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Discrete thickness
Abstract: We investigate the relationship between a discrete version of thickness and its smooth counterpart.
These discrete energies are de�ned on equilateral polygons with n vertices. It will turn out that the smooth
ropelength, which is the scale invariant quotient of length divided by thickness, is the Γ-limit of the discrete
ropelength for n →∞, regarding the topology induced by the Sobolev norm || · ||W1,∞(S1 ,Rd). This result directly
implies the convergence of almost minimizers of the discrete energies in a �xed knot class to minimizers of
the smooth energy. Moreover, we show that the unique absoluteminimizer of inverse discrete thickness is the
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1 Introduction
In this article we are concerned with the relationship of a discrete version of the thickness ∆ of a curve γ,
de�ned by

∆[γ] := inf
x,y,z∈γ(S1)
x ̸=y ̸=z ̸=x

r(x, y, z)

on C, the set of all curves γ : S1 → Rd that are parametrised by arc length, i.e., γ ∈ C0,1(S1,Rd) =
W1,∞(S1,Rd) with |γ′| = 1 a.e., and have length

∫
S1 |γ

′|dt = 1. Here, S1 is the circle of length 1 and r(x, y, z)
the radius of the unique circle that contains x, y and z, which is set to in�nity if the three points are collinear.
This notion of thickness was introduced in [8] and is equivalent to the Federer’s reach, see [5]. Geometrically,
the thickness of a curve gives the radius of the largest uniform tubular neighbourhood about the curve that
does not intersect itself. The ropelength, which is length divided by thickness, is scale invariant and a knot is
called ideal if it minimizes ropelength in a �xed knot class or, equivalently,minimizes this energy amongst all
curves in this knot class with �xed length. These ideal knots are of great interest, not only to mathematicians
but also to biologists, chemists, physicists, . . ., since they exposit interesting physical features and resemble
the time-averaged shapes of knotted DNA molecules in solution [10, 11, 25], see [24, 26] for an overview of
physical knot theory with applications. The existence of ideal knots in every knot class was settled in [2, 7, 9]
and it was found that the unique absolute minimizer (in all knot classes) is the round circle. Furthermore,
this energy is self-repulsive, meaning that �nite energy prevents the curve from having self intersections. By
now it is well-known that thick curves, or in general manifolds of positive reach, are of class C1,1 and vice
versa, see [5, 13, 21, 22]. In [2] it was shown that ideal links must not be of class C2 and computer experiments
in [28] suggest that C1,1 regularity is optimal for knots, too. Still, there is a conjecture [2, Conjecture 24] that
ropelength minimizers are piecewise analytic. Further interesting properties of critical points for the rope-
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length as well as the Euler-Lagrange equation were derived in [1, 22, 23].

Another way to write the thickness of an arc length curve is

∆[γ] = min{minRad(γ), 2−1 dcsd(γ)}, (1)

which by [22] holds for all arc length curves with positive thickness. The minimal radius of curvature
minRad(γ) of γ is the inverse of themaximal curvaturemaxCurv(γ) := ||γ′′||L∞ anddcsd(γ) := min(x,y)∈dcrit(γ)|y−
x| is the doubly critical selfdistance. The set of doubly critical points dcrit(γ) of a C1 curve γ consists of all pairs
(x, y) where x = γ(t) and y = γ(s) are distinct points on γ so that 〈γ′(t), γ(t) − γ(s)〉 = 〈γ′(s), γ(t) − γ(s)〉 = 0,
i.e., s is critical for u 7→ |γ(t) − γ(u)|2 and t for v 7→ |γ(v) − γ(s)|2.

Appropriate versions of thickness for polygons derived from the representation in (1) are already avail-
able. The curvature of a polygon, localized at a vertex y, is de�ned by

κd(x, y, z) :=
2 tan( ϕ2 )
|x−y|+|z−y|

2

and as an alternative κd,2(x, y, z) :=
ϕ

|x−y|+|z−y|
2

where x and z are the vertices adjacent to y and ϕ = ](y − x, z − y) is the exterior angle at y, note κd,2 ≤ κd.
We then set minRad(p) := maxCurv(p)−1 := mini=1,...,n κ−1d (xi−1, xi , xi+1) if the polygon p has the consecutive
vertices xi, x0 := xn, xn+1 := x1; minRad2 and maxCurv2 are de�ned accordingly. The doubly critical self
distance of a polygon p is given as for a smooth curve if we de�ne dcrit(p) to consist of pairs (x, y) where
x = p(t) and y = p(s) and s locally extremizes u 7→ |p(t) − p(u)|2 and t locally extremizes v 7→ |p(v) − p(s)|2.
Now, the discrete thickness ∆n de�ned onPn, the class of arc length parametrisations of equilateral polygons
of length 1 with n segments is de�ned analogous to (1) by

∆n[p] = min{minRad(p), 2−1 dcsd(p)}

if all vertices are distinct and ∆n[p] = 0 if two vertices of p coincide. This notion of thickness was introduced
and investigated by Rawdon in [16–19] and by Millett, Piatek and Rawdon in [14]. In this series of works
alternative representations of smooth and discrete thickness were established that were then used to show
that not only does the value of theminimal discrete inverse thickness converge to theminimal smooth inverse
thickness in every tame knot class, but, additionally, a subsequence of the discrete equilateral minimizers,
which are shown to exist in every tame knot class, converge to a smooth minimizer of the same knot type in
the C0 topology as the number of segments increases, at least if we require that all discrete minimizers are
bounded in L∞. Furthermore, it was shown that discrete thickness is continuous, for example on the space
of simple equilateral polygons with �xed segment length. In [3, 19] similar questions for more general energy
functions were considered.

In the present work we continue this line of thought and investigate the way in which the discrete thick-
ness approximates smooth thickness in more detail. It will turn out that the right framework is given by Γ-
convergence. This notion of convergence that was invented by DeGiorgi is devised in such a way as to allow
the convergence of minimizers and even almost minimizers. For the convenience of the reader we summarise
the relevant facts on Γ-convergence in Section 2.

Theorem 1.1 (Convergence of discrete inverse to smooth inverse thickness). For every tame knot class K we
have that

∆−1n
Γ−→ ∆−1 on (C(K), || · ||W1,∞(S1 ,R3)).

Here, the addition of a knot class K means that only knots of this particular knot class are considered. The
functionals are extended by in�nity outside their natural domain. By the properties presented in Section 2
together with Proposition 1.4, we obtain the following convergence result of polygonal ideal knots to smooth
ideal knots improving the convergence in [19, Theorem 8.5] from C0 toW1,∞ = C0,1.
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Corollary 1.2 (Ideal polygonal knots converge to smooth ideal knots). Let K be a tame knot class, pn ∈
Pn(K) bounded in L∞ with |infPn(K) ∆−1n − ∆n[pn]−1| → 0. Then there is a subsequence

pnk
W1,∞(S1 ,R3)−−−−−−−→

k→∞
γ ∈ C(K) with ∆[γ]−1 = inf

C(K)
∆−1 = lim

k→∞
∆nk [pnk ]−1.

The subsequent compactness result is proven via a version of Schur’s Comparison Theorem (see Proposition
3.1) that allows to compare polygons with circles.

Proposition 1.3 (Compactness). Let pn ∈ Pn(K) be bounded in L∞ with lim infn→∞maxCurv(pn) < ∞. Then
there is γ ∈ C1,1(S1,Rd) and a subsequence

pnk
W1,∞(S1 ,Rd)−−−−−−−→

k→∞
γ ∈ C with maxCurv(γ) ≤ lim inf

n→∞
maxCurv(pn).

This result is then used to show another compactness result that additionally guarantees that the limit curve
belongs to the same knot class, if one assures that the doubly critical self distance is bounded too.

Proposition 1.4 (Compactness II). Let pn ∈ Pn(K) be bounded in L∞ with lim infn→∞ ∆n[pn]−1 < ∞. Then
there is

γ ∈ C(K) ∩ C1,1(S1,Rd) with pnk → γ in W1,∞(S1,Rd).

If the knot class is not �xed the unique absolute minimizers of ∆−1n is the regular n-gon.

Proposition 1.5 (Regular n-gon is unique minimizer of ∆−1n ). Let p ∈ Pn and gn be the regular n-gon. Then

∆n[gn]−1 ≤ ∆n[p]−1,

with equality if and only if p is a regular n-gon.

Organisation
The paper is organized as follows. In Section 2 we repeat the relevant facts about Γ-convergence necessary
to understand the course of this paper. The aim of Section 3 is to establish a version of Schur’s Compari-
son Theorem that allows to compare polygons with circles. This theorem is needed in Section 4 to prove the
compactness result Proposition 1.3. Then Section 5 and Section 6 are dedicated to the proof of the lim inf
and lim sup inequality, respectively, the two ingredients required to establish Γ-convergence. In Section 7 we
show that the unique absolute minimizer of inverse discrete thickness is the regular n-gon.

2 Prelude in Γ-convergence
In this section wewant to acquaint the reader with Γ-convergence and repeat its (to us) most important prop-
erty.

De�nition 2.1 ( Γ-convergence). Let X be a topological space, F,Fn : X → R := R ∪ {±∞}. We say that Fn
Γ-converges to F, written Fn

Γ→ F, if
– for every xn → x holds F(x) ≤ lim infn→∞ Fn(xn),
– for every x ∈ X there are xn → x with lim supn→∞ Fn(xn) ≤ F(x).

The �rst inequality is usually called lim inf inequality and the second one lim sup inequality. Note, that if
the functionals are only de�ned on subspaces Y and Yn of X and we extend the functionals by plus in�nity
on the rest of X it is enough to show that the lim inf inequality holds for every xn ∈ Yn, x ∈ X and the
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lim sup inequality for x ∈ Y and xn ∈ Yn in order to establish Fn
Γ→ F. In our application we have X = C(K),

Y = C(K) ∩ C1,1(S1,Rd) and Yn = Pn(K).

This convergence is modeled in such a way that it allows the convergence of minimizers and even almost
minimizers of the functionals Fn to minimizers of the limit functional F.

Theorem 2.2 (Convergence of minimizers, [4, Corollary 7.17, p.78]). Let Fn ,F : X → R with Fn
Γ→ F. Let ϵn >

0, ϵn → 0 and xn ∈ X with | inf Fn − Fn(xn)| ≤ ϵn. If xnk → x then

F(x) = inf F = lim
k→∞

Fn(xnk ).

In order to use this result in our application where we want to show that minimizers of the discrete func-
tional Fn converge to minimizers of the “smooth” functional F we do need Fn

Γ→ F as well as an additional
compactness result that show that there is a subsequence xnk → x with x ∈ X.

3 Schur’s Theorem for polygons
In this section we want to estimate for how many vertices a polygon that starts tangentially at a sphere stays
out of this sphere if the curvature of the polygon is bounded in terms of the radius of the sphere. It turns out
that make such an estimate we need Schur’s Comparison Theorem for a polygon and a circle. This theorem
for smooth curves basically says that if the curvature of a smooth curve is strictly smaller than the curvature
of a convex planar curve then the endpoint distance of the planar convex curve is strictly smaller than the
endpoint distance of the other curve. There already is a version of this theorem for classes of curves includ-
ing polygons, see [29, Theorem 5.1], however, with the drawback that the hypotheses there do not allow to
compare polygons and smooth curves.

Proposition 3.1 (Schur’s Comparison Theorem). Let p ∈ C0,1(I,Rd), I = [0, L] be the arc length parametri-
sation of a polygon with maxCurv2(p) ≤ K and KL ≤ π. Let η be the arc length parametrisation of a circle of
curvature K. Then

|η(L) − η(0)| < |p(L) − p(0)|.

Proof. Let p(ak) be the vertices of the polygon, a0 = 0. We write αi,j := ](p′(ti), p′(tj)), where tk is an interior
point of Ik := [ak−1, ak]. From the curvature boundwe get αi,i+1 ≤ K |Ii|+|Ii+1|

2 and hence for i ≤ jwe can estimate
αi,j ≤

∑j−1
k=i αk,k+1 ≤

K
2
∑j−1

k=i(|Ik| + |Ik+1|). Now,

|p(L) − p(0)|2 =
∫
I

∫
I

〈p′(s), p′(u)〉ds du =
n∑

i,j=1

∫
Ii

∫
Ij

cos(αi,j) =
n∑

i,j=1
i=j

|Ii||Ij| + 2
n∑

i,j=1
i<j

|Ii||Ij| cos(αi,j).
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Fig. 1. The angle ϕk,k+1 in the proof of Proposition 3.1.

Similarly,

|η(L) − η(0)|2 =
∫
I

∫
I

〈η′(s), η′(u)〉ds du =
n∑

i,j=1
i=j

∫
Ii

∫
Ij

〈η′(s), η′(u)〉ds du + 2
n∑

i,j=1
i<j

∫
Ii

∫
Ij

〈η′(s), η′(u)〉ds du

≤
n∑

i,j=1
i=j

|Ii||Ii| + 2
n∑

i,j=1
i<j

〈η(aj) − η(aj−1), η(ai) − η(ai−1)〉.

Write φi,j := ](η(aj)−η(aj−1), η(ai)−η(ai−1)). Then φi,j =
∑j−1

k=i φk,k+1, because the points η(ai) form a convex
plane polygon. From Figure 1 we see that φk,k+1 = K |Ik|+|Ik+1|

2 and hence αi,j ≤ φi,j. This allows us to continue
our estimate

|η(L) − η(0)|2 ≤
n∑

i,j=1
i=j

|Ii||Ii| + 2
n∑

i,j=1
i<j

|η(aj) − η(aj−1)||η(ai) − η(ai−1)| cos(φi,j)

<
n∑

i,j=1
i=j

|Ii||Ii| + 2
n∑

i,j=1
i<j

|Ii||Ij| cos(φi,j) ≤
n∑

i,j=1
i=j

|Ii||Ij| + 2
n∑

i,j=1
i<j

|Ii||Ij| cos(αi,j) = |p(L) − p(0)|2.

As we only need φ1,n = 2−1K
∑n−1

i=1 (|Ii| + |Ii+1|) ≤ π we can make do with KL ≤ π + 2−1K(|I1| + |In|) instead of
KL ≤ π.

Corollary 3.2 (Tangential polygon stays outside of sphere). Let p be an equilateral polygon of length L with
maxCurv2(p) ≤ K and KL ≤ π

2 . If p touches a sphere of curvature K at an endpoint then all other vertices of p lie
outside the sphere.



78 | Sebastian Scholtes

Fig. 2. The situation in the proof of Corollary 3.2.

Proof. Without loss of generality we might assume that the sphere is centred at the origin and that p touches
the sphere at p(0) = −re2 with u1 = e1, where r = K−1 and ui ∈ Sd−1 are the directions of the edges. We have
to show that |p(ak)| > r for k = 1, . . . , n. Let η be the arc length parametrisation of the circle of radius r about
the origin in the e1, e2 plane, starting at η(0) = p(0) with η′(0) = u1 = e1. On the unit sphere equipped with
the great circle distance, i.e., angle, we have π

2 = d(e1, e2) ≤ d(e1, u1)+
∑k−1

i=1 d(ui , ui+1)+d(uk , e2) and hence
u1 = e1 and the curvature bound imply

d(η′(ak−1), e2) = d(e1, e2) − d(e1, η′(ak−1)) =
π
2 − d(η

′(0), η′(ak−1)) =
π
2 −

ak−1∫
0

|η′′|dt

= π2 − Kak−1 =
π
2 − K

k−1∑
i=1

|Ii| + |Ii+1|
2 ≤ π2 −

k−1∑
i=1

d(ui , ui+1) ≤ d(uk , e2),

since η′|[0,L] is a parametrisationof theunit circle in the e1, e2 plane from e1 to e2with constant speed |η′′| = K.
Now, we can estimate

〈
p(ak) − p(0), p(0)

〉
=
〈 k∑

i=1

|Ii|ui , −re2
〉
= −r

k∑
i=1

|Ii| cos(d(ui , e2)) ≥ −r
k∑
i=1

|Ii| cos(d(η′(ai−1), e2))

≥ −r
k∑
i=1

∫
Ii

cos(d(η′(t), e2)) dt =
ak∫
0

〈η′(t), −re2〉dt =
〈
η(ak) − η(0), η(0)

〉
,

(2)

as d(η′(t), e2) ≤ d(η′(ai−1), e2) for t ∈ Ii. Using Schur’s Comparison Theorem, Proposition 3.1, and (2) we
conclude

|p(ak)|2 = |p(ak) − p(0) + p(0)|2 = |p(ak) − p(0)|2 + 2〈p(ak) − p(0), p(0)〉 + |p(0)|2

> |η(ak) − η(0)|2 + 2〈η(ak) − η(0), η(0)〉 + |η(0)|2 = |η(ak)|2 = r2.

4 Compactness
Note, that since the domain is bounded we have C0,1(S1,Rd) = W1,∞(S1,Rd).

Proposition 4.1 (Compactness). Let pn ∈ Pn(K) be bounded in L∞ with lim infn→∞maxCurv(pn) < ∞. Then
there is γ ∈ C1,1(S1,Rd) and a subsequence

pnk
W1,∞(S1 ,Rd)−−−−−−−→

k→∞
γ ∈ C with maxCurv(γ) ≤ lim inf

n→∞
maxCurv(pn).
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Proof. Step 1Without loss of generality, by taking subsequences if necessary, we assumemaxCurv(pn) ≤ K <
∞ for all n ∈ N. As pn is bounded in W1,∞ there is a subsequence (for notational convenience denoted by
the same indices) converging to γ ∈ W1,2(S1,Rd) strongly in C0(S1,Rd) and weakly in W1,2(S1,Rd). First
we have to show that γ is also parametrised by arc length, i.e., |γ′| = 1 a.e.. Since |p′n| = 1 a.e. testing with
φ = γ′ · χ{|γ′|>1}, χA the characteristic function of A, yields

0←
∫
S1

〈p′n − γ′, φ〉dt =
∫

{|γ′|>1}

〈p′n − γ′, γ′〉dt ≤
∫

{|γ′|>1}

(|p′n||γ′| − |γ′|2) dt =
∫

{|γ′|>1}

|γ′| (1 − |γ′|)︸ ︷︷ ︸
<0

dt

and thus |γ′| ≤ 1 = |p′n| a.e.. Additionally, we know from Schur’s Theorem, Proposition 3.1, that if η is the arc
length parametrisation of a circle of curvature K, then for a.e. t we have that

|γ′(t)| = lim
h→0

∣∣∣ γ(t + h) − γ(t)h

∣∣∣ ≥ lim
h→0

lim
n→∞

(∣∣∣pn(t + h) − pn(t)h

∣∣∣ − ∣∣∣ (γ(t + h) − pn(t + h)) − (γ(t) − pn(t))h

∣∣∣)
= lim
h→0

lim
n→∞

∣∣∣pn(t + h) − pn(t)h

∣∣∣ ≥ lim
h→0

∣∣∣η(t + h) − η(t)h

∣∣∣ = |η′(t)| = 1.

Step 2Denote by p′− and p′+ the left and right derivative of a polygon. From the curvature bound andCorollary
3.2 we know that any sphere of curvature K attached tangentially to the direction p′+n (t) at a vertex pn(t), and
thus a whole horn torus, cannot contain any vertex of pn restricted to (t, t+ π

2K ), and the same is true for p′−n (t)
with regard to (t − π

2K , t). Let

tnk → t such that pnk (tnk ) is a vertex and p′±nk (tnk )→ u± ∈ Sd−1. (3)

Then u+ = u− since

d(u+, u−) ≤ d(u+, p′+nk (tnk )) + d(p
′+
nk (tnk ), p

′−
nk (tnk )) + d(p

′−
nk (tnk ), u

−) ≤ d(u+, p′+nk (tnk )) +
K
nk

+ d(p′−nk (tnk ), u
−)→ 0.

For every t we can �nd a sequence of tnk with (3) and thanks to pnk → γ in C0 the (two) horn tori belonging
to pnk (tnk ) converge to a horn torus at γ(t) in direction u+ = u− such that γ does not enter the torus on the
parameter range B π

4K
(t). Then according to [6, Satz 2.14, p.26] we have that γ ∈ C1,1(S1,Rd) andmaxCurv(γ) ≤

K. Especially, γ′(t) = u±.
Step 3 If we had ||p′n − γ′||L∞ → 0 then for every ϵ > 0 there is an N such that for n ≥ N we have that

|p′+n ( in ) − γ
′( in )| = |p

′
n(t) − γ′( in )| ≤ |p

′
n(t) − γ′(t)| + |γ′(t) − γ′( in )| ≤ ϵ +

K
n

for all i ∈ {0, . . . , n − 1}, t ∈ ( in ,
i+1
n ). Hence,

sup
i=0,...,n−1

|p′+n ( in ) − γ
′( in )| −−−→n→∞

0. (4)

Now assume that (4) holds. Let ϵ > 0. Then there is N ∈ N such that for every n ≥ N and every t such that
pn(t) is not a vertex we �nd i = i(n) with

|p′n(t) − γ′(t)| ≤ |p′+n ( in ) − γ
′( in )| + |γ

′( in ) − γ
′(t)| ≤ ϵ + Kn → 0.

Thus, (4) is equivalent to ||p′n − γ′||L∞ → 0. Assume that ||p′nk − γ′||L∞ ̸→ 0. Then there is a sequence of
parameters tnk as in (3) with p′+nk (tnk ) → u+ ̸= γ′(t), which contradicts the results of Step 1. Hence pnk → γ in
W1,∞

Proposition 4.2 (Compactness II). Let pn ∈ Pn(K) be bounded in L∞ with lim infn→∞ ∆n[pn]−1 < ∞. Then
there is

γ ∈ C(K) ∩ C1,1(S1,Rd) with pnk → γ in W1,∞(S1,Rd).
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Proof. Without loss of generality let ∆n[pn]−1 ≤ K < ∞ for all n ∈ N. Note, that ∆n[pn]−1 < ∞ means that
pn is injective. From Proposition 1.3 we know that there is a subsequence converging to γ ∈ C ∩ C1,1(S1,Rd)
in W1,∞(S1,Rd). It remains to be shown that γ ∈ K. In order to deduce this from Proposition 4.3 we must
show that γ is injective. Assume that this is not the case. Then there are s ̸= t with γ(s) = γ(t)=x. Let
rn := ||γ − pn||L∞(S1 ,Rd) +

1
n , i.e., pn(s), pn(t) ∈ Brn (x), and let n be large enough to be sure that there

are u, v with pn(u), pn(v) ̸∈ B4rn (x). The singly critical self distance scsd(p) of a polygon p is given by
scsd(p) := min(y,z)∈crit(p)|z − y|, where crit(p) consists of pairs (y, z) where y = p(t) and z = p(s) and s
locally extremizes w 7→ |p(t) − p(w)|2. In [14, Theorem 3.6] it was shown that for p ∈ Pn we have that
∆n[p] = min{minRad(p), scsd(p)}. Since the mapping f (w) = |pn(t) − pn(w)| is continuous with f (s) ≤ 2rn
and f (u), f (v) ≥ 3rn we have

scsd(pn) ≤ min
α
f ≤ f (s) = |pn(t) − pn(s)| ≤ 2rn → 0,

where α is the arc on S1 from u to v that contains s. This contradicts ∆n[pn]−1 ≤ K. Thus, we have proven the
proposition.

Proposition 4.3 (Convergence of polygons does not change knot class). Let γ ∈ C ∩ C1,1(S1,Rd) be injective
and pn ∈ Pn(K) with pn → γ in W1,∞. Then γ ∈ K.

Proof. Step 1 For ||p − γ||W1,∞ ≤ ∆[γ]
2 [7, Lemma 4] together with Lemma 4.4 and [5, 4.8 Theorem (8)] allows us

to estimate

|γ−1(ξγ(γ(s))) − γ−1(ξγ(p(s)))| ≤ c̃−1|ξγ(γ(s)) − ξγ(p(s))| ≤ 2c̃−1|γ(s) − p(s)|. (5)

Here, ξγ is the nearest point projection onto γ. This means

|p′(s) − γ′(γ−1(ξγ(p(s))))| ≤ |p′(s) − γ′(s)| + |γ′(s) − γ′(γ−1(ξγ(p(s))))|
≤ ||p′ − γ′||L∞ + ∆[γ]−1|s − γ−1(ξγ(p(s)))| = ||p′ − γ′||L∞ + ∆[γ]−1|γ−1(ξγ(γ(s))) − γ−1(ξγ(p(s)))|
≤ ||p′ − γ′||L∞ + ∆[γ]−12c̃−1|γ(s) − p(s)| ≤ C||p − γ||W1,∞ .

(6)

Note, that although we have a �xed parameter s we still can estimate |p′(s) − γ′(s)| ≤ ||p′ − γ′||L∞ since p′ − γ′ is
piecewise continuous. If p(s) is a vertex the estimate still holds if we identify p′(s) with either the left or right
derivative.
Step 2 Let sn , tn ∈ I, sn < tn with ξγ(pn(sn)) = ξγ(pn(tn)). We want to show that this situation can only
happen for a �nite number of n. Assume that this is not true. Let un ∈ [sn , tn] such that pn(un) is a vertex and
maximizes the distance to γ(yn) + γ′(yn)⊥ for yn = γ−1(ξγ(p(sn))). For the right derivative p′+(un) we have that
d(p′+(un), γ′(yn)) ≥ π

2 . As in (5) we have |pn(sn) − pn(tn)| ≤ 4c̃−1||pn − γ||W1,∞ and hence for some subsequence
sn → s0, tn → t0 and pn(sn) → γ(s0), pn(tn) → γ(t0) so that s0 = t0, since γ is injective. Therefore also
pn(un) → γ(t0). But on the other hand (6) for s = un, γ−1(ξγ(pn(un))) = zn and d the distance on the sphere
gives a contradiction via

π
2 −

π
2 C||pn − γ||W1,∞

(6)
≤ d(p′+(un), γ′(yn)) − d(p′+(un), γ′(zn))

≤ d(γ′(yn), γ′(zn)) ≤
π
2 ∆[γ]

−1|yn − zn|
(5)
≤ π2 ∆[γ]

−12c̃−1|pn(sn) − pn(un)| → 0.

Step 3 Now we are in a situation similar to [9, Proof of Lemma 5], [27, Theorem 4.10] and as there we can
construct an ambient isotopy by moving the point pn(s) to γ(γ−1(ξγ(pn(s)))) along a straight line segment in
the circular cross section of the tubular neighbourhood about γ.

Lemma 4.4 (Injective locally bi-L. mappings on compact sets are globally bi-L.). Let (K, d1), (X, d2) be non-
empty metric spaces, K compact and f : K → X be an injective mapping that is locally bi-Lipschitz, i.e., there
are constants c, C > 0 such that for every x ∈ K there is a neighbourhood Ux of x with

c d1(x, y) ≤ d2(f (x), f (y)) ≤ Cd1(x, y) for all y ∈ Ux .
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Fig. 3. The situation in the proof of Proposition 4.3.

Then there are constants c̃, C̃ > 0 with

c̃ d1(x, y) ≤ d2(f (x), f (y)) ≤ C̃d1(x, y) for all x, y ∈ K. (7)

Proof. By Lebesgue’s Covering Lemma we obtain a diam(K) > δ > 0 such that (Bδ(x))x∈K is a re�nement of
(Ux)x∈K . Then Kδ := {(x, y) ∈ K2 | d1(x, y) ≥ δ} is compact and non-empty. Hence

0 < ϵ := min
(x,y)∈Kδ

d2(f (x), f (y)) ≤ max
(x,y)∈Kδ

d2(f (x), f (y)) =: M < ∞,

since diag(K) ∩ Kδ = ∅ and f is continuous and injective. Thus

d2(f (x), f (y)) ≤ M = C′δ ≤ C′d1(x, y) for all x, y ∈ Kδ

holds for C′ := Mδ−1 and

c′d1(x, y) ≤ c′diam(K) = ϵ ≤ d2(f (x), f (y)) for all x, y ∈ Kδ

for c′ := ϵdiam(K)−1. Choosing c̃ := min{c, c′} and C̃ := max{C, C′} yields (7), because (x, y) ̸∈ Kδ implies
y ∈ Bδ(x) ⊂ Ux.

5 The lim inf inequality
Using Schur’s Theorem for curves of �nite total curvature, see for example [29, Theorem 5.1], we can prove
Rawdon’s result [16, Lemma 2.9.7, p.58] for embedded C1,1 curves. Note, that especially the estimate from [12,
Proof of Theorem 2] that is implicitly used in the proof of [16, Lemma 2.9.7, p.58] holds for C1,1 curves.

Lemma 5.1 (Approximation of curves with dcsd(γ)
2 < minRad(γ)). Let γ ∈ C(K) ∩ C1,1(S1,Rd) and p ∈ Pn for

some n such that

minRad(γ) − dcsd(γ)
2 = δ > 0 and ||γ − p||L∞ < ϵ

for ϵ < δ/4. Then

dcsd(p) ≤ dcsd(γ) + 2ϵ.
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Proof. Let minRad(γ) − dcsd(γ)
2 = δ > 0, ϵ < δ/4 and set d := 1

2 (minRad(γ) + dcsd(γ)
2 ). By [16, Lemma 2.9.7 2.,

p.58] there are (s0, t0) ∈ A
γ
πd := {(s, t) | d(s, t) ≥ πd}, see notation in [16], such that

|p(s0) − p(t0)| < dcsd(γ) + 2ϵ.

Now, let (s, t) ∈ Aγπd such that

|p(s) − p(t)| = min
(s,t)∈Aγπd

|p(s) − p(t)| ≤ |p(s0) − p(t0)| < dcsd(γ) + 2ϵ. (8)

Then either (s, t) lie in the open set Aγπd := {(s, t) | d(s, t) > πd} or by [16, Lemma 2.9.7 1., p.58] we have that

|p(t) − p(s)| ≥ minRad(γ) + dcsd(γ)
2 − 2ϵ = dcsd(γ) + δ − 2ϵ > dcsd(γ) + 2ϵ,

which contradicts (8). Hence (s, t) lie in the open set Aγπd. This means we can use the argument from [16,
Lemma 2.9.8, p.60] to show that p(s) and p(t) are doubly critical for p and therefore

dcsd(p) ≤ |p(s) − p(t)| ≤ dcsd(γ) + 2ϵ.

Proposition 5.2 (The lim inf inequality). Let γ ∈ C(K), pn ∈ Pn(K) with pn → γ in W1,∞ for n →∞. Then

∆[γ]−1 ≤ lim inf
n→∞

∆n[pn]−1.

Proof. By Proposition 1.4 we might assume without loss of generality that γ ∈ C1,1(S1,Rd). In case ∆[γ]−1 =
maxCurv(γ) the proposition follows from Proposition 1.3 and in case ∆[γ]−1 = 2

dcsd(γ) > maxCurv(γ) Lemma 5.1
gives lim supn→∞ dcsd(pn) ≤ dcsd(γ), so that

∆[γ]−1 = 2
dcsd(γ) ≤ lim inf

n→∞

2
dcsd(pn)

≤ lim inf
n→∞

∆n[pn]−1.

Clearly, the previous proposition also holds for subsequences pnk .

6 The lim sup inequality
Proposition 6.1 (The lim sup inequality). For every γ ∈ C(K)∩C1,1(S1,Rd) there are pn ∈ Pn(K)with pn → γ
in W1,∞ and

lim sup
n→∞

∆n[pn]−1 ≤ ∆[γ]−1.

Proof. In [20, Proposition 8] we showed that if n is large enough we can �nd an equilateral inscribed closed
polygon p̃n of length L̃n ≤ 1 with n vertices that lies in the same knot class as γ. By rescaling it to unit length
via pn(t) = LL̃−1n p̃n(L̃nL−1t), L = 1, we could show in addition that pn → γ inW1,∞(S1,Rd), as n →∞.
Step 1 From Figure 4 we see r = r(x, y, z) and

κd(x, y, z) =
4 tan( ϕ2 )

|x − y| + |z − y| =
2 tan( α+β2 )

sin(α) + sin(β)
1
r .

Thus, we can estimate

0 ≤
2 tan( α+β2 )

sin(α) + sin(β) − 1 ≤
tan(α + β)

sin(α) + sin(β) − 1 ≤
tan(α + β)
sin(α + β) − 1 = 1 − cos(α + β)

cos(α + β) ≤ (α + β)2 (9)
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Fig. 4. Quantities for the computation of discrete curvature.

for α, β ∈ [0, π6 ], since

sin(α) + sin(β) = 2
(
sin( α2 ) cos(

α
2 ) + sin(

β
2 ) cos(

β
2 )
)
≤ 2
(
sin( α2 ) + sin(

β
2 )
)

≤ 2
sin( α2 ) cos(

β
2 ) + sin(

β
2 ) cos(

α
2 )

cos( α+β2 )
= 2 tan( α+β2 ),

2 tan( x2 ) ≤
2 tan( x2 )
1−tan2( x2 )

= tan(x) and 1
2 ≤ cos(α + β), as well as 1 − (α+β)2

2 ≤ cos(α + β). Let x = γ(s), y = γ(t) and
z = γ(u) for s < t < u with |t − s|, |u − t| ≤ 2L

n . Now, again by Figure 4, we have

2Ln−1 ≥ |t − s| ≥ |y − x| = 2 sin(α)r ≥ 4π−1αr ≥ 4π−1α∆[γ] ≥ α∆[γ],

or in other words α ≤ 2L∆[γ]−1n−1 and the same is true for β. According to (9) we can estimate

κd(x, y, z) ≤
1 + (α + β)2

r ≤ (1 + 16L2∆[γ]−2n−2)∆[γ]−1.

This means for the sequence of inscribed polygons p̃n that

lim sup
n→∞

maxCurv(p̃n) ≤ ∆[γ]−1.

Step 2According to [16, Lemma 2.8.2, p.46] the total curvature between two doubly critical points of polygons
must be at least π. Let p̃n(sn) and p̃n(tn) be doubly critical for pn. Using the curvature bound from the previous
step we obtain π ≤ 2∆[γ]−1|tn − sn|, so that sn and tn cannot converge to the same limit. From Lemma 6.2 we
directly obtain

dcsd(γ) ≤ lim inf
n→∞

dcsd(p̃n) ⇒ lim sup
n→∞

2
dcsd(p̃n)

≤ 2
dcsd(γ) ≤ ∆[γ]

−1.

Step 3 Noting that LL̃−1n → 1 the previous steps yield

lim sup
n→∞

∆n[pn]−1 = lim sup
n→∞

max
{
maxCurv(pn),

2
dcsd(pn)

}
≤ ∆[γ]−1.

Lemma 6.2 (Limits of double critical points are double critical). Let γ ∈ C(K) ∩ C1,1(S1,Rd), pn ∈ Pn with
pn → γ in W1,∞(S1,Rd). Let sn ̸= tn be such that sn → s, tn → t and s ̸= t. If pn(sn) and pn(tn) are double
critical for pn. Then γ(s) and γ(t) are double critical for γ.
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Proof. Denote by p′+ and p′− the right and left derivative of a polygon p. Since the piecewise continuous
derivatives p′n converge in L∞ to the continuous derivatives γ we have

0 ≥ 〈p′+n (sn), pn(tn) − p(sn)〉 · 〈p′−n (sn), pn(tn) − p(sn)〉 → 〈γ′(s), γ(t) − γ(s)〉2.

The analogous result is obtained if we change the roles of s and t, so that γ(t) and γ(s) are double critical
for γ.

7 Discrete Minimizers
Lemma 7.1 (Computation of ∆n for regular n-gon gn). For n ≥ 3 holds

1
∆n[gn]

= 2n tan( πn ).

Proof. From Figure 5 we see that for the regular n-gon gn of length 1 we have

dcsd(gn) ≥
1

n tan( πn )

and as maxCurv(gn) = 2n tan( πn ) by Figure 4 we have shown the proposition.

Fig. 5. Computation of dcsd for regular n-gons of length 1.

Proposition 7.1 (Regular n-gon is unique minimizer of ∆−1n ). Let p ∈ Pn then

∆n[gn]−1 ≤ ∆n[p]−1,

with equality if and only if p is a regular n-gon.

Proof. According to Fenchel’s Theorem for polygons, see [15, 3.4 Theorem], the total curvature is at least 2π,
i.e.,

∑n
i=1 ϕi ≥ 2π for the exterior angles ϕi = ](xi − xi−1, xi+1 − xi). This means there must be j ∈ {1, . . . , n}

with ϕj ≥ 2π
n . Thus

∆n[p]−1 ≥ maxCurv(p) ≥ 2n tan( ϕj2 ) ≥ 2n tan(
π
n ) = ∆n[gn]

−1. (10)

Equality holds in Fenchel’s Theorem if and only if p is a convex planar curve. If ϕj < 2π
n theremust be ϕk > 2π

n
and thus ∆n[p]−1 > ∆n[gn]−1. Since the regular n-gon gn is the only convex equilateral polygon with ϕi = 2π

n
for i = 1, . . . , n we have equality in (10) if and only if p is a regular n-gon.
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