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1 Introduction
The Poisson-Boltzmann equation (PBE) is a widely-used implicit solvent continuum model for calculating
protein electrostatics in ionic solvent [2, 9, 13, 15, 16, 21]. Several PBEnumerical solvers and computer program
packageshavebeendeveloped, andapplied tomanybiomolecular studies and simulations [3, 6, 10, 11, 17, 18],
but veri�cation and comparison among them is still an interesting research topic. So far, the Born ball model
[4] was often employed to do such veri�cation tests in the simplest case of a spherical solute region con-
taining one central charge [8, 20]. The Kirkwood’s dielectric sphere model [12] was applied to the case of a
spherical solute region containing multiple point charges. However, its calculation is complex and produces
truncation errors since its analytical solution is an in�nite series in terms of Legendre’s polynomials. Thus,
it works only for a few point charges. Recently, a �nite di�erence algorithm called the matched interface and
boundary PBE solver (MIBPB) was proposed [7, 23]. With a special treatment of the general interface condi-
tions, MIBPB works for the interface jumps and discontinuities too. To validate such a feature, several test
models were constructed for a solute region containing a biomolecule and an irregular interface between the
solute and solvent regions [7, 23]. However, since analytical solutions are jumpdiscontinuous across the inter-
face, they cannot be used to verify a PBE solver constructed from the continuous interface conditions. Hence,
how to construct a PBE test model with the continuous interface conditions and a solute region containing a
biomolecule remains an unsolved problem.
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In fact, it is di�cult to construct such a PBE test model even for a spherical solute region due to solution
singularity. To overcome this di�culty, in this paper, we propose using solution decomposition techniques
to construct PBE test models. In particular, following what was done in the construction of the Born ball PBE
test model, we �rst construct a linear Poisson dielectric test model, and then modify it as a nonlinear PBE
test model with a spherical solute region containing a protein. The key step is to split the solution u of the
Poisson dielectric test model to a sum of two functions G and ū with G being a known function (see (8)).
Since G collects all the singularity points of u, we can simply select ū as a twice continuously di�erentiable
function within the solute and solvent regions, respectively (see (14)). In this way, the construction process is
remarkably simpli�ed.

In this paper, we construct a PBE test model (see (20)) and �nd its analytical solution in an algebraic
expression for a protein hosted in a spherical solute region (see (21)). This PBE test model has the same PBE
structure with one extra charge source term. Thus, it can be easily adapted for a PBE veri�cation test. Another
important feature of our PBE test model is that the solution range is allowed to be properly adjusted with a
scaling parameter (see (22)). Due to this feature, our PBE testmodelworks for any proteinwithout causing any
blow up problem in the calculation of the hyperbolic term sinh(u) of the PBE. In addition, similar to the PBE
solution, its analytical solution has a singularity at each atomic position. Thus, di�erent proteins may cause
di�erent levels of di�culties in its numerical solution. Hence, it may be valuable in a robustness comparison
study of two di�erent PBE solvers.

As an application example, in this paper, we used it to verify a PBE �nite element program package we
developed recently [20] using a proteinwith 488 atoms. In this study,we particularly constructed three nested
quasi uniform tetrahedral meshes with 3,143, 25,131, and 200,009 vertices, respectively, and carried out nu-
merical tests using the linear �nite element method. The absolute and relative errors of the numerical solu-
tions were calculated in the L2 function norm. They were reduced almost quarterly as the mesh grid size was
almost halved, which match well the �nite element theory [5], and validate this PBE �nite element program
package.

As another application example, we did a comparison study between two PBE �nite element and �nite
di�erence solvers. The main di�erences between the �nite element and �nite di�erence approaches lie on
their di�erent treatments of the Dirac delta point charge source terms and the interface conditions between
the solute and solvent regions. Hence, for simplicity, it is su�cient for us to consider the Poissondielectric test
model for such a comparison study. In this study,we considered one commonly used �nite di�erencemethod,
which has been used in the popular PBE software program packages DELPHI [18], UHBD [6], APBS [1], and
CHARMM [10, 11] for the calculation of solvation free energy, pKa values, and electrostatic forces [2]. Such a
�nite di�erencemethod ignored the interface conditions, andused auniformCartesian gridwith the interface
between the solute and solvent regions being roughly approximated as a staircase line. Its numerical solution
was reported to have a low accuracy for the Born and Kirkwood’s dielectric sphere models [24]. However, no
comparison test was done with the �nite element method for a protein within the solute region. It is our new
test model that makes such a test possible.

To do so, we programmed the �nite element method for solving the Poisson dielectric test model and a
tetrahedral mesh generator for a cubic domain Ω containing the unit spherical ball in Python, Fortran and
C++ based on the �nite element library DOLFIN from the FEniCS project [14] and the tetrahedral mesh gener-
ator TetGen (http://wias-berlin.de/software/tetgen/). We also programmed this PBE �nite di�erence method
(see [10, 17] for example) using a linear delta approximation function and the successive over-relaxation (SOR)
method [22]. Numerical tests were done for four proteins with the number of atoms up to 4,173. Three di�er-
ent uniformmeshes with grid sizes h = 0.129, 0.0784, 0.0494 were used for the �nite di�erence tests. Three
tetrahedral meshes were generated from our mesh generator for the �nite element tests such that their num-
bers of vertices were close to that of the uniform meshes. Since each tetrahedral mesh was unstructured, its
mesh size hwas de�ned as the longest edge among all the tetrahedra. Themesh sizes of our three tetrahedral
meshes were found to be 0.2851, 0.1656, 0.1137, respectively.

Numerical results show that the �nite element solutions had a much higher accuracy than the �nite dif-
ference solutions, and their accuracy was improved signi�cantly as h was decreased. We also observed that
the �nite di�erence solutions had only a very limited accuracy, which could not be improved further through
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simply decreasing h (see Table 2). Similar numerical results were reported in [24, Tables 1 and 2] for the �nite
di�erence solutions generated from the program packages PBEQ and APBS in the case of solving the Born
and Kirkwood’s dielectric sphere models.

Furthermore, we repeated the �nite di�erence tests using a cubic delta approximation function. It was
found that the accuracy of the �nite di�erence solutionwas close to that using the linear delta approximation
function. This indicates that the �nite di�erence errors are mainly related to the �ux interface condition,
which should be considered in order to improve the solution accuracy of a PBE �nite di�erence solver. Such
e�orts were done in [7, 23, 24].

Finally, we repeated the numerical tests on one small mesh for the four protein test cases by using the
quadratic �nite element method. It was found that the accuracy of the �nite element solution was sharply
reduced. In this case, the quadratic �nite element method involved about 260,000 mesh nodes, but its solu-
tion accuracy was close to the one generated by the linear �nite element method on the mesh with 551,368
vertices. These tests showed a potential application of a higher order �nite element method in solving PBE in
order to avoid the di�culties of generating a large �nite element mesh with a high quality.

The paper is organized as follows. In Section 2, we review the PBE model, the Poisson dielectric model
and the Born ball PBE test model. In Section 3, we present the new Poisson dielectric and PBE test models.
In Section 4, the new PBE test model is used to verify a PBE �nite element program package. In Section 5,
the new Poisson dielectric test model is applied to a comparison study, and �nally, we make conclusions in
Section 6.

2 PBE model and Born ball PBE test model
In this section, we introduce the PBE model and the Poisson dielectric model. We then show how the Born
ball PBE test model is obtained. Let Dp be a bounded solute region surrounded by the solvent region Ds such
that the whole space R3 satis�es the partition

R3 = Dp ∪ Ds ∪ Γ ,

where Γ denotes the interface between Dp and Ds. We assume that Dp hosts a biomolecule (e.g., a protein)
consisting of np atoms, and is immersed in a symmetric 1:1 ionic solvent containing only sodium (N+

a) and
chloride (Cl−) ions (a salt solution). In this case, the PBE model is de�ned by

−ϵp∆u = α
np∑
j=1

zjδrj in Dp ,

−ϵs∆u + κ2 sinh(u) = 0 in Ds ,

u(s−) = u(s+), ϵp
∂u(s−)
∂n(s) = ϵs

∂u(s+)
∂n(s) on Γ ,

u(r) → 0 as |r| →∞,

(1)

where u is a dimensionless electrostatic potential function, ϵp and ϵs are two dielectric constants, α and κ2

are two PBE constants, zj and rj are the charge number and position vector of the jth atom, respectively, and
δrj is the Dirac delta distribution at rj. In SI units, α and κ2 are given by

α = e2
c

ϵ0kBT
, κ2 = 2Is

103NAe2
c

ϵ0kBT
, (2)

where ec is the elementary charge, ϵ0 is the vacuum permittivity, Is denotes the ionic strength, NA is the
Avogadro’s number, kB is the Boltzmann constant, and T is the absolute temperature.
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Clearly, setting κ = 0 reduces the PBE model to the Poisson dielectric model

−ϵp∆u(r) = α
np∑
j=1

zjδrj in Dp ,

−ϵs∆u(r) = 0 in Ds ,

u(s−) = u(s+), ϵp
∂u(s−)
∂n = ϵs

∂u(s+)
∂n on Γ ,

u(r) → 0 as |r| →∞.

(3)

For a spherical region Dp containing one central charge zec, the Poisson dielectric model becomes the
Born ball model 

−ϵp∆u = αzδ in Dp ,
−ϵs∆u = 0 in Ds ,

u(s−) = u(s+), ϵp
∂u(s−)
∂n = ϵs

∂u(s+)
∂n on Γ ,

u(r) → 0 as |r| →∞,

(4)

where δ is the Dirac delta distribution at the origin, Dp , Ds and Γ are set as

Dp = {r
∣∣ |r| < a}, Ds = {r

∣∣ |r| > a}, Γ = {r
∣∣ |r| = a},

with a given radius a > 0, and the analytical solution u can be found in the form

u(r) =


αz

4πa

(
1
ϵs
− 1
ϵp

)
+ αz

4πϵp|r|
in Dp ,

αz
4πϵs|r|

in Ds .
(5)

The Born ball PBE test model can then be constructed as follows:
−ϵp∆u = αzδ in Dp ,

−ϵs∆u + κ2 sinh(u) = ρs(r) in Ds ,

u(s−) = u(s+), ϵp
∂u(s−)
∂n(s) = ϵs

∂u(s+)
∂n(s) on Γ ,

u(r) → 0 as |r| →∞,

(6)

where ρs(r) is de�ned by

ρs(r) = κ2 sinh
(

αz
4πϵs|r|

)
for r ∈ Ds .

Obviously,when ρs = 0, the above testmodel is reduced to theBornball PBEmodel.Hence, ρs canbe regarded
as an extra charge function added to the PBE model. It is clear that the analytical solution of the Born ball
PBE test model (6) is given in (5). In calculation, u is treated as a unknown function while ρs is a given source
function. Hence, the Born ball PBE test model is a nonlinear elliptic interface problem, which can be used to
verify a PBE solver.

3 Our new PBE test model
In this section,we follow the construction of the Born ball PBE testmodel to construct our newPBE testmodel
for a protein hosted in a spherical solute region Dp. The key step is to obtain a Poisson dielectric test model
with a given analytical solution. To do so, we construct a Poisson dielectric test model in the form

−ϵp∆u(r) = α
np∑
j=1

zjδrj in Dp ,

−ϵs∆u(r) = fs(r) in Ds ,

u(s−) = u(s+), ϵp
∂u(s−)
∂n = ϵs

∂u(s+)
∂n on Γ ,

u(r) → 0 as |r| →∞,

(7)
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where fs is a function to be determined, which can be regarded as extra charges added to the Poisson dielec-
tric model (3). We intend to �nd an analytical solution of the Poisson dielectric test model through properly
selecting fs.

It is di�cult to search for a solution of (7) directly due to the solution singularities caused by the Dirac
delta distributions {δrj}

np
j=1. To avoid such a di�culty, we split the solution u of (7) to a sum of the functions

G and ū,
u = ū + G, (8)

where ū is the solution of the elliptic interface problem
−ϵp∆ū(r) = 0 in Dp ,
−ϵs∆ū(r) = fs(r) in Ds ,

ū(s−) = ū(s+), ϵp
∂ū(s−)
∂n(s) = ϵs

∂ū(s+)
∂n(s) + (ϵs − ϵp)∂G(s)

∂n(s) on Γ ,

ū(r) → 0 as |r| →∞,

(9)

and G is given by

G(r) = α
4πϵp

np∑
j=1

zj
|r − rj|

, (10)

which collects all the singular points of the solution u. Here ∂G(s)
∂n(s) can be found in the expression

∂G(s)
∂n(s) = − α

4πϵp

np∑
j=1

zj
(s − rj) · n
|s − rj|3

. (11)

Thus, the problem becomes how to construct a solution ū of the elliptic interface problem (9). Note that ū
is twice continuously di�erentiable within Dp and Ds, respectively, provided that fs is a continuous function.
Hence, we can construct ū using the following expression

ū(r) =

 0 for r ∈ Dp ,

c(r) sin
(
|r|2
a2 − 1

)
for r ∈ Ds ,

(12)

where c(r) is a twice continuously di�erentiable function to be determined to satisfy the elliptic interface
problem (9).

By expression (12), it is easy to verify that ū satis�es

ū(s−) = ū(s+) = 0, ϵp
∂ū(s−)
∂n(s) = 0 ∀ s ∈ Γ .

We then use the facts s · s = |s|2 = a2 and n(s) = s
a to �nd that

ϵs
∂ū(s+)
∂n(s) = ϵs∇ū(s+) · n(s) = 2

a2 ϵsc(s)s · sa = 2
a ϵsc(s).

Thus, the second interface condition of (9) gives the equation of c:

0 = 2
a ϵsc(s) + (ϵs − ϵp)∂G(s)

∂n(s) on Γ ,

from which we obtain the expression of c on the interface Γ:

c(s) = a(ϵp − ϵs)
2ϵs

∂G(s)
∂n(s) = α(ϵs − ϵp)

8πϵpϵs

np∑
j=1

zj(s − rj) · s
|s − rj|3

∀s ∈ Γ .

Hence, we can set c(r) in the expression

c(r) = α(ϵs − ϵp)
8πϵpϵs

np∑
j=1

zj(r − rj) · r
|r − rj|3

∀r ∈ Ds . (13)
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Applying the above expression of c to (12) yields the expression of ū:

ū(r) =


0 for r ∈ Dp ,

α(ϵs − ϵp)
8πϵpϵs

sin
(
|r|2
a2 − 1

) np∑
j=1

zj(r − rj) · r
|r − rj|3

for r ∈ Ds .
(14)

It is clear that the above ū satis�es the �rst equation and the two interface conditions of (9), and ap-
proaches zero as |r| →∞. It also satis�es the second equation of (9) by setting the function fs in the form

fs(r) = −ϵs∆ū(r).

This provs that the function ū of (14) is a solution of the elliptic interface problem (9) with the above selection
of fs.

We next need to calculate ∆ū(r) to get the expression of fs. A direct calculation of ∆ū(r) is intricate due to
the complicated expression (14) of ū(r). To avoid this di�culty, we start with (12) to get an expression of fs in
terms of c:

fs(r) = −ϵs
[

sin
(
|r|2
a2 − 1

)
∆c(r)+ 4

a2 cos
(
|r|2
a2 − 1

)
∇c(r)·r+ 6c(r)

a2 cos
(
|r|2
a2 − 1

)
−4|r|2c(r)

a4 sin
(
|r|2
a2 − 1

)]
.

(15)
We then use the fact that ∆G = 0 in Ds to obtain that

∆c(r) = 0 ∀r ∈ Ds . (16)

Furthermore, we �nd that

∇c(r) · r = α(ϵs − ϵp)
8πϵpϵs

np∑
j=1

zj
(

(2r − rj) · r
|r − rj|3

−
3[(r − rj) · r]2

|r − rj|5

)
. (17)

Applying (16) and (17) to (15) gives the expression of fs:

fs(r) =α(ϵp − ϵs)
4πa2ϵp

np∑
j=1

zj
[

cos
(
|r|2
a2 − 1

)
7|r|2 − 5r · rj

|r − rj|3
− sin

(
|r|2
a2 − 1

)
2|r|2(|r|2 − r · rj)
a2|r − rj|3

−6 cos
(
|r|2
a2 − 1

)
(|r|2 − r · rj)2

|r − rj|5

]
∀r ∈ Ds .

(18)

We are now in the position to construct our new PBE test model. With fs being given in (18) and U(r) by

U(r) = α
4πϵp

np∑
j=1

zj
|r − rj|

+ α(ϵs − ϵp)
8πϵpϵs

sin
(
|r|2
a2 − 1

) np∑
j=1

zj(r − rj) · r
|r − rj|3

, (19)

we construct our new PBE test model as follows:

−ϵp∆u(r) = α
np∑
j=1

zjδrj in Dp ,

−ϵs∆u(r) + κ2 sinh(u(r)) = fs(r) + κ2 sinh(U(r)) in Ds ,

u(s−) = u(s+), ϵp
∂u(s−)
∂n(s) = ϵs

∂u(s+)
∂n(s) on Γ ,

u(r) → 0 as |r| →∞.

(20)

Clearly, the analytical solution of our new PBE test model is the same as that of the Poisson dielectric test
model (7). It is given in the expression

u(r) =


α

4πϵp

np∑
j=1

zj
|r − rj|

in Dp ,

U(r) in Ds .
(21)
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We observe that the solution u of our PBE test model (20) can be expressed as

u(r) = αû(r) r ∈ Ω, (22)

where û denotes the solution of the nonlinear problem (20) using α = 1. In this relationship, the constant α
can be treated as a scaling parameter, with which we can properly adjust the solution range of our new PBE
test model to avoid a potential blow up problem in the calculation of the hyperbolic term sinh(u).

In fact, the two extra charge terms fs and κ2 sinh(U(r)) may cause (20) to have a much larger solution
range than the corresponding PBE model. Because of these two extra charge terms, the two PBE constants α
and κ lost their original physical meanings. With a proper selection of α, our new PBE test model can work
stably in its numerical implementation for any given protein.

Our new PBE test model (20) can be conveniently applied to the veri�cation of a PBE numerical solver or
a PBE program package, since in numerical tests, we only need to modify the parts of the solver or package
that are related to the extra charge terms fs and κ2 sinh(U(r)).

4 Veri�cation of a PBE �nite element program package
In this section we use the PBE test model (20) to verify a PBE �nite element program package developed in
[20]. In the tests, the unbounded solvent region Ds was truncated as

Ds = {r|a < |r| < A},

to modify (20) as a boundary value problem with the Dirichlet boundary condition

u(s) = U(s) on ∂Ω,

where a and A are two given positive numbers, ∂Ω denotes the boundary of the bounded domainΩ = {r| |r| <
A}, and U is the analytical solution of (20), which has been given in (19). By the PBE �nite element algorithm
[20], the solution u of this PBE test model using the above Dirichlet boundary condition on Ω was split as

u(r) = G(r) + Ψ(r) + Φ̃(r) ∀r ∈ Ω, (23)

where G is de�ned by (10), Ψ is the solution of the linear interface problem
∆Ψ(r) = 0 in Dp ∪ Ds

Ψ(s−) = Ψ(s+), ϵp
∂Ψ(s−)
∂n(s) = ϵs

∂Ψ(s+)
∂n(s) + (ϵs − ϵp)∂G(s)

∂n(s) on Γ ,

Ψ(s) = U(s) − G(s) on ∂Ω,

(24)

and Φ̃ is the solution of the nonlinear interface problem
∆Φ̃(r) = 0 in Dp ,

−ϵs∆Φ̃(r) + κ2 sinh(W(r) + Φ̃(r)) = ρs(r) in Ds ,

Φ̃(s−) = Φ̃(s+), ϵp
∂Φ̃(s−)
∂n(s) = ϵs

∂Φ̃(s+)
∂n(s) on Γ ,

Φ̃(s) = 0 on ∂Ω.

(25)

HereW = G + Ψ , Ψ has been computed before solving (25), and ρs is de�ned by

ρs(r) = fs(r) + κ2 sinh(U(r)).

To solve the above equations of (24) and (25) by the �nite element method, the equations are reformulated
as variational problems so that their interface conditions can be naturally treated. Furthermore, a modi�ed
Newton minimization scheme is developed to e�ciently solve the nonlinear variational problem of Φ̃ as a
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(a) 3,143 vertices (b) 25,131 vertices (c) 200,009 vertices

Figure 1: Cross-section views of the three nested tetrahedral meshes used for veri�cation of the PBE �nite element program
package [20]. Here the meshes of solute region Dp are coloured in red.

variational minimization problem. All the related linear variational problems are solved e�ciently by the
preconditioned conjugate gradient (PCG)methodwith incomplete LUpreconditioning. See [20] for thedetails.

We wrote a program for computing the extra charge term ρs and exact solution u. A few modi�cations
were then made to the PBE �nite element program package [20], making it work for numerically testing our
PBE test model. We also wrote a tetrahedral mesh generator based on the tetrahedral mesh generator TetGen
(http://wias-berlin.de/software/tetgen/) and the mesh function Sphere() from the FEniCS project [14]. In the
numerical tests, we used

a = 17, A = 51, ϵp = 2.0, ϵs = 78.54, α = 1, κ2 = 0.8482715835384875,

and a protein with 488 atoms (PDB ID 2LZX), which was downloaded from the Protein Data Bank
(http://www.rcsb.org). Here the value of κ2 was produced by using (2) with T = 298.15 and Is = 0.1. As
required by the PBE �nite element program package, we converted the PDB �le of 2LZX to a PQR �le using
the software tool PDB2PQR (http://www.poissonboltzmann.org/pdb2pqr). Our tetrahedral mesh generator
was used to generate three nested tetrahedral meshes with 3,143, 25,131, and 200,009 vertices, respectively,
whosemesh sizes were halved. One cross-section view of eachmeshwas displayed in Figure 1 to demonstrate
these three meshes. Three �nite element solutions were then calculated by the linear �nite element method.
Their relative and absolute errors were reported in Table 1.

Table 1: The absolute and relative errors of the �nite element solutions uh of the PBE test model (20) for the Protein with PDB
ID 2LZX and 488 atoms on three di�erent tetrahedral meshes. Here u is the analytical solution given in (21), and uh denotes a
numerical solution of the linear �nite element method.

Mesh Data Absolute Error Relative Error

Mesh # Vertices # Tetrahedra
√∫

Ω |uh − u|2dr
√ ∫

Ω |uh−u|2dr∫
Ω |u|2dr

Mesh 1 3,143 18,591 1.96133 3.65904 × 10−1

Mesh 2 25,131 148,728 0.477399 9.23066 × 10−2

Mesh 3 200,009 1,189,824 0.150239 2.91177 × 10−2

From Table 1 it can be seen that the absolute and relative errors were reduced almost quarterly when the
mesh sizes were almost reduced by half. These results re�ect the convergence properties of the linear �nite
element method [5]. Hence, they validate the PBE �nite element program package.
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(a) 32,639 vertices (b) 139,967 vertices (c) 554,745 vertices

Figure 2: Cross-section views of the three tetrahedral meshes used in comparison tests between the �nite element and �nite
di�erence methods. Here the solute region Dp is marked in red.

5 Finite Di�erence Method via Finite Element Method
As another application, in this section, we use the Poisson dielectric test model (7) to do a comparison study
between the �nite element and �nite di�erence methods. For the sake of simplifying a construction of the
�nite di�erencemethod, we selected a cubic domain Ω = [−2, 2]× [−2, 2]× [−2, 2] to modify (7) as a boundary
value problem with the Dirichlet boundary condition

u(s) = U(s) on ∂Ω,

where U has been given in (19). Because of (8), we only need to solve the following boundary value problem
−ϵp∆ū(r) = 0 in Dp ,
−ϵs∆ū(r) = fs(r) in Ds ,

ū(s−) = ū(s+), ϵp
∂ū(s−)
∂n = ϵs

∂ū(s+)
∂n + (ϵs − ϵp)∂G(s)

∂n(s) on Γ ,

ū(s) = V(s) on ∂Ω,

(26)

where V denotes the analytical solution of (9), which has been given in (14).
We wrote a �nite element program for solving the test problem (26) based on the �nite element library

DOLFIN from the FEniCS project [14]. Here our mesh generation program was used to generate tetrahedral
meshes for numerical tests.

We also wrote a �nite di�erence program for solving the Poisson dielectric test model (7) following the
PBE�nite di�erence schemeused in the PBE�nite di�erence programpackagesDELPHI [17, 18] andCHARMM
[10, 11]. That is, the �ux interface condition was ignored to simply approximate the Poisson dielectric test
model (7) as a system of second order central �nite di�erence equations as follows:

ϵi+ 1
2 ,j,k

ui+1,j,k + ϵi− 1
2 ,j,k

ui−1,j,k + ϵi,j+ 1
2 ,k
ui,j+1,k + ϵi,j− 1

2 ,k
ui,j−1,k + ϵi,j,k+ 1

2
ui,j,k+1 + ϵi,j,k− 1

2
ui,j,k−1

−
(
ϵi− 1

2 ,j,k
+ ϵi+ 1

2 ,j,k
+ ϵi,j− 1

2 ,k
+ ϵi,j+ 1

2 ,k
+ ϵi,j,k− 1

2
+ ϵi,j,k+ 1

2

)
ui,j,k = h2fi,j,k , (27)

where i, j, k = 0, 1, 2, . . . , N, h = 4/N, ui,j,k denotes a numerical value of the solution u(x, y, z) at the grid
node (xi , yj , zk) with xi = −2 + ih, yj = −2 + jh, and zk = −2 + kh, ϵi+ 1

2 ,j,k
= ϵ(−2 + (i + 1

2 )h, −2 + jh, −2 + kh)
for the dielectric function ϵ(r) with r = (x, y, z) ∈ Ω, the other discrete values of ϵ are de�ned similarly, and
fi,j,k denotes the value of the function f (r) at the grid node (xi , yj , zk). Here ϵ(r) and f (r) are de�ned by

ϵ(r) =
{
ϵp ∀r ∈ Dp ,
ϵs ∀r ∈ Ds ,

and f (r) =


α

np∑
j=1

zjδh(r − rj) ∀r ∈ Dp ,

fs(r) ∀r ∈ Ds ,



A Poisson-Boltzmann Equation Test Model and its Applications | 95

where δh(r−rj) denotes an approximation of theDirac delta distribution δrj . By an approximate delta function
ϕ [19, Table 1, Page 512], δh is set as

δh(r) = 1
h3ϕ(x/h)ϕ(y/h)ϕ(z/h). (28)

In numerical tests, we used the linear approximate delta function

ϕ(x) =
{

1 − |x| 0 ≤ |x| < 1,
0 |x| > 1.

(29)

and the cubic approximate delta function

ϕ(x) =


1 − 1

2 |x| − |x|
2 + 1

2 |x|
3 0 ≤ |x| < 1,

1 − 11
6 |x| + |x|2 − 1

6 |x|
3 1 ≤ |x| < 2,

0 2 ≤ |x|.

(30)

We solved the �nite di�erence system (27) by the SORmethod [17, 22] using the Dirichlet boundary condition

u(s) = U(s) s ∈ ∂Ω, (31)

where U is given in (19). In the numerical tests, we set N = 31, 51, and 81, which gave the grid size h =
0.1290, 0.0784, and 0.0494, respectively.

Four proteins represented in PDB IDs 2LZX, 1UCS, 1AQ5, and 1HB8 were downloaded from the Protein
Data Bank for our numerical tests. Their 488, 997, 2292, and 4173 �xed point charges were relocated into
the unit ball region Dp through scaling their atomic positions, respectively. Three tetrahedral meshes were
generated from ourmesh generation program for the �nite element numerical tests. Each of them had almost
the same number of vertices as the number of mesh nodes of the corresponding �nite di�erence uniform
mesh. Since it was unstructured, its grid size h (de�ned as the longest edge of all the tetrahedra) was found
to be 0.2851, 0.1656, and 0.1137, respectively, which was much larger than the corresponding mesh size of the
�nite di�erencemethod. One cross-section viewwas displayed in Figure 2 to demonstrate these threemeshes.

To compare the solution accuracy, we calculated the relative error Ere according to the formula

Ere =

√√√√( N∑
i=1

|u(ri) − uh(ri)|2
)/ N∑

i=1

|u(ri)|2, (32)

where u and uh denote the analytic and numerical solutions, respectively, and ri denotes the ith grid node.
Numerical results are reported in the Table 2.

From Table 2 it can be seen that the �nite element method was much more accurate than the �nite dif-
ference method de�ned in (27). In particular, such a �nite di�erence method only had a low accuracy due to
its ignoring the �ux interface condition, whose relative errors might be increased even if the mesh size h was
decreased from 0.129 to 0.0494. Similar numerical results were reported in [24, Tables 1 and 2] for the �nite
di�erence solutions generated from the program packages PBEQ and APBS in the case of solving the Born
and Kirkwood’s dielectric sphere models. Correspondingly, the �nite element method was convergent, as its
relative errors were found to be reduced as h was decreased in all the numerical tests.

We also found from Table 2 that the relative errors of the �nite di�erence method of (27) might not be
reduced when the linear approximate delta function (29) was replaced by amore accurate cubic approximate
delta function (30). This implies that the ignorance of the �ux interface condition was one major factor that
a�ects the accuracy of the �nite di�erence method. Hence, to improve the accuracy of a �nite di�erence
method, it is essential to consider the �ux interface condition. Such e�orts were done in [7, 23, 24].

From Table 2 we further noted that even with the grid size h = 0.2851, the �nite element method still
produced a much smaller relative error than the �nite di�erence method using the grid size h = 0.0494. This
suggests that the �nite element method may take less CPU time than the �nite di�erence method of (27) to
generate a numerical solution with the same accuracy requirement.
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Table 2: Comparison of the solution accuracy of the �nite di�erence method with that of the linear �nite element method for
solving the Poisson dielectric test model (7). Here, Ere,1 and Ere,2 denote the relative errors of the �nite di�erence method
using the linear and cubic approximate delta functions (29) and (30), respectively, the mesh grid size h of the �nite element
method is de�ned as the longest edge among all the tetrahedra of a mesh, and the relative error Ere is de�ned in (32).

Protein Finite Di�erence Method of (27) Finite Element Method
(#Atoms) h #Vertices Ere,1 Ere,2 h #Vertices Ere

0.1290 32,768 5.27 × 10−2 5.50 × 10−2 0.2851 32,639 1.47 × 10−2

2LZX 0.0784 140,608 5.31 × 10−2 5.21 × 10−2 0.1656 139,967 9.70 × 10−3

(488) 0.0494 551,368 4.67 × 10−2 4.54 × 10−2 0.1137 554,745 7.10 × 10−3

0.1290 32,768 3.71 × 10−1 3.82 × 10−1 0.2851 32,639 6.22 × 10−2

1UCS 0.0784 140,608 5.42 × 10−1 5.53 × 10−1 0.1656 139,967 4.13 × 10−2

(997) 0.0494 551,368 5.38 × 10−1 5.55 × 10−1 0.1137 554,745 2.25 × 10−2

0.1290 32,768 1.06 × 10−1 1.05 × 10−1 0.2851 32,639 3.49 × 10−2

1AQ5 0.0784 140,608 9.00 × 10−2 9.27 × 10−2 0.1656 139,967 2.24 × 10−2

(2292) 0.0494 551,368 1.06 × 10−1 1.09 × 10−1 0.1137 554,745 1.45 × 10−2

0.1290 32,768 1.16 × 10−1 1.28 × 10−1 0.2851 32,639 3.47 × 10−2

1HB8 0.0784 140,608 1.70 × 10−1 1.62 × 10−1 0.1656 139,967 2.11 × 10−2

(4173) 0.0494 551,368 2.93 × 10−1 2.93 × 10−1 0.1137 554,745 1.29 × 10−2

Finally, we repeated the numerical tests on the mesh with 32,639 vertices by the quadratic �nite element
method. In this case, the number of mesh nodes was increased to 259,998, but the relative errors of the �nite
element solutions for the four protein cases were sharply reduced to 0.0047, 0.0248, 0.0135, and 0.0133, re-
spectively, which were close to the results generated by the mesh with 551,368 vertices. Currently, generating
a large �nite element mesh costs much more CPU time than solving a �nite element equation. A higher order
�nite element method may make it possible to generate a highly accurate PBE numerical solution on a small
mesh while reducing the total CPU time.

6 Conclusions
In this paper,wehavepresented aPBE testmodel and its analytical solution constructionprocess aswell as its
applications. This model retains the PBE structure except for one extra charge source term, and its analytical
solution has a concise algebraic expression. Thus, it can be easily adapted to a PBE program package for
veri�cation tests. Like the PBE solution, the analytical solution of our PBE test model satis�es the continuous
interface conditions and has a singularity at each atomic position. Di�erent proteins may cause di�erent
levels of di�culties in the numerical solution of our PBE test model. Because of this feature, our PBE test
model is valuable not only in a veri�cation test of a PBE solver/program package but also in a robustness
comparison study of two di�erent PBE solvers. Furthermore, we have shown in this paper that the solution
range of our PBE test model can be adjusted simply with a scaling parameter. Hence, our PBE test model can
work stably for any protein without causing any blow up problem in its computer implementation.

To demonstrate the application of our PBE and Poisson dielectric test models, we have reported the nu-
merical results made from veri�cation tests on one PBE �nite element program package that we developed
recently, and from comparison tests between a �nite element solver and a �nite di�erence solver that ignores
the �ux continuous interface condition. To carry out these numerical tests, we wrote a tetrahedral mesh gen-
eration program, a program for a �nite element solver, and a program for this �nite di�erence solver.

Currently, a PBE solver/program package is primarily veri�ed by the simple Born and Kirkwood’s dielec-
tric sphere models. Several test models that worked for protein were constructed for validating the MIBPB
algorithms but are suitable only for interface jumps and discontinuities. Since the interface conditions of
PBE are mostly continuous, it is important to have a PBE test model that works for protein while preserv-
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ing the continuous interface conditions. Our PBE test model is the �rst of such models. We expect it to be
particularly valuable in the numerical study of PBE numerical algorithms and program packages.
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grant DMS-1226259 and the UWM Research Growth Initiative.
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