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Abstract: The Poisson-Boltzmann equation (PBE) is one important implicit solvent continuum model for cal-
culating electrostatics of protein in ionic solvent. Several numerical algorithms and program packages have
been developed but verification and comparison between them remains an interesting topic. In this paper,
a PBE test model is presented for a protein in a spherical solute region, along with its analytical solution.
It is then used to verify a PBE finite element solver and applied to a numerical comparison study between a
finite element solver and a finite difference solver. Such a study demonstrates the importance of retaining the
interface conditions in the development of PBE solvers.
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1 Introduction

The Poisson-Boltzmann equation (PBE) is a widely-used implicit solvent continuum model for calculating
protein electrostatics inionic solvent [2, 9, 13, 15, 16, 21]. Several PBE numerical solvers and computer program
packages have been developed, and applied to many biomolecular studies and simulations [3, 6, 10, 11, 17, 18],
but verification and comparison among them is still an interesting research topic. So far, the Born ball model
[4] was often employed to do such verification tests in the simplest case of a spherical solute region con-
taining one central charge [8, 20]. The Kirkwood’s dielectric sphere model [12] was applied to the case of a
spherical solute region containing multiple point charges. However, its calculation is complex and produces
truncation errors since its analytical solution is an infinite series in terms of Legendre’s polynomials. Thus,
it works only for a few point charges. Recently, a finite difference algorithm called the matched interface and
boundary PBE solver (MIBPB) was proposed [7, 23]. With a special treatment of the general interface condi-
tions, MIBPB works for the interface jumps and discontinuities too. To validate such a feature, several test
models were constructed for a solute region containing a biomolecule and an irregular interface between the
solute and solvent regions [7, 23]. However, since analytical solutions are jump discontinuous across the inter-
face, they cannot be used to verify a PBE solver constructed from the continuous interface conditions. Hence,
how to construct a PBE test model with the continuous interface conditions and a solute region containing a
biomolecule remains an unsolved problem.
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In fact, it is difficult to construct such a PBE test model even for a spherical solute region due to solution
singularity. To overcome this difficulty, in this paper, we propose using solution decomposition techniques
to construct PBE test models. In particular, following what was done in the construction of the Born ball PBE
test model, we first construct a linear Poisson dielectric test model, and then modify it as a nonlinear PBE
test model with a spherical solute region containing a protein. The key step is to split the solution u of the
Poisson dielectric test model to a sum of two functions G and @ with G being a known function (see (8)).
Since G collects all the singularity points of u, we can simply select i as a twice continuously differentiable
function within the solute and solvent regions, respectively (see (14)). In this way, the construction process is
remarkably simplified.

In this paper, we construct a PBE test model (see (20)) and find its analytical solution in an algebraic
expression for a protein hosted in a spherical solute region (see (21)). This PBE test model has the same PBE
structure with one extra charge source term. Thus, it can be easily adapted for a PBE verification test. Another
important feature of our PBE test model is that the solution range is allowed to be properly adjusted with a
scaling parameter (see (22)). Due to this feature, our PBE test model works for any protein without causing any
blow up problem in the calculation of the hyperbolic term sinh(u) of the PBE. In addition, similar to the PBE
solution, its analytical solution has a singularity at each atomic position. Thus, different proteins may cause
different levels of difficulties in its numerical solution. Hence, it may be valuable in a robustness comparison
study of two different PBE solvers.

As an application example, in this paper, we used it to verify a PBE finite element program package we
developed recently [20] using a protein with 488 atoms. In this study, we particularly constructed three nested
quasi uniform tetrahedral meshes with 3,143, 25,131, and 200,009 vertices, respectively, and carried out nu-
merical tests using the linear finite element method. The absolute and relative errors of the numerical solu-
tions were calculated in the L, function norm. They were reduced almost quarterly as the mesh grid size was
almost halved, which match well the finite element theory [5], and validate this PBE finite element program
package.

As another application example, we did a comparison study between two PBE finite element and finite
difference solvers. The main differences between the finite element and finite difference approaches lie on
their different treatments of the Dirac delta point charge source terms and the interface conditions between
the solute and solvent regions. Hence, for simplicity, it is sufficient for us to consider the Poisson dielectric test
model for such a comparison study. In this study, we considered one commonly used finite difference method,
which has been used in the popular PBE software program packages DELPHI [18], UHBD [6], APBS [1], and
CHARMM [10, 11] for the calculation of solvation free energy, pK, values, and electrostatic forces [2]. Such a
finite difference method ignored the interface conditions, and used a uniform Cartesian grid with the interface
between the solute and solvent regions being roughly approximated as a staircase line. Its numerical solution
was reported to have a low accuracy for the Born and Kirkwood’s dielectric sphere models [24]. However, no
comparison test was done with the finite element method for a protein within the solute region. It is our new
test model that makes such a test possible.

To do so, we programmed the finite element method for solving the Poisson dielectric test model and a
tetrahedral mesh generator for a cubic domain Q containing the unit spherical ball in Python, Fortran and
C++ based on the finite element library DOLFIN from the FEniCS project [14] and the tetrahedral mesh gener-
ator TetGen (http://wias-berlin.de/software/tetgen/). We also programmed this PBE finite difference method
(see [10, 17] for example) using a linear delta approximation function and the successive over-relaxation (SOR)
method [22]. Numerical tests were done for four proteins with the number of atoms up to 4,173. Three differ-
ent uniform meshes with grid sizes h = 0.129, 0.0784, 0.0494 were used for the finite difference tests. Three
tetrahedral meshes were generated from our mesh generator for the finite element tests such that their num-
bers of vertices were close to that of the uniform meshes. Since each tetrahedral mesh was unstructured, its
mesh size h was defined as the longest edge among all the tetrahedra. The mesh sizes of our three tetrahedral
meshes were found to be 0.2851, 0.1656, 0.1137, respectively.

Numerical results show that the finite element solutions had a much higher accuracy than the finite dif-
ference solutions, and their accuracy was improved significantly as h was decreased. We also observed that
the finite difference solutions had only a very limited accuracy, which could not be improved further through
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simply decreasing h (see Table 2). Similar numerical results were reported in [24, Tables 1 and 2] for the finite
difference solutions generated from the program packages PBEQ and APBS in the case of solving the Born
and Kirkwood’s dielectric sphere models.

Furthermore, we repeated the finite difference tests using a cubic delta approximation function. It was
found that the accuracy of the finite difference solution was close to that using the linear delta approximation
function. This indicates that the finite difference errors are mainly related to the flux interface condition,
which should be considered in order to improve the solution accuracy of a PBE finite difference solver. Such
efforts were done in [7, 23, 24].

Finally, we repeated the numerical tests on one small mesh for the four protein test cases by using the
quadratic finite element method. It was found that the accuracy of the finite element solution was sharply
reduced. In this case, the quadratic finite element method involved about 260,000 mesh nodes, but its solu-
tion accuracy was close to the one generated by the linear finite element method on the mesh with 551,368
vertices. These tests showed a potential application of a higher order finite element method in solving PBE in
order to avoid the difficulties of generating a large finite element mesh with a high quality.

The paper is organized as follows. In Section 2, we review the PBE model, the Poisson dielectric model
and the Born ball PBE test model. In Section 3, we present the new Poisson dielectric and PBE test models.
In Section 4, the new PBE test model is used to verify a PBE finite element program package. In Section 5,
the new Poisson dielectric test model is applied to a comparison study, and finally, we make conclusions in
Section 6.

2 PBE model and Born ball PBE test model

In this section, we introduce the PBE model and the Poisson dielectric model. We then show how the Born
ball PBE test model is obtained. Let D), be a bounded solute region surrounded by the solvent region Ds such
that the whole space R? satisfies the partition

R>=D,UDsUT,

where I' denotes the interface between D, and D;. We assume that D, hosts a biomolecule (e.g., a protein)
consisting of n, atoms, and is immersed in a symmetric 1:1 ionic solvent containing only sodium (N;) and
chloride (CI") ions (a salt solution). In this case, the PBE model is defined by

np

-€pAu = a sztﬁr,. in Dy,
j=1

—esAu + x? sinh(u) =0 in Ds, )]
_ N ou(s’) ou(s*)
= = r
u(s’) =u(s"), ep on(s) *on(s) onl,
u(®) -0 as [r| — oo,

where u is a dimensionless electrostatic potential function, €, and €5 are two dielectric constants, a and K2
are two PBE constants, z; and r; are the charge number and position vector of the jth atom, respectively, and
8y, is the Dirac delta distribution at r;. In SI units, a and k* are given by

1 03 N A eg

2
ec 2
= R =2 ——2-¢ 2
a €0kBT X s €0kBT ()

where e, is the elementary charge, €, is the vacuum permittivity, Is denotes the ionic strength, N, is the
Avogadro’s number, kg is the Boltzmann constant, and T is the absolute temperature.
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Clearly, setting x = O reduces the PBE model to the Poisson dielectric model

p
—epAu(®) = a ) 26y, inDp,
j=1
—€sAu(r) =0 in Ds, 3)
us) =uis), 628N e M) o,
u(r) — 0 as |r| — oo.

For a spherical region D, containing one central charge ze., the Poisson dielectric model becomes the
Born ball model

-€pAu = azé in Dp,
-€sAu =0 in D, @
- N 4
us) =u(s"), ep alg(; ) _ esalé(; ) onr,
u() -0 as [t| — oo,

where § is the Dirac delta distribution at the origin, D, Ds and I' are set as
Dp={r||r|<a}, Ds={r|[t|>a}, TI={r||r|=a},

with a given radius a > 0, and the analytical solution u can be found in the form

az ( 1 1 ) az .

— | —-—)+-——— inDp,

u(r) = 4:10?12 €s €p 4rtep x| (5)
471es]E|

The Born ball PBE test model can then be constructed as follows:

-€pAu = azé in Dp,
—€sAu + x” sinh(u) = ps(r) in D,
N ou(s?) __ ou(s?) (6)
u(s’) =u(s"), ep m® ~one I,
u@r) =0 as [r| — oo,
where ps(r) is defined by
2 az
ps(r) = k° sinh (4ﬂ€s|l‘|> forr € Ds.

Obviously, when ps = 0, the above test model is reduced to the Born ball PBE model. Hence, ps can be regarded
as an extra charge function added to the PBE model. It is clear that the analytical solution of the Born ball
PBE test model (6) is given in (5). In calculation, u is treated as a unknown function while p; is a given source
function. Hence, the Born ball PBE test model is a nonlinear elliptic interface problem, which can be used to
verify a PBE solver.

3 Our new PBE test model

In this section, we follow the construction of the Born ball PBE test model to construct our new PBE test model
for a protein hosted in a spherical solute region D,. The key step is to obtain a Poisson dielectric test model
with a given analytical solution. To do so, we construct a Poisson dielectric test model in the form

p

—epAu(r) = aszGri in D,
j=1
—esAu(r) = fs(r) in Ds, 7)
u(s?) =u(s"), e€p 613(; ) _ €s 613(; ) onrl,

u(r) —» 0 as |r| — oo,
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where f; is a function to be determined, which can be regarded as extra charges added to the Poisson dielec-
tric model (3). We intend to find an analytical solution of the Poisson dielectric test model through properly
selecting fs.

It is difficult to search for a solution of (7) directly due to the solution singularities caused by the Dirac
delta distributions {Sr]} . To avoid such a difficulty, we split the solution u of (7) to a sum of the functions
G and i,

u=u+aG, (8)

where i is the solution of the elliptic interface problem

—-epAu(r) =0 in Dp,
—esAu(r) = fs(x) in Ds,
o ou(s") ou(s*) 0G(s) ©
= - r
a(s’) =u(s"), ep on(s) = €5 an(s) +(es - €p) an(s) onTl,
i) — 0 as [r| — oo,
and G is given by
np
__« Zj
G = 4riey ]2:1: r-1|’ (10)
which collects all the singular points of the solution u. Here gcgs; can be found in the expression
3G(s)  a <~_(s-1)-n
on(s)  4mep j:zlz’ Is-rP (1D

Thus, the problem becomes how to construct a solution i of the elliptic interface problem (9). Note that &
is twice continuously differentiable within D, and Ds, respectively, provided that fs is a continuous function.
Hence, we can construct it using the following expression

0 forr € Dy,
ik

12
c(r) sin < P 1> forr € Ds, (12)

u(r) =

where c(r) is a twice continuously differentiable function to be determined to satisfy the elliptic interface
problem (9).

By expression (12), it is easy to verify that & satisfies
ou(s”)

=0 vVsel.
€r on(s) <

as)=u(s)=0

We then use the facts s - s = |s|* = a® and n(s) = £ to find that

au(s ) oo 2 s 2
S on@) = esVi(s) - n(s) = ﬁesc(s)s a- aesc(s).
Thus, the second interface condition of (9) gives the equation of c:

oG(s)
on(s)

from which we obtain the expression of ¢ on the interface I':

0= %esc(s) +(€s - €p) onT,

o(s) = a(ep — €5) 0G(s) _ a(es - €p) i zi(s-1;)-s

= vselrl.
2es  on(s) 8mepes s —1;|3 €
Hence, we can set ¢(r) in the expression
_ales - €p) zilr-x)-r
r) = r € Ds. 1
c(r) 8mep€s Z r-13 vreDs (13)
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Applying the above expression of ¢ to (12) yields the expression of i:

0 forr € Dy,
u(r) = ales — €p) |r|2 Y zit-1)-r (14)
=5 “Plgin (Ll -1 Z% forr € Ds.
8mepes a? = r—x;3

It is clear that the above & satisfies the first equation and the two interface conditions of (9), and ap-
proaches zero as |r| — oo. It also satisfies the second equation of (9) by setting the function fs in the form

fs(r) = —esAu(r).

This provs that the function & of (14) is a solution of the elliptic interface problem (9) with the above selection
of fs.

We next need to calculate A (r) to get the expression of fs. A direct calculation of A (r) is intricate due to
the complicated expression (14) of u(r). To avoid this difficulty, we start with (12) to get an expression of fs in
terms of c:

fs(x) = —€s [sin (';' > Ac(r)+ai cos (az ) Ve(r)-r+ 6;(2r) cos (';'22 - 1) _% sin <:122 - 1) } .

(15)
We then use the fact that AG = 0 in Ds to obtain that
Ac(¥r) =0 Vr e Ds. (16)
Furthermore, we find that
ales - €p) @r-r)-r 3[r-r) -1
Vel = 8mepe€s Z ( It —1;3 [t —1;° ' (17)
Applying (16) and (17) to (15) gives the expression of fs:
_a(ep - €5) 2\ 7P -5ren 2 2eP(rf -rer)
fslo) = 4maZep Zz,[cos( ! Ce-rP sin{ gz 1 a’lr -3
(18)
2 2 _y.p)?
-6 Ccos | -1 M Vr € Ds.
a? [r-x;)°

We are now in the position to construct our new PBE test model. With f; being given in (18) and U(r) by

U = 5 i 5 alesoe) g (I iz"(r_r")'r (19)
 47tep £ < [r-x;|  8mepes a? — [r-n ’
J= J=

we construct our new PBE test model as follows:

—epAu(r) = azpz,ﬁ,}. in Dy,
=1
—esAu(r) + k¥ sinh(u(r)) = fs(r) + k> sinh(U(r)) in Ds, (20)

c ou(s™) _ c ou(s*)
Pan(s)  ~° on(s)
u(x) -0 as |r| — oo.

u(s™) = u(s"), onT,

Clearly, the analytical solution of our new PBE test model is the same as that of the Poisson dielectric test
model (7). It is given in the expression

in Dp,

(74 Zj
u() = { 4nep 121 r=x 1)

U(r) in Ds.
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We observe that the solution u of our PBE test model (20) can be expressed as
u(r) = aii(r) recQ, (22)

where it denotes the solution of the nonlinear problem (20) using a = 1. In this relationship, the constant a
can be treated as a scaling parameter, with which we can properly adjust the solution range of our new PBE
test model to avoid a potential blow up problem in the calculation of the hyperbolic term sinh(u).

In fact, the two extra charge terms fs and x? sinh(U(r)) may cause (20) to have a much larger solution
range than the corresponding PBE model. Because of these two extra charge terms, the two PBE constants a
and x lost their original physical meanings. With a proper selection of @, our new PBE test model can work
stably in its numerical implementation for any given protein.

Our new PBE test model (20) can be conveniently applied to the verification of a PBE numerical solver or
a PBE program package, since in numerical tests, we only need to modify the parts of the solver or package
that are related to the extra charge terms fs and k2 sinh(U(r)).

4 Verification of a PBE finite element program package

In this section we use the PBE test model (20) to verify a PBE finite element program package developed in
[20]. In the tests, the unbounded solvent region Ds was truncated as

Ds = {rla<|r| <A},
to modify (20) as a boundary value problem with the Dirichlet boundary condition
u(s) = U(s) on oQ,

where a and A are two given positive numbers, 0Q2 denotes the boundary of the bounded domain Q = {r| Jx| <
A}, and U is the analytical solution of (20), which has been given in (19). By the PBE finite element algorithm
[20], the solution u of this PBE test model using the above Dirichlet boundary condition on Q was split as

u®) =G + ¥)+ d(x) Vvre O, (23)

where G is defined by (10), ¥ is the solution of the linear interface problem

A¥(r)=0 in Dp U Ds
_ N o0¥(s7) o0¥(s™) 0G(s)
- = - 2
Y(s)=¥(s"), e€p on(s) €s on(s) +(es - €p) on(s) onT, (24)
¥(s) = U(s) - G(s) on 0Q,
and @ is the solution of the nonlinear interface problem
AdD(x) =0 in Dy,
—esAD(Y) + k* sinh(W(r) + O(r)) = ps(¥) in Ds,
s a oD(s)  ad(s") (25)
D(s) = P(s™), ~ep onGs) & onG) onT,
D(s)=0 on 00.

Here W = G + ¥, ¥ has been computed before solving (25), and p; is defined by
ps(x) = f5(x) + x* sinh(U(¥)).

To solve the above equations of (24) and (25) by the finite element method, the equations are reformulated
as variational problems so that their interface conditions can be naturally treated. Furthermore, a modified
Newton minimization scheme is developed to efficiently solve the nonlinear variational problem of @ as a
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N

(a) 3,143 vertices (b) 25,131 vertices (c) 200,009 vertices

Figure 1: Cross-section views of the three nested tetrahedral meshes used for verification of the PBE finite element program
package [20]. Here the meshes of solute region D, are coloured in red.

variational minimization problem. All the related linear variational problems are solved efficiently by the
preconditioned conjugate gradient (PCG) method with incomplete LU preconditioning. See [20] for the details.

We wrote a program for computing the extra charge term ps and exact solution u. A few modifications
were then made to the PBE finite element program package [20], making it work for numerically testing our
PBE test model. We also wrote a tetrahedral mesh generator based on the tetrahedral mesh generator TetGen
(http://wias-berlin.de/software/tetgen/) and the mesh function Sphere () from the FEniCS project [14]. In the
numerical tests, we used

a=17, A=51, € =2.0, €=7854, a=1, x> = 0.8482715835384875,

and a protein with 488 atoms (PDB ID 2LZX), which was downloaded from the Protein Data Bank
(http://www.rcsb.org). Here the value of x*> was produced by using (2) with T = 298.15 and I; = 0.1. As
required by the PBE finite element program package, we converted the PDB file of 2LZX to a PQR file using
the software tool PDB2PQR (http://www.poissonboltzmann.org/pdb2pqr). Our tetrahedral mesh generator
was used to generate three nested tetrahedral meshes with 3,143, 25,131, and 200,009 vertices, respectively,
whose mesh sizes were halved. One cross-section view of each mesh was displayed in Figure 1 to demonstrate
these three meshes. Three finite element solutions were then calculated by the linear finite element method.
Their relative and absolute errors were reported in Table 1.

Table 1: The absolute and relative errors of the finite element solutions uy, of the PBE test model (20) for the Protein with PDB
ID 2LZX and 488 atoms on three different tetrahedral meshes. Here u is the analytical solution given in (21), and u; denotes a
numerical solution of the linear finite element method.

Mesh Data Absolute Error Relative Error

Mesh | # Vertices | # Tetrahedra | |/ [, [up —ul2dr | / %
Mesh 1 3,143 18,591 1.96133 3.65904 x 107!
Mesh 2 25,131 148,728 0.477399 9.23066 x 1072
Mesh 3 200,009 1,189,824 0.150239 2.91177 x 1072

From Table 1it can be seen that the absolute and relative errors were reduced almost quarterly when the
mesh sizes were almost reduced by half. These results reflect the convergence properties of the linear finite
element method [5]. Hence, they validate the PBE finite element program package.
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(a) 32,639 vertices (b) 139,967 vertices (c) 554,745 vertices

Figure 2: Cross-section views of the three tetrahedral meshes used in comparison tests between the finite element and finite
difference methods. Here the solute region D), is marked in red.

5 Finite Difference Method via Finite Element Method

As another application, in this section, we use the Poisson dielectric test model (7) to do a comparison study
between the finite element and finite difference methods. For the sake of simplifying a construction of the
finite difference method, we selected a cubic domain Q = [-2, 2] x[-2, 2] x[-2, 2] to modify (7) as a boundary
value problem with the Dirichlet boundary condition

u(s) = U(s) on o,
where U has been given in (19). Because of (8), we only need to solve the following boundary value problem

—-epAi(r) =0 in Dy,
_e(sAgz(r) =fs(1(-) : © in D, 6)
ou(s™ ou(s* oG(s

on  “"on (es =€) onis) O L

u(s) = V(s) on 0Q,

u(s’) =u(s"), ep

where V denotes the analytical solution of (9), which has been given in (14).

We wrote a finite element program for solving the test problem (26) based on the finite element library
DOLFIN from the FEniCS project [14]. Here our mesh generation program was used to generate tetrahedral
meshes for numerical tests.

We also wrote a finite difference program for solving the Poisson dielectric test model (7) following the
PBE finite difference scheme used in the PBE finite difference program packages DELPHI [17, 18] and CHARMM
[10, 11]. That is, the flux interface condition was ignored to simply approximate the Poisson dielectric test
model (7) as a system of second order central finite difference equations as follows:

€l jlintjhe T €t il T €t g lijen ke ¥ €1 g1,k ¥ € g 1 Uijee1 ¥ € g 1Ujj k1

_ (ei—§,j,k €1kt €ijoa T €l ot el F ei,i,k%) Uijk = hfijks (27)
wherei,j,k=0,1,2,...,N, h = 4/N, u; ; , denotes a numerical value of the solution u(x, y, z) at the grid
node (x;, y;, zx) with x; = =2 +ih, y; = =2 + jh, and z; = -2 + kh, €t jk = e(-2+ @+ %)h, -2 +jh,-2 + kh)
for the dielectric function e(r) with r = (x, y, z) € Q, the other discrete values of € are defined similarly, and
fij,k denotes the value of the function f(r) at the grid node (x;, y;, z,). Here e(r) and f(r) are defined by

np
€y Vre Dy, ad zb,(x-r;) VreD,,
em=3" P> and f(r) = ]Zl ! J b
€s Vr e Ds,

fs(r) vr € Ds,
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where §(r-r;) denotes an approximation of the Dirac delta distribution 6y,. By an approximate delta function
¢ [19, Table 1, Page 512], 6, is set as

1
6n(®) = 75 OO/ Ply/Mp(z/ h). (28)
In numerical tests, we used the linear approximate delta function
1-|x|] O<|x|<1,
PR S 29)
0 x| > 1.

and the cubic approximate delta function

1-dx-x?+3x? 0s<x<1,
d)=q1- x|+ |x2-LxP 1s=|x<2, (30)
0 2 < |x|.

We solved the finite difference system (27) by the SOR method [17, 22] using the Dirichlet boundary condition
u(s) = U(s) s € 0Q, (31)

where U is given in (19). In the numerical tests, we set N = 31, 51, and 81, which gave the grid size h =
0.1290, 0.0784, and 0.0494, respectively.

Four proteins represented in PDB IDs 2L.ZX, 1UCS, 1AQ5, and 1HB8 were downloaded from the Protein
Data Bank for our numerical tests. Their 488, 997, 2292, and 4173 fixed point charges were relocated into
the unit ball region D, through scaling their atomic positions, respectively. Three tetrahedral meshes were
generated from our mesh generation program for the finite element numerical tests. Each of them had almost
the same number of vertices as the number of mesh nodes of the corresponding finite difference uniform
mesh. Since it was unstructured, its grid size h (defined as the longest edge of all the tetrahedra) was found
to be 0.2851, 0.1656, and 0.1137, respectively, which was much larger than the corresponding mesh size of the
finite difference method. One cross-section view was displayed in Figure 2 to demonstrate these three meshes.

To compare the solution accuracy, we calculated the relative error Ey. according to the formula

N N
Epe = (Z lu(r) - uh(rf)|2> /> )P, (52)
i=1 i=1

where u and u;, denote the analytic and numerical solutions, respectively, and r' denotes the ith grid node.
Numerical results are reported in the Table 2.

From Table 2 it can be seen that the finite element method was much more accurate than the finite dif-
ference method defined in (27). In particular, such a finite difference method only had a low accuracy due to
its ignoring the flux interface condition, whose relative errors might be increased even if the mesh size h was
decreased from 0.129 to 0.0494. Similar numerical results were reported in [24, Tables 1 and 2] for the finite
difference solutions generated from the program packages PBEQ and APBS in the case of solving the Born
and Kirkwood’s dielectric sphere models. Correspondingly, the finite element method was convergent, as its
relative errors were found to be reduced as h was decreased in all the numerical tests.

We also found from Table 2 that the relative errors of the finite difference method of (27) might not be
reduced when the linear approximate delta function (29) was replaced by a more accurate cubic approximate
delta function (30). This implies that the ignorance of the flux interface condition was one major factor that
affects the accuracy of the finite difference method. Hence, to improve the accuracy of a finite difference
method, it is essential to consider the flux interface condition. Such efforts were done in [7, 23, 24].

From Table 2 we further noted that even with the grid size h = 0.2851, the finite element method still
produced a much smaller relative error than the finite difference method using the grid size h = 0.0494. This
suggests that the finite element method may take less CPU time than the finite difference method of (27) to
generate a numerical solution with the same accuracy requirement.
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Table 2: Comparison of the solution accuracy of the finite difference method with that of the linear finite element method for
solving the Poisson dielectric test model (7). Here, E;. 1 and E,¢,» denote the relative errors of the finite difference method
using the linear and cubic approximate delta functions (29) and (30), respectively, the mesh grid size h of the finite element
method is defined as the longest edge among all the tetrahedra of a mesh, and the relative error E. is defined in (32).

Protein Finite Difference Method of (27) Finite Element Method
(#Atoms) h #Vertices Ere1 Ere,2 h #Vertices Ee

0.1290 | 32,768 | 5.27x107% | 5.50x107%2 | 0.2851 | 32,639 | 1.47 x107?2
2LZX 0.0784 | 140,608 | 5.31x107% | 5.21x107% | 0.1656 | 139,967 | 9.70x 1073
(488) 0.0494 | 551,368 | 4.67x107% | 4.54x107%2 | 0.1137 | 554,745 | 7.10x 1073
0.1290 | 32,768 | 3.71x107! | 3.82x107' | 0.2851 | 32,639 | 6.22x1072
1UCS 0.0784 | 140,608 | 5.42x107' | 5.53x107! | 0.1656 | 139,967 | 4.13x1072
(997) 0.0494 | 551,368 | 5.38x107! | 5.55x107! | 0.1137 | 554,745 | 2.25x 1072
0.1290 | 32,768 | 1.06x10°! | 1.05x107! | 0.2851 | 32,639 | 3.49x1072
1AQ5 0.0784 | 140,608 | 9.00x107% | 9.27x107%2 | 0.1656 | 139,967 | 2.24x 1072
(2292) | 0.0494 | 551,368 | 1.06x107! | 1.09x 10! | 0.1137 | 554,745 | 1.45x 1072
0.1290 | 32,768 | 1.16x107! | 1.28x107' | 0.2851 | 32,639 | 3.47 x107?
1HB8 0.0784 | 140,608 | 1.70x107! | 1.62x107! | 0.1656 | 139,967 | 2.11x 1072
(4173) | 0.0494 | 551,368 | 2.93x107! | 2.93x107" | 0.1137 | 554,745 | 1.29x 1072

Finally, we repeated the numerical tests on the mesh with 32,639 vertices by the quadratic finite element
method. In this case, the number of mesh nodes was increased to 259,998, but the relative errors of the finite
element solutions for the four protein cases were sharply reduced to 0.0047, 0.0248, 0.0135, and 0.0133, re-
spectively, which were close to the results generated by the mesh with 551,368 vertices. Currently, generating
a large finite element mesh costs much more CPU time than solving a finite element equation. A higher order
finite element method may make it possible to generate a highly accurate PBE numerical solution on a small
mesh while reducing the total CPU time.

6 Conclusions

In this paper, we have presented a PBE test model and its analytical solution construction process as well as its
applications. This model retains the PBE structure except for one extra charge source term, and its analytical
solution has a concise algebraic expression. Thus, it can be easily adapted to a PBE program package for
verification tests. Like the PBE solution, the analytical solution of our PBE test model satisfies the continuous
interface conditions and has a singularity at each atomic position. Different proteins may cause different
levels of difficulties in the numerical solution of our PBE test model. Because of this feature, our PBE test
model is valuable not only in a verification test of a PBE solver/program package but also in a robustness
comparison study of two different PBE solvers. Furthermore, we have shown in this paper that the solution
range of our PBE test model can be adjusted simply with a scaling parameter. Hence, our PBE test model can
work stably for any protein without causing any blow up problem in its computer implementation.

To demonstrate the application of our PBE and Poisson dielectric test models, we have reported the nu-
merical results made from verification tests on one PBE finite element program package that we developed
recently, and from comparison tests between a finite element solver and a finite difference solver that ignores
the flux continuous interface condition. To carry out these numerical tests, we wrote a tetrahedral mesh gen-
eration program, a program for a finite element solver, and a program for this finite difference solver.

Currently, a PBE solver/program package is primarily verified by the simple Born and Kirkwood’s dielec-
tric sphere models. Several test models that worked for protein were constructed for validating the MIBPB
algorithms but are suitable only for interface jumps and discontinuities. Since the interface conditions of
PBE are mostly continuous, it is important to have a PBE test model that works for protein while preserv-
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ing the continuous interface conditions. Our PBE test model is the first of such models. We expect it to be
particularly valuable in the numerical study of PBE numerical algorithms and program packages.
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grant DMS-1226259 and the UWM Research Growth Initiative.
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