

S(0) = S(π) = 0,
(36)

where I = ((π − A)/2, (π + A)/2). Then, ∀x ∈ (0, π) : u(x) = u(π − x).

Proof. De�ne w(x) = u(x) − u(π − x). Then

−w′′(x) + αχI(x)w(x) = −u′′(x) + αχI(x)u(x) − (−u′′(π − x) + αχI(π − x)u(π − x))
= λ1u(x) − λ1u(π − x) = λ1w(x).

Moreover, w(0) = w(π) = 0. Hence, it follows that either w is identically zero or it is a multiple of u. Let us
assume the latter is true, i. e. w = βu, for some non-zero constant β. Whence, w is either positive or negative,
which in either case contradicts the fact that w(x) = −w(π − x). Thus, w ≡ 0, and the assertion of the lemma
is proved.

Lemma 4.2. There exists α > 0 such that if 0 < α < α and (λα , uα) is the eigenpair for the eigenvalue prob-
lem (36), then uα is strictly decreasing in (π/2, π).

Proof. De�ne ξ (α) = λα − α. We show that ξ is strictly decreasing on [0,∞), using the ideas introduced in [5].
To this end, we consider 0 < α′ < α, and for simplicity set u = uα and v = uα′ . Thus,

ξ (α) = λα − α ≤
π∫

0

v′2dx + α
π∫

0

χI(x)v2 dx − α

=
π∫

0

v′2dx + α′
π∫

0

χI(x)v2 dx + (α − α′)
π∫

0

χI(x)v2 dx − α

= λα′ − α′ + (α′ − α)
π∫

0

(1 − χI(x))v2 dx (37)

< λα′ − α′ = ξ (α′),

since
∫ π
0 v

2 dx = 1. So, ξ is strictly decreasing, as desired. Observe that (37) implies limα→∞ ξ (α) = −∞. This,
coupled with the fact that ξ (0) = λ0 = 1, ensure existence of a unique α such that ξ (α) = 0.

Henceforth, we assume α < α. Let us recall the di�erential equation satis�ed by u:

−u′′ + αχI(x)u = λαu in (0, π). (38)

By Lemma 4.1, u(x) = u(π − x) in (0, π), hence u′(π/2) = 0. Therefore, from (38), we obtain:

−
x∫

π
2

u′′(y) dy =
x∫

π
2

(λα − αχI(x))u dy, ∀x ∈ (π/2, π). (39)

From (39), we infer

−u′(x) ≥
x∫

π
2

(λα − α)u dy =
x∫

π
2

ξ (α)u dy > 0, ∀x ∈ (π/2, π),

since ξ (α) > 0. So, the proof of the lemma is completed.
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The main result of this section is the following:

Theorem 4.3. Let t ∈ (0, (π − A)/2), and α < α. Then λα(t) ≤ λα((π − A)/2).

Proof. For �xed t ∈ (0, (π − A)/2), we set λ = λα(t) and λ = λ((π − A)/2). Also, we assume (λ, u) and (λ, v) are
principal eigenpairs. Then

λ ≤
π∫

0

v′2 dx + α
π∫

0

χI(t)(x)v2 dx, (40)

where I(t) = (t, t+A). At this point we apply the Hardy-Littlewood rearrangement inequality (see for example
[14]) to obtain:

π∫
0

χI(t)(x)v2 dx ≤
π∫

0

(
χI(t)
)* (x)v*2 dx, (41)

where (.)* denotes the well known symmetric rearrangement operator relative to the line x = π
2 in the xy-

plane. On the other hand from Lemma 4.1 and Lemma 4.2, we have v* = v, so from (40) and (41), we obtain:

λ ≤
π∫

0

v′2 dx + α
π∫

0

(
χI(t)
)* (x)v*2 dx = π∫

0

v′2 dx + α
π∫

0

χI(x)v2 dx = λ,

where I = ((π − A)/2, (π + A)/2). So, the proof of the theorem is completed.

5 Numerical simulation
The eigenvalue problem (1) can be solved numerically in various ways. Here we brie�y describe a simple
ansatz based on Galerkin’s method which we have used in our numerical algorithm. A succinct presentation
of the underlying approach may be found in [8].

5.1 Reduction to a generalized eigenvalue problem

Consider the formulation (2) on page 123 in which f (x) is replaced with αχ(t,t+A)(x), i. e.

b∫
a

u′v′dx +
b∫
a

αχ(t,t+A) uvdx = λ
b∫
a

uvdx, ∀v ∈ H1
0(a, b) (42)

Assume that N ≥ 1 and set h = (b−a)/(N +1). Next, for each 1 ≤ i ≤ N, let the roof function ϕNi be de�ned
by

∀x ∈ (a, b) : ϕNi (x) =


(x − a − (i − 1)h) / h if a + (i − 1)h < x < a + ih

(a + (i + 1)h − x) / h if a + ih ≤ x < a + (i + 1)h

0 otherwise

Note that the collection {ϕNi | 1 ≤ N, 1 ≤ i ≤ N} forms a basis for the Sobolev space H1
0(a, b). We drop the

superscriptN and simplywriteϕi where there is no confusion. In order to solve equation (42),we approximate
u by an ansatz ũ satisfying

ũ(x) =
N∑
i=1

viϕi(x) (43)
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in which the coe�cients {vi | 1 ≤ i ≤ N} are unknown. Knowing that equation (42) holds for all v ∈ H1
0(a, b),

by substituting ϕj for v for each 1 ≤ j ≤ N , one obtains:

b∫
a

ũ′ ϕ′
j dx +

b∫
a

αχ(t,t+A) ũ ϕj dx = λ
b∫
a

ũ ϕj dx (44)

Next we need to discretise the characteristic function χ(t,t+A). De�ne the set A := {a + ih | 0 < i < N + 1} and
let t0 and t1 be the smallest and the largest elements of A that lie in the interval (t, t + A), respectively. We
approximate the characteristic function χ(t,t+A) by χ̃ := χ(t0 ,t1).

By using (43), incorporating χ̃, and then rearranging terms in (44), one gets

N∑
i=1

 b∫
a

ϕ′
i ϕ′

j dx

 vi +
N∑
i=1

α b∫
a

χ̃ ϕi ϕj dx

 vi = λ
N∑
i=1

 b∫
a

ϕi ϕj dx

 vi

which reduces to
N∑
i=1

 b∫
a

ϕ′
i ϕ′

j dx + α
b∫
a

χ̃ ϕi ϕj dx

 vi = λ
N∑
i=1

 b∫
a

ϕi ϕj dx

 vi

Let us consider the N × N matrices C, D and M whose entries are as follows:

∀i, j ∈ {1, . . . N} :


Ci,j =

∫ b
a ϕ

′
i ϕ′

j dx

Di,j = α
∫ b
a χ̃ ϕi ϕj dx

Mi,j =
∫ b
a ϕi ϕj dx

Some straightforward calculations would reveal that C, D and M are all tridiagonal matrices of the fol-
lowing form:

C = 1
h



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


, M = h6



4 1 0 · · · 0

1 4 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 4 1

0 · · · 0 1 4


and due to the presence of χ̃, the matrix D is a ‘cropped’ version of αM, i. e.

Di,j =

 αMi,j if t−a
b−a < i

N+1 < t+A−a
b−a

0 otherwise

Hence, we have obtained the generalised eigenvalue problem :

(C + D) × V = M × V × Λ (45)

in which:
– V is an N ×Nmatrix whose columns form the eigenvectors. The entries in each column can be substituted

in (43) to obtain various approximations of u.
– Λ is a diagonal matrix containing the eigenvalues on its diagonal.

The problem (45) can be solved using any of the established methods for solving a generalised eigenvalue
problem. Note that in order to obtain a simple eigenvalue problem both sides of (45) need to be multiplied by
M−1. However, one should refrain from that extra step as it leads to full matrices which in turn would add sig-
ni�cantly to the cost of representations and computations. A well designed algorithm for solving generalised
eigenvalue problems can take advantage of the tridiagonal structure of the matrices involved.
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5.2 Accuracy and convergence

How accurate a solution one would obtain from (45) depends on the value of N. It is best to start o� with
an initial N0, and then try the algorithm with successive values Ni until some measure of convergence is
observed. For instance, assume that:

a = 0, b = π, t = 9π
20 , A = π

10
We start o� with N0 = 4 and continue by doubling the values according to Ni+1 = 2Ni. At each iteration i we
calculate the relative error

ei =

∣∣∣∣∣ λNi+11 − λNi1
λNi1

∣∣∣∣∣
in which λNi1 denotes the smallest eigenvalue of system (45) with parameter Ni.

We ran the algorithm until the relative error went below 10−5, for which the graph of the relative error
with respect to N is shown in Figure 2 below. As can be seen from the �gure, the convergence is quite fast.

Fig. 2. Relative error of successive approximations to λ1 with respect to N. The plot of 1/x is shown in dashed line for conve-
nient comparison. Note that the plots are logarithmic along both x and y axes.

5.3 Di�erent values for α

Weused the underlying set up described so far to produce the graph of λ1(t) for di�erent values of α, as shown
in Figure 3 on the next page. Note that according to this �gure, λ1(t) approaches 1 as α tends to zero. One can
prove that this convergence is uniform. Indeed, since infu∈H1

0(0,π), ‖u‖2=1
∫ π
0 u

′2dx = 1, it is clear from (6) on
page 124 that 1 ≤ λ1(t) ≤ 1 + α, for all t in (0, π). Therefore λ1(t) = 1 + O(α), as α → 0+, uniformly in t.

5.4 Other eigenvalues

One of the bene�ts of numerical simulations is that they can provide us with some insight into aspects of a
system before the theory is developed. A case in point is the dynamics of the other eigenvalues besides λ1,
even though in the current paper we have focused exclusively on the principal eigenvalue.

A plot of the �rst �ve eigenvalues are shown in Figure 4 on the next page. It seems that although λ1 grows
monotonically as the high density segment moves towards the center, λ2 increases towards a peak and then
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Fig. 3. The values of λ1(t) tend to 1 (for all t ∈ (0, π)) as α → 0.

Fig. 4. The �rst �ve eigenvalues (i. e. λ1 through λ5) from bottom to top. It seems that each λk has (k−1) critical points in (0, (π−
A)/2).

goes down. In otherwords, in (0, (π−A)/2), λ2 goes through one local optima. The eigenvalue λ3 goes through
a local maximum and then a local minimum, i. e. the plot of λ3 has 2 local optima.

It appears from the �gure that in (0, (π − A)/2) each λk goes through (k − 1) local optima.

6 Conclusion
In this note we considered an eigenvalue problem related to a non-isotropic vibrating string which is �xed
at the two ends. Notably, the string is made of two di�erent materials. We showed that as the location of
the material with larger density moves continuously from either left or right ends toward the middle of the
string, the corresponding principal eigenvalue increases. We also used the Hardy-Littlewood rearrangement
inequality to show that the principal eigenvalue—in case the location of the string bearing larger density is
precisely in the middle—exceeds the principal eigenvalue corresponding to the density distribution where
the location of thematerial with larger density is closer to the ends. It will be interesting to know if the results
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of Theorem 1.1 and Theorem 4.3 still hold if the Dirichlet boundary conditions in (1) are replaced with the
Neumann boundary conditions.

In a follow up paper we will show that an analysis similar to the one presented in this paper can be
applied to the eigenvalue problem: −(|u|p−2u′)′ + αχ(t,t+A)(x)|u|p−2u = λ|u|p−2u in (0, π)

u(0) = u(π) = 0.

and that the same result as in Theorem 1.1 will hold. We will also prove that the same result still stands even
if the Dirichlet boundary conditions are replaced with the Robin boundary conditions:−u′(0) + γ1u(0) = 0

u′(π) + γ2u(π) = 0,

where γ1 and γ2 are positive constants. Whether the result is valid under Neumann boundary conditions
remains to be investigated.
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