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Abstract: We investigate the relationship between a discrete version of thickness and its smooth counterpart.
These discrete energies are defined on equilateral polygons with n vertices. It will turn out that the smooth
ropelength, which is the scale invariant quotient of length divided by thickness, is the I'-limit of the discrete
ropelength for n — oo, regarding the topology induced by the Sobolev norm ||« || 1., rq)- This result directly
implies the convergence of almost minimizers of the discrete energies in a fixed knot class to minimizers of
the smooth energy. Moreover, we show that the unique absolute minimizer of inverse discrete thickness is the
regular n-gon.
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1 Introduction

In this article we are concerned with the relationship of a discrete version of the thickness A of a curve y,
defined by

Alyl:= inf  r(x,y,2)
X,Y,2€y(S1)
X=y=2=x
on C, the set of all curves y : S; — R? that are parametrised by arc length, ie., y € co1(sy, Rd) =
Wh=(S1, RY) with |y'| = 1 a.e., and have length fSl [y'|dt = 1. Here, S; is the circle of length 1 and r(x, y, 2)
the radius of the unique circle that contains x, y and z, which is set to infinity if the three points are collinear.
This notion of thickness was introduced in [8] and is equivalent to the Federer’s reach, see [5]. Geometrically,
the thickness of a curve gives the radius of the largest uniform tubular neighbourhood about the curve that
does not intersect itself. The ropelength, which is length divided by thickness, is scale invariant and a knot is
called ideal if it minimizes ropelength in a fixed knot class or, equivalently, minimizes this energy amongst all
curves in this knot class with fixed length. These ideal knots are of great interest, not only to mathematicians
but also to biologists, chemists, physicists, . . ., since they exposit interesting physical features and resemble
the time-averaged shapes of knotted DNA molecules in solution [10, 11, 25], see [24, 26] for an overview of
physical knot theory with applications. The existence of ideal knots in every knot class was settled in [2, 7, 9]
and it was found that the unique absolute minimizer (in all knot classes) is the round circle. Furthermore,
this energy is self-repulsive, meaning that finite energy prevents the curve from having self intersections. By
now it is well-known that thick curves, or in general manifolds of positive reach, are of class C!'! and vice
versa, see [5, 13, 21, 22]. In [2] it was shown that ideal links must not be of class C?> and computer experiments
in [28] suggest that C**! regularity is optimal for knots, too. Still, there is a conjecture [2, Conjecture 24] that
ropelength minimizers are piecewise analytic. Further interesting properties of critical points for the rope-
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length as well as the Euler-Lagrange equation were derived in [1, 22, 23].

Another way to write the thickness of an arc length curve is
Aly] = min{minRad(y), 2"* desd(y)}, (1)

which by [22] holds for all arc length curves with positive thickness. The minimal radius of curvature
minRad(y) of y is the inverse of the maximal curvature maxCurv(y) := ||y”||;~ and dcsd(y) := min, y)ederit) Y=
x| is the doubly critical selfdistance. The set of doubly critical points dcrit(y) of a C! curve y consists of all pairs
(x, y) where x = y(t) and y = y(s) are distinct points on y so that (y'(t), y(t) — y(s)) = (¥'(s), y(t) - y(s)) = 0,
i.e., s is critical for u — |y(t) - y(u)|* and t for v — |y(v) - y(s)|>.

Appropriate versions of thickness for polygons derived from the representation in (1) are already avail-
able. The curvature of a polygon, localized at a vertex y, is defined by

2tan(2)
|x-y|+|z-y|
2

¢

Ka\X zZ) = N S—
al.y,2) ESHES]

and as an alternative k4,(x,y, 2) :=
where x and z are the vertices adjacent to y and ¢ = £(y - x, z - y) is the exterior angle at y, note k4, < k.
We then set minRad(p) := maxCurv(p) ' := min._;,_, k' (xi-1, X;, X;11) if the polygon p has the consecutive
vertices xj, Xo := Xn, Xn+1 := X1; minRad, and maxCurv, are defined accordingly. The doubly critical self
distance of a polygon p is given as for a smooth curve if we define dcrit(p) to consist of pairs (x, y) where
x = p(t) and y = p(s) and s locally extremizes u — |p(t) - p(u)\2 and t locally extremizes v — |p(v) - p(s)|2.
Now, the discrete thickness A, defined on Py, the class of arc length parametrisations of equilateral polygons
of length 1 with n segments is defined analogous to (1) by

An[p] = min{minRad(p), 2" desd(p)}

if all vertices are distinct and A,[p] = O if two vertices of p coincide. This notion of thickness was introduced
and investigated by Rawdon in [16-19] and by Millett, Piatek and Rawdon in [14]. In this series of works
alternative representations of smooth and discrete thickness were established that were then used to show
that not only does the value of the minimal discrete inverse thickness converge to the minimal smooth inverse
thickness in every tame knot class, but, additionally, a subsequence of the discrete equilateral minimizers,
which are shown to exist in every tame knot class, converge to a smooth minimizer of the same knot type in
the C° topology as the number of segments increases, at least if we require that all discrete minimizers are
bounded in L. Furthermore, it was shown that discrete thickness is continuous, for example on the space
of simple equilateral polygons with fixed segment length. In 3, 19] similar questions for more general energy
functions were considered.

In the present work we continue this line of thought and investigate the way in which the discrete thick-
ness approximates smooth thickness in more detail. It will turn out that the right framework is given by I'-
convergence. This notion of convergence that was invented by DeGiorgi is devised in such a way as to allow
the convergence of minimizers and even almost minimizers. For the convenience of the reader we summarise
the relevant facts on I'-convergence in Section 2.

Theorem 1.1 (Convergence of discrete inverse to smooth inverse thickness). For every tame knot class X we
have that

A LAt on(CK), [+ [lwies,m0)-

Here, the addition of a knot class K means that only knots of this particular knot class are considered. The
functionals are extended by infinity outside their natural domain. By the properties presented in Section 2
together with Proposition 1.4, we obtain the following convergence result of polygonal ideal knots to smooth
ideal knots improving the convergence in [19, Theorem 8.5] from C° to Wb = %1,
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Corollary 1.2 (Ideal polygonal knots converge to smooth ideal knots). Let X be a tame knot class, pn €
Pn(X) bounded in L™ with [infy (5 Ay' = An[pn]™!| — 0. Then there is a subsequence

1,00 3
P, LTCOED) oK) with Ayl = inf A7 = lim A [pn] .
k—ro0 C(K) k—ro0

The subsequent compactness result is proven via a version of Schur’s Comparison Theorem (see Proposition
3.1) that allows to compare polygons with circles.

Proposition 1.3 (Compactness). Let p, € Pn(X) be bounded in L* with lim inf,_.. maxCurv(p,) < oo. Then
thereisy € C“(S1, RY) and a subsequence

1,00 d
DPny % y € € with maxCurv(y) < lini inf maxCurv(p,).
—>00 n—-oo

This result is then used to show another compactness result that additionally guarantees that the limit curve
belongs to the same knot class, if one assures that the doubly critical self distance is bounded too.

Proposition 1.4 (Compactness II). Let pn € Pn(X) be bounded in L* with liminf,_seo Au[pn]™ < oco. Then
there is

y € CK)NC (S, RY)  with pn, — yin W(S1, RY).
If the knot class is not fixed the unique absolute minimizers of A! is the regular n-gon.

Proposition 1.5 (Regular n-gon is unique minimizer of A;). Let p € Pn and gn be the regular n-gon. Then

An[gn]_l < An[p]_l s

with equality if and only if p is a regular n-gon.

Organisation

The paper is organized as follows. In Section 2 we repeat the relevant facts about I'-convergence necessary
to understand the course of this paper. The aim of Section 3 is to establish a version of Schur’s Compari-
son Theorem that allows to compare polygons with circles. This theorem is needed in Section 4 to prove the
compactness result Proposition 1.3. Then Section 5 and Section 6 are dedicated to the proof of the liminf
and lim sup inequality, respectively, the two ingredients required to establish I'-convergence. In Section 7 we
show that the unique absolute minimizer of inverse discrete thickness is the regular n-gon.

2 Prelude in I'-convergence

In this section we want to acquaint the reader with I'-convergence and repeat its (to us) most important prop-
erty.

Definition 2.1 (I'-convergence). Let X be a topological space, F, Fn : X — R := R U {zco}. We say that F,
I'-converges to F, written £> F, if

- for every xn — x holds F(x) < liminf,_scec Fn(xn),

— for every x € X there are x, — x with limsup,,_,., Fn(xn) < F(x).

The first inequality is usually called lim inf inequality and the second one lim sup inequality. Note, that if
the functionals are only defined on subspaces Y and Y, of X and we extend the functionals by plus infinity
on the rest of X it is enough to show that the liminf inequality holds for every x, € Y», x € X and the
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lim sup inequality for x € Y and x, € Y, in order to establish &, L 7. nour application we have X = €(X),
Y = €(K) N CP(S1, RY) and Yy = Pu(X).

This convergence is modeled in such a way that it allows the convergence of minimizers and even almost
minimizers of the functionals ¥, to minimizers of the limit functional &.

Theorem 2.2 (Convergence of minimizers, [4, Corollary 7.17, p.78]). Let Fn, F : X — R with F L F Leten >
0, en — 0 and x,, € X with |inf F, — Fu(xn)| < €n. If Xxn, — x then

F(x) =inf F = lim Fn(xn,).
k—s oo

In order to use this result in our application where we want to show that minimizers of the discrete func-
tional &, converge to minimizers of the “smooth” functional ¥ we do need F, L 7 as well as an additional
compactness result that show that there is a subsequence x,, — x with x € X.

3 Schur’s Theorem for polygons

In this section we want to estimate for how many vertices a polygon that starts tangentially at a sphere stays
out of this sphere if the curvature of the polygon is bounded in terms of the radius of the sphere. It turns out
that make such an estimate we need Schur’s Comparison Theorem for a polygon and a circle. This theorem
for smooth curves basically says that if the curvature of a smooth curve is strictly smaller than the curvature
of a convex planar curve then the endpoint distance of the planar convex curve is strictly smaller than the
endpoint distance of the other curve. There already is a version of this theorem for classes of curves includ-
ing polygons, see [29, Theorem 5.1], however, with the drawback that the hypotheses there do not allow to
compare polygons and smooth curves.

Proposition 3.1 (Schur’s Comparison Theorem). Let p € C>'(I,R%), I = [0, L] be the arc length parametri-
sation of a polygon with maxCurv,(p) < K and KL < 7. Let n be the arc length parametrisation of a circle of
curvature K. Then

In(L) - n(0)| < |p(L) - p(0).

Proof. Let p(ay) be the vertices of the polygon, ao = 0. We write a; ; := £(p'(t;), p'(¢;)), where t, is an interior
point of I k = lay-1, ak] From the curvature bound we get a; ;1 < K “';M and hence for i < j we can estimate
@iy < S0 Qgenr < & STk + [T |). Now,

p@) - pO)P / / PO P asau=Y" [ [ eosta) = Yl 2 > il costa.

11111 I 111 1_]_1
i=j )
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Fig. 1. The angle ¢ .1 in the proof of Proposition 3.1.

Similarly,

n

@) -n©O)° = [ [, n@ydsdu=>" [ [(n(s),nw)dsdu+2 n (n'(), ' (w)) ds du
/] /] >//

< S IL|IL + 2> (n(ay) - n(aj), n(a;) - nlai-1)).

i,j=1 i,j=1
i=j i<j

Write ¢;j := £(n(a;)-n(aj-1), n(a;)-n(a;-1)). Then ; ; = Z’,;li @ k+1, because the points n(a;) form a convex
plane polygon. From Figure 1 we see that @y y.1 = K M and hence a; ; < ¢; ;. This allows us to continue
our estimate

(@) -n)* <> ILlL| +2)In(ap) - n(a;-1)lna) - n(ai-1)| cos(i,)

i,j=1 i,j=1
i=j i<j
n n n n
<> I+ 2 I cos(gi) < > LI+ 2> |l cos(a ;) = |p(L) - p(0)]?.
i,j=1 ij=1 ij=1 i,j=1
i=j i<j i=j i<j

O

As we only need @1, = 27 'K 31" ({;] + |Ii11]) < m we can make do with KL < 7 + 27 ' K(|1| + |In|) instead of
KL < m.

Corollary 3.2 (Tangential polygon stays outside of sphere). Let p be an equilateral polygon of length L with
maxCurv,(p) < K and KL < 5. If p touches a sphere of curvature K at an endpoint then all other vertices of p lie
outside the sphere.
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7(0) =u=e

Fig. 2. The situation in the proof of Corollary 3.2.

Proof. Without loss of generality we might assume that the sphere is centred at the origin and that p touches
the sphere at p(0) = -re, with u; = e, wherer = K"* and u; € S4-1 are the directions of the edges. We have
to show that |p(ay)| > rfork = 1,..., n. Let n be the arc length parametrisation of the circle of radius r about
the origin in the ey, e, plane, starting at 7(0) = p(0) with '(0) = u; = e;. On the unit sphere equipped with
the great circle distance, i.e., angle, we have J = d(e1, e>) < d(eq, u1) + Zf;ll d(u;, uj,1) + d(uy, e;) and hence
u; = e; and the curvature bound imply

T[ —_

d(n'(ai-1), ) = d(es, e2) - dlex, n'(a-1) = 5 - d('(0), n'(a-1) = 5 - / | dt
0

k-1 k-1
b4 b4 L| +|I; b4
=5 ~Kap1=5-K -51 il + liaa 2‘ in] 5~ .El d(u;, ujq) < d(uy, e2),
i= i=

since | [0,1] is @ parametrisation of the unit circlein the e1, e, plane from e, to e, with constant speed In’| = K.
Now, we can estimate

k k k
(p(@) - p(©0), pO) = ( S ILilui, ~rex) = =r > |l cos(d(wi, €2)) = = Y |Ii| cos(d( (ai-1), €2))
i-1 i=1 i=1

; @
k k

sy / cos(d(n (), e>)) dt = / (0 (6), ~re2) dt = (n(ay) - n(0), 7(0)),
=17 0

as d(n'(t), e2) < d(n'(a;-1), e;) for t € I;. Using Schur’s Comparison Theorem, Proposition 3.1, and (2) we
conclude

Ip(a)|* = [p(ax) - p(0) + p(0) = |p(ar) - p(0)* + 2(p(az) - p(0), p(0)) + [p(0)*
> [n(ag) - n(0))? + 2(n(ay) - n(0), n(0)) + |n(0)|* = [n(ay)|* = r*.

4 Compactness

Note, that since the domain is bounded we have C®1(S;, R?) = WL*2(S;, RY).

Proposition 4.1 (Compactness). Let pn € Pn(X) be bounded in L*° with lim inf,_,.. maxCurv(p,) < co. Then
thereisy € C*(S1, RY) and a subsequence

1,00 d
P w y € € with maxCurv(y) < liminf maxCurv(pn).
—yo0 n—oo
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Proof. Step 1 Without loss of generality, by taking subsequences if necessary, we assume maxCurv(pn) < K <
oo for all n € N. As p,, is bounded in W' there is a subsequence (for notational convenience denoted by
the same indices) converging to y € W'2(S;, R?) strongly in C°(S;, RY) and weakly in W?(S;, RY). First
we have to show that y is also parametrised by arc length, i.e., |y'| = 1 a.e.. Since |p,,| = 1 a.e. testing with
o=y -x {ly>1}> Xa the characteristic function of 4, yields

0%/@;—y3<p>dt= / D=y, y)dt = /(|p’n|\y’|—\y'\2)dt= / 1@~ y] dt
———
$1 {ly'I>1} {ly'[>1} {ly'[>1} <0

and thus |y| < 1 = |p,| a.e.. Additionally, we know from Schur’s Theorem, Proposition 3.1, that if 7 is the arc
length parametrisation of a circle of curvature K, then for a.e. t we have that

Y@ =;i£3)‘y(t+h;—y(t) > lim Tim (\pn(t+h)—pn(t)’ _ ‘(y(t+h)—pn(t+h))—(y(t)—pn(t))D

h—0 n—oo h h
1 . Du(t +h) = pa(t) o T n(t+h)-n(t) o _
" i fimy [P o i [P = 1= 1

Step 2 Denote by p~ and p* the left and right derivative of a polygon. From the curvature bound and Corollary
3.2 we know that any sphere of curvature K attached tangentially to the direction p; (t) at a vertex pn(t), and
thus a whole horn torus, cannot contain any vertex of p,, restricted to (¢, t + 5%), and the same is true for pi(b)
with regard to (t - 5%, t). Let

tn, —t suchthat py,(to)isavertex and pi,(ts) — u* e ST 3)
Then u* = u™ since

+ - + '+ ‘+ — — - + '+ K - -
dw”, u”) < d(u", pr,(tn)) + A, (tn), Pr (tn)) + d(pr(tn), u7) < d(u”, pp, (tn))) + et d(py, (tn), u”) — 0.

For every t we can find a sequence of t,, with (3) and thanks to p,, — y in C° the (two) horn tori belonging
to pn,(tn,) converge to a horn torus at y(t) in direction u* = u~ such that y does not enter the torus on the
parameter range Bﬂ (t). Then according to [6, Satz 2.14, p.26] we have that y € C**(S;, R?) and maxCurv(y) <
K. Especially, y'(t) = u*.

Step 3 If we had ||p, - ||~ — O then for every € > O there is an N such that for n > N we have that

Pa (D) =y (D) = [pa® -y D) < Ipu® -y @O + Yy O -y (D) < e+ %

foralli € {0,...,n-1},t e (4, %), Hence,

n’n

1Yy
sup _ [pn () =y Gl =+ O- (4)

i=0,...,n-

Now assume that (4) holds. Let € > 0. Then there is N € N such that for every n > N and every t such that
pn(t) is not a vertex we find i = i(n) with

a0 ¥ O] < P () =Y DI+ Y () -y Ol e+ K 0.

Thus, (4) is equivalent to ||p, — ¥'||;~ — O. Assume that ||p,, - J|[1~/— 0. Then there is a sequence of
parameters tp, as in (3) with p',fk(tnk) — u'/=y'(t), which contradicts the results of Step 1. Hence p,, — y in
whe= O

Proposition 4.2 (Compactness II). Let pn € Pu(X) be bounded in L= with liminf, o An[pn]™* < oco. Then
there is

y € CXK)NC (S, RY  with pr, — yin Wh(S;, RY).
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Proof. Without loss of generality let An[pn]™ < K < oo for all n € N. Note, that An[pn]™! < oo means that
Dn is injective. From Proposition 1.3 we know that there is a subsequence converging toy € € n C(S,, RY)
in WY*(S;, RY). It remains to be shown that y € X. In order to deduce this from Proposition 4.3 we must
show that y is injective. Assume that this is not the case. Then there are s/= t with y(s) = y(t)=x. Let
' = ||y = Pnllp~(s, re) + %, i.e., pn(s), pn(t) € B;,(x), and let n be large enough to be sure that there
are u, v with pn(u), pn(v) /€ By, (x). The singly critical self distance scsd(p) of a polygon p is given by
scsd(p) := ming, ;)ceriep)|2 — V|, where crit(p) consists of pairs (y, z) where y = p(f) and z = p(s) and s
locally extremizes w — |p(t) — p(w)|*. In [14, Theorem 3.6] it was shown that for p € P, we have that
An[p] = min{minRad(p), scsd(p)}. Since the mapping f(w) = |pn(t) — pn(w)] is continuous with f(s) < 2r,
and f(u), f(v) = 3r, we have

scsd(pn) < m}nf < f(s) = |pn(t) = pn(s)| < 2rn — 0O,

where « is the arc on S; from u to v that contains s. This contradicts An[pn]™* < K. Thus, we have proven the
proposition. O

Proposition 4.3 (Convergence of polygons does not change knot class). Lety € € CY(S1, R?) be injective
and pn € Pn(X) withpn — yin W=, Theny € X.

Proof. Step 1For ||p - y||wi~ < @ [7, Lemma 4] together with Lemma 4.4 and [5, 4.8 Theorem (8)] allows us
to estimate

Yy EYE)) -y (EDG))| < E7HE W) - &) < 287 Hy(s) - p(s)|. (5)

Here, &) is the nearest point projection onto y. This means

p'(8) -y HE@EN)] < p'(8) -y 6) + 1Y (5) -y (& D))
<P =yl + A s =y E@EN = 1P = VI~ + AWy EWE)) -y G (6)
<[P =y ||~ + Ay 28 M y(s) - p(s)| < Cl[p - Y|

Note, that although we have a fixed parameter s we still can estimate [p'(s) - y'(s)| < ||p’ - )| |1~ since p -y’ is
piecewise continuous. If p(s) is a vertex the estimate still holds if we identify p'(s) with either the left or right
derivative.
Step 2 Let sp, tn € I, Sn < tn with &,(pn(sn)) = &(pn(tn)). We want to show that this situation can only
happen for a finite number of n. Assume that this is not true. Let u, € [sn, tn] such that p,(uy) is a vertex and
maximizes the distance to y(yn) + ¥ (yn)* for yn = y~1(&,(p(sn))). For the right derivative p** (un) we have that
d(p™(un), y (yn)) = 2. Asin (5) we have |pn(sn) — pu(ts)| < 487Y|pn - y||wr~ and hence for some subsequence
Sn — So, tn — to and pa(sn) — y(So), pn(tn) — y(to) so that so = to, since y is injective. Therefore also
pn(un) — y(to). But on the other hand (6) for s = un, y*(£,(pn(un))) = z» and d the distance on the sphere
gives a contradiction via
nom
2 2

, . _ O] Ay
<0/ ),y (@) € ZAWT yn - 2l 2 S A 26 pulsa) - palun)] — O,

Cllpn — Yllwie £ A" un), ¥ (va)) — @™ (un), ¥ (z0))

Step 3 Now we are in a situation similar to [9, Proof of Lemma 5], [27, Theorem 4.10] and as there we can
construct an ambient isotopy by moving the point pa(s) to y(y ™ (£,(pn(s)))) along a straight line segment in
the circular cross section of the tubular neighbourhood about y. O

Lemma 4.4 (Injective locally bi-L. mappings on compact sets are globally bi-L.). Let (K, d1), (X, d») be non-
empty metric spaces, K compact and f : K — X be an injective mapping that is locally bi-Lipschitz, i.e., there
are constants c, C > 0 such that for every x € K there is a neighbourhood Uy of x with

cdi(x,y) < dr(f(x), f(y)) < Cd1(x,y) forally € Ux.



DE GRUYTER OPEN Discrete thickness =— 81

¥ (yn)*
pn(sn)
!
v (yn)
pn(un)
V(yn) v
pn(tn)
Fig. 3. The situation in the proof of Proposition 4.3.
Then there are constants ¢, C > 0 with
cdi(x,y) < dr(f(x), f(y)) < Cdi(x,y) forallx,y € K. (7)

Proof. By Lebesgue’s Covering Lemma we obtain a diam(K) > § > 0 such that (Bs(x))xcx is a refinement of
(Ux)xex- Then K5 := {(x,y) € K? | d1(x, y) = 8} is compact and non-empty. Hence

0<e:= min d)(f(x),f(y)) < max dr(f(x),f(y)) =: M < oo,
(x,y)EKs (x,y)EKs

since diag(K) N K5 = 0 and f is continuous and injective. Thus
d,(f(), fy)) < M = C6<Cdix, y) forallx,y € Kg
holds for C" := M6~* and
c'di(x,y) < c'diam(K) = € < d>(f(x), f(y)) forallx,y € K

for ¢’ := ediam(K)™'. Choosing ¢ := min{c, ¢’} and C := max{C, C'} yields (7), because (x, y)/€ Ks implies
y € Bs(x) C Uy. O

5 The liminf inequality

Using Schur’s Theorem for curves of finite total curvature, see for example [29, Theorem 5.1], we can prove
Rawdon’s result [16, Lemma 2.9.7, p.58] for embedded C''! curves. Note, that especially the estimate from [12,
Proof of Theorem 2] that is implicitly used in the proof of [16, Lemma 2.9.7, p.58] holds for C1'! curves.

Lemma 5.1 (Approximation of curves with d‘:STd(V) < minRad(y)). Lety € C(X) N C»X(S1,RY) and p € Py for
some n such that

minRad(y) - dcsTd(y)

=6>0 and [)y-pli-<e
fore < §/4. Then

dcsd(p) < desd(y) + 2e.
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Proof. Let minRad(y) - dcsTd(y) =6>0,e<b6/4andsetd := %(minRad(y) + dCSTd(y)). By [16, Lemma 2.9.7 2.,
p.58] there are (s, to) € ATi/,d :={(s, t) | d(s, t) = md}, see notation in [16], such that

Ip(s0) = p(to)| < desd(y) + 2e.
Now, let (5, ) € A% such that

Ip(s) - p(8)] = ( rtr)li%y Ip(s) = p(t)] < |p(so) - p(to)| < desd(y) + 2e. (®)
s,t)e nd
Then either (S, t) lie in the open set Ai’l 4 :=1{(s, ) | d(s, t) > nd} or by [16, Lemma 2.9.7 1., p.58] we have that

|p(t) - p(s)| = minRad(y) +

dcs;i(y) 2¢ = desd(y) + 6 - 2¢€ > desd(y) + 2¢,

which contradicts (8). Hence (5, t) lie in the open set Af, ,- This means we can use the argument from [16,

Lemma 2.9.8, p.60] to show that p(s) and p(¢) are doubly critical for p and therefore

desd(p) < |p(s) — p(8)| < desd(y) + 2e.

Proposition 5.2 (The lim inf inequality). Lety € C(X), pn € Pn(K) with pn — y in Wh> for n — oo. Then
Alyl™ <liminf An[pa] .
n—oo
Proof. By Proposition 1.4 we might assume without loss of generality that y € C1 1(S1, RY). In case A[y] ™! =

maxCurv(y) the proposition follows from Proposition 1.3 and in case A[y]™* = > maxCurv(y) Lemma 5.1
gives lim sup,,_, ., dcsd(px) < desd(y), so that

dcsd(y

1 _ < limi -1
Aly]” = des d(y) nﬂltgfdcsd(pn llrll‘glol;lfﬂn[pn] )

Clearly, the previous proposition also holds for subsequences py, .

6 The lim sup inequality

Proposition 6.1 (The lim sup inequality). Foreveryy € C(X)NCY'(Sy, RY) there are pn € Pn(K) withpn — y
in Wb and

lim sup An[pn]* < Aly] .
n—oo
Proof. In [20, Proposition 8] we showed that if n is large enough we can find an equilateral inscribed closed
polygon pn of length L, < 1 with n vertices that lies in the same knot class as y. By rescaling it to unit length
via pu(t) = L pn(LnL71t), L = 1, we could show in addition that p, — y in W5*(S;, RY), as n — oo.
Step 1 From Figure 4 we see r = r(x, y, z) and

KX, y.2) = 4tan(%) _ 2tan(“—;ﬁ) 1
aX.y,2) = Ix-y|+]z-y| sin(a)+sin(B) r
Thus, we can estimate
atp _
2 tan(5F) . tan(a + B) . tan(a+p) . _1-cos(a+p) <@+ py ©)

" sin(a) + sin(B) ~ 7 7 sin(a) + sin(B) ~ 77 sin(a +B) ~ cos(a+p)
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Fig. 4. Quantities for the computation of discrete curvature.

for a, B € [0, %], since

sin(a) + sin(B) = 2 ( sin($) cos(%) + sin(g) cos(g)) <2 ( sin($) + sin(%))

5 sin(%) cos(8) + sin(8) cos(%) _

cos(“zi)

Ztan(“—;ﬁ),

2tan(%)
2tan(3) < 17tan2(2§)

_ . 2L . .
z =y(u) fors < t <uwith |t - s|, |u - t| < . Now, again by Figure 4, we have

= tan(x) and 1 < cos(a + B), as well as 1 - % < cos(a + ). Let x = y(s), y = y(t) and

2Ln"t = |t-s| = |y - x| = 2sin(@)r = 4 rar = 47 tadly] = adly],

or in other words a < 2LA[y] 'n"! and the same is true for . According to (9) we can estimate

< (1 +16L%A[y] 2n HAly] .

xa(x, y,2) < L:B)z

This means for the sequence of inscribed polygons p, that

lim sup maxCurv(pn) < Aly]™.
n—oo
Step 2 According to [16, Lemma 2.8.2, p.46] the total curvature between two doubly critical points of polygons
must be at least 71. Let pn(sn) and pn(tn) be doubly critical for p,. Using the curvature bound from the previous
step we obtain 71 < 2A[y] }|tn — sn|, so that s, and t, cannot converge to the same limit. From Lemma 6.2 we
directly obtain

Alyl™.

. . > 1 2 2
desd(y) < hﬂlﬂf desd(pn) = h;n 1SUp 5 ) ® a0) <

Step 3 Noting that LL;! — 1 the previous steps yield

. g 2 i
lim sup Aq[pn]™" = lim sup max { maxCurv(pn), 7dcsd(pn)} <Aly]™.

n—oo n—oo

O

Lemma 6.2 (Limits of double critical points are double critical). Lety € €(K) N C1(S1, RY), pn € Pn with
Pn — yin WH(S1, RY). Let sp/= tn be such that s, — s, tn — t and s/= t. If pn(Sn) and pu(tn) are double
critical for pn. Then y(s) and y(t) are double critical for y.
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Proof. Denote by p* and p~ the right and left derivative of a polygon p. Since the piecewise continuous
derivatives p, converge in L* to the continuous derivatives y we have

02 (py (sn), Pu(tn) = D(Sn)) * (P (Sn), Pltn) = p(sn)) = (Y (), y(£) - y(s))>.

The analogous result is obtained if we change the roles of s and t, so that y(t) and y(s) are double critical
for y. O

7 Discrete Minimizers

Lemma 7.1 (Computation of A, for regular n-gon g,). For n = 3 holds

1
——— =2ntan(Z).
Anlgr] )

Proof. From Figure 5 we see that for the regular n-gon g, of length 1 we have

dcsd(gn) = Wn(%)

and as maxCurv(g,) = 2ntan(%) by Figure 4 we have shown the proposition. O

1

1
ey =
! 2n tan(7)

ry=———
2nsin(Z)

Fig. 5. Computation of dcsd for regular n-gons of length 1.

Proposition 7.1 (Regular n-gon is unique minimizer of A;!). Letp € P, then
An[gn]_l < An [p]_l,
with equality if and only if p is a regular n-gon.
Proof. According to Fenchel’s Theorem for polygons, see [15, 3.4 Theorem], the total curvature is at least 27,

i.e., 31, ¢; > 27 for the exterior angles ¢; = £(x; — X;_1, Xi41 — X;). This means there mustbe j € {1,...,n}
with ¢; = 27. Thus

Anlp]™* = maxCurv(p) > 2ntan(%) > 2ntan(Z) = Anlgn] . (10)
Equality holds in Fenchel’s Theorem if and only if p is a convex planar curve. If ¢b; < 27" there must be ¢, > 27”

and thus An[p]™* > An[gn]™*. Since the regular n-gon g, is the only convex equilateral polygon with ¢; = =
fori=1,..., nwe have equality in (10) if and only if p is a regular n-gon. O
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