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Abstract: Modeling of repulsive forces is essential to the understanding of certain bio-physical processes,
especially for the motion of DNA molecules. These kinds of phenomena seem to be driven by some sort of
“energy” which especially prevents the molecules from strongly bending and forming self-intersections.
Inspired by a physical toy model, numerous functionals have been defined during the past twenty-five years
that aim at modeling self-avoidance. The general idea is to produce “detangled” curves having particularly
large distances between distant strands.

In this survey we present several families of these so-called knot energies. It turns out that they are quite
similar from an analytical viewpoint. We focus on proving self-avoidance and existence of minimizers in
every knot class. For a suitable subfamily of these energies we show how to prove that these minimizers are
even infinitely differentiable.
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1 Introduction

Self-repelling forces play an important rdle in nature, e.g. for the behaviour of protein foldings [19] and the
motion of knotted DNA structures in electrophoresis gels [12]. For instance, in order to access the information
stored in the DNA, specific topological and geometrical transformations have to be applied by the correspond-
ing enzymes. Therefore, the topological shape of DNA molecules has an important impact in this process [28].
In fact, one is led to speculate that these kinds of phenomena are driven by some “energy” [20] which is of
course difficult to determine. Especially, such an energy should prevent the molecule from strongly bending
and forming self-intersections.

Inspired by a physical toy model, several functionals appeared in the literature during the past twenty-five
years that aim at modeling self-avoidance. The original idea tracing back to Fukuhara [15] was to consider
the deformation of a thin fibre charged with electrons lying in a viscous liquid. Assuming that this fibre is
infinitesimally thin, it may be regarded as a curve
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Fig. 1. The pull-tight phenomenon.

where, in general, n = 3. We will restrict to closed curves, so the points O and 1 can be identified and the
preimage becomes the quotient space R/Z, i.e., the curve is a 1-periodic mapping R — R". Heuristically, the
electrostatic energy acts as a repulsive potential, so the interaction of two given points v(u) and v(v) can be

written as 2

RIOERIG]N

for some a > 0 which has to be chosen in an appropriate way. If we are not in an equilibrium, the electrostatic
energy is turned into kinetic energy which will result in some deformation of the curve. As the electrons lead
to self-avoidance, we expect the curve to “detangle”, resulting in a shape having particular large distances
between different strands.

In this spirit, the basic idea in constructing self-repelling forces is to penalize distant points of the curve hav-
ing a small Euclidean distance. We particularly aim at maintaining the knot type or, synonymously, knot class,
which defines an equivalence relation among all embedded closed curves. Roughly speaking, two given knots
belong to the same knot class if one can continuously be deformed into the other without self-intersections
or pulling-tight of small knotted arcs as indicated in Figure 1. A precise definition can be found, e.g., in [10].

The motivation to restrict to closed curves is mainly due to convenience. In this case the topological shape
of a closed embedded curve is essentially determined by its knot type while there is no satisfactory notion of
“knottedness” of open curves. Of course, one could adopt the definition of “knot type contained in a ball” [14],
but this leads to several technical difficulties which we would like to avoid here.

However, there are in fact bacteria whose genome is a single closed duplex DNA circle [28], so we are even
now not too far away from “real world” problems. Of course, we are still on the level of an idealized situation
that lacks a concrete biophysical model. Nevertheless, we hope for future applications of the theory presented
in this survey.

Since we consider closed curves, we may extend their parametrizations to periodic functions—which is quite
convenient for applying tools of harmonic analysis. Though our proofs seem to rely to a large extent on this
setting, with some additional techniques a similar analysis of the energies in question should be possible for
open curves.

In this text, we will provide a short outline of knot energies proposed by several authors and prove existence
and regularity for a large class of knot energies. We start by giving a widely adopted definition of knot ener-
gies [24, 27].

Definition 1 (Knot functionals, knot energies and strong knot energies). By C1(R/Z, R") we denote the class
of all continuously differentiable functions R/Z — R". A knot functional is a mapping C*(R/Z,R") — [0, co].
A knot functional KE : C*(R/Z,R™) — [0, oo] is said to be a knot energy if it is self-repulsive, i.e., if for any
sequence (vi)en C C! uniform (in C°) convergence to a non-injective curve .. € C' implies

KE(y;) — o0 as k — oo, (1)

If there are, for given E, L > 0, only finitely many knot types having a representative with KE < E and length = L
then KE is a strong knot energy.



58 =—— Simon Blatt and Philipp Reiter DE GRUYTER OPEN

Note that being self-repulsive is stronger than assuming that the functional is infinite on all non-injective
curves.

By minimizing a knot energy one hopes to find curves having a particularly nice shape that, as indicated
above, could presumably characterize a steady state in some biophysical model or help to determine the knot

type.

In a broader sense, a knot energy can be seen as some sort of “measure” for the “entangledness” of a given
curve. It is natural to ask to what extent a knot energy also measures smoothness and curvature.

To this end it is crucial to answer the following questions:

e Is the functional under consideration in fact a knot energy?
e Are there minimizers in every knot class?
e  How smooth are those (local) minimizers?

In the next section we will present some examples of knot functional families and discuss for which param-
eters they are self-repulsive and non-singular. We will be able to give an affirmative answer to the first two
questions raised above (Theorems 4 and 9). As to the third one, we will show that, for a certain sub-family,
any stationary point is C*, i.e., infinitely differentiable (Theorem 10).

2 A parade of knot energies

In this section we present some families of knot functionals. Although they stem from different geometric
concepts, they turn out to be quite similar from an analyst’s viewpoint. This fact will become apparent in
the subsequent section where we present an axiomatic form which covers all of the knot energies discussed
in this section. We will use this abstract setting for simultaneously proving self-avoidance and existence of
minimizers within any knot class.

Here we intend to motivate for which parameter range of the respective families we expect to find proper knot
energies.

2.1 O’Hara’s energies

Adapting Fukuhara’s idea, O’Hara [22, 23] defined the family of knot functionals

onre) - <|v(u) . O X v)a>p )| [y @] auar. ©

(R/Z)?

Here a,p > 0, and v € C*'(R/Z, R"). The quantity D~ (u, v) measures the intrinsic distance between ~(u)
and ~(v) on the curve .

As h(u) - y(v)| < D4(u, v), the integrand is non-negative, so the integral takes a value in [0, oo]. The first
term penalizes pairs of points (y(u), v(v)) having a small Euclidean distance by taking the latter to a neg-
ative power in order to produce a singularity. As neighboring points v(u), v(u + €) naturally have a small
Euclidean distance, we have to add some sort of regularization: substracting the intrinsic distance D~ (u, v)
taken to the same negative power as the Euclidean distance, the singularities stemming from neighboring
points are cancelled while those for distant points are essentially unaffected. Finally we average over the p-
th power of this term over all pairs of points by integrating. The factors |'(u)| | (v)| guarantee invariance
under reparametrization.
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Now we have to determine the parameters a,p > O for which this procedure works. We first remark
O'H®P)(r~) = r*®PQ’H@P)(4) for r > 0, i.e., O'"H*P) is positively homogeneous of degree 2 — ap. There-
fore, in case ap > 2 the integral blows up as the curve shrinks down.

There is an immediate heuristics why we should stick to that range. Choose a finite-energy smooth curve that
contains a straight line segment. Insert a small knotted arc in that line segment producing a smooth curve.
Shrinking down that knotted arc component while leaving unchanged the rest of the curve would produce
a sequence of knotted arcs leaving the knot class at the limit, the so-called pulling-tight effect, see Figure 1.
However, (1) does not apply for ap < 2.

Definition 2 (Preventing pulling-tight). A knot functional is said to prevent pulling-tight if pulling-tight of a
small knotted arc as in Figure 1 implies (1).

A formal definition is provided in O’Hara’s monography [24].

From the argument sketched above we infer that a knot functional being positively homogeneous of non-
negative degree it very unlikely to prevent pulling-tight.

However, self-avoidance as in the definition of knot energies does not imply the prevention of pulling-tight.
A counterexample is already the first geometric knot energy O’H®>Y) which was shown by O’Hara to be self-
repulsive. But due to its invariance under the Mébius group [14] it cannot prevent a curve from being pulled
tight.

In order to be self-repulsive, two perpendicular line segments must produce an energy blow-up as they ap-
proach each other. We will show that this is not the case for ap < 2. To this end consider a curve 5 containing
the two strands ~; (u) := (u, 0, 0) and v, (u) = (0, u, ) for § > 0, u € [-1, 1]. In order to compute the respective
energy values, we switch to polar coordinates, u = r cos ¢, v = r sin ¢, which gives?!

p
@P) () 1 _ 1 . dvdu
OH 0w //2 ( |71 (w) - VZ(V)|a D(v1(u), WZ(V))“> dvdu _[ 1/1/12 (U2 +v2 + 6%

2271 d d \/Z d \/E i
rdedr rdr l-ap @ <2 -ap_ 2-ap
// (r2 + 62) (ap)/2 =C (r+6)® SC/("“L‘S) < C((\fZ+5) ) )
0 0

The last term stays bounded as § N O if ap < 2.

On the other hand, not every functional O’H®?) with ap > 2 leads to a suitable knot energy. In fact, for - being
parameterized by arc-length, i.e., Jusing 1-(a, b)p. = 3 |a - b|?
fora,b e R", |a| = |b| = 1, aswell as D, (u + w, u) = |w|

@1) 1 1
OHG) = //<|7(u+w) Y| Dy(u+w, u)“) dwdu

(R/Z)*

|y(u+w) = ()" dwd
-// <|V(u+W) v(u)|> ( " e

(R/Z)*

// ( |v(u+w ;fy(u)| )dwdu
w|* w|

(R/Z)?

c//i 1-// {7+ 8iw), 7 (u+ 9w))  d91d8, | dwd
(w R

(R/Z)? [0,1]?

1 By writing A ~ B we mean that A essentially behaves like B up to lower-order terms.
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) , 2
zE//ﬁ //’7(u+91w)—v(u+t92W)’ d9,d9, | dwdu

R/Z)? 0,1]2
1/2 X
2E//ﬁ //‘7,(”+(91‘92)W)—v’(u)‘ d9:d9, | dwdu
R/Z-1/2 0,12
2
/ / / / 92)w) - u)‘ dwdud9; d9,
[0,12R/Z -1/2

€
1-¢ 0 R/Z-1/2
€ (91-92)

c/// / M’y(u+w) 'y(u)’ div du dd; dS,

1-¢ 0 R/Z-(9,-9,)/2

//(91—92)“1(191(192/ / |7(”+W) /)’ div du,

1-€ 0 R/Z -1/2+¢

9)w) —~ (u)‘ dwdudd; d9,

€(0,00)

where € € (0, 2) More generally, one can show

[ 17 s w) -y @)
O'H®P)(+) = ¢ / / W@ dwdu fore <1,

R/Z -¢€

see [4] for details. As for closed curves v cannot be constant, the right-hand side must be positive. Applying
the following result which is proven in Brezis [9, Prop. 2], we then get that, in case

(a-2)p=1, €)
the right hand side must be infinite for any closed curve!
Proposition 3 (Highly singular potentials). Assume Q is a connected open setin RN andf : Q — Risa

measurable function with

+p

p
/ / F09 - f,sy)’ dxdy <eo  forsomep € [1, o) @

then f is constant.

An alternative way to see O’H®P) = oo for (3) is provided by Abrams, Cantarella et al. [1]. They prove that
O’H@®P) is (for closed curves) always globally minimized by the (round) circle. It is easy to see that it is assigned
to infinite energy in case (3).

In light of these facts it is reasonable to restrict oneself to the sub-critical range

ap > 2, (a-2)p<1. (5)

The respective parameter ranges discussed in this subsection are visualized in Figure 2 (left).
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Fig. 2. The range of O’Hara’s energies (left); the range of abstract energies (right). On the left-hand side we depict the situation
of O’Hara’s energies O’H(®P), Below the green curve, the respective functionals are not self-repulsive, thus no knot energies.
On and above the red line the functionals are so singular that they only take the value infinity. The yellow area between the
two curves marks the sub-critical range for which we prove self-repulsiveness and existence of minimizers in every knot class.
The darker yellow linea € (2, 3), p = 1 denotes the non-degenerate sub-critical range where local minimizers are C*. Any
functional O'H®*P) corresponds to the abstract functional KE®:@ where s = g - zi + 1andp = 2p. The respective parameter
ranges are shown on the right-hand side. The energy increase does not follow from the axioms (K1), (K>), (K3), but applies for

the examples discussed in this section.

2.2 Tangent-point energies

Another important family of knot energies is the (generalized) tangent-point energy family

Py (1) - 1) |
®.9) ‘ 7(“> ’ ’
TPP9(5) = ( R/ / RS (u)‘ "y (v)’ dudv ©)
where v € C%1(R/Z, R") and
P . 7 (W) ’Y,(U) 1L o f n
wd = ( a, @) Pypai=a-P,,ya foracR @)

denote the projection onto the tangential and normal part along ~ respectively. In case p = 2q the factor

P00 . . , .
Thaowmp (6) is just the g-th power of the reciprocal of the diameter of the circle being tangent to ~(u)

and passing through ~(v).

Proceeding as for O’Hara’s energies, we will show that the functionals are not self-repulsive if p < g + 2 while
they are singular for p = 2q + 1. Therefore we will restrict our attention to the sub-critical range

pel(g+2,2qg+1). (8)

This range is sketched in Figure 3. The lower bound g + 2 is due to the fact that as before for a curve 5
containing the strands v; (u) := (u, 0, 0) and > (u) = (0, u, 8) for 6 > 0, u € [-1, 1], one gets

V2 q-p

(v? +6%) 42 v2 21 (r2 sin’ ¢ + 62)q/2 o
TP®-9( vs)wz// /2dudvs2// 5 rd¢drs4n/(r2+52) rdr.
CLop (U2 +v2+ 8§2) ) (12 + 82)° /

)
The integral on the right-hand side is bounded for § N 0if p < g + 2.
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Fig. 3. The ranges of the tangent-point energies (left) and the integral Menger curvature (right). Above the green line, the func-
tionals are not self-repulsive; below the red line, they are highly singular. The yellow area marks the sub-critical range, the
dark yellow line the non-degenerate sub-critical range, cf. Fig. 2. The blue line indicates the “classical” energy functionals in-
vestigated by Strzelecki et al. [26, 27]. The functionals TP®»9 and intM® % correspond to KE®-2) where s = % ors = % -1
respectively and g = g, see [6, 8] for details.

Using techniques from [3] we justify the upper bound 2q + 1 as follows. Let us again assume that ~ is
parametrized by arc-length. By continuity we may choose some 6 > 0 depending on ~ such that

This leads to ’
[Py (10 = 90) = Py (10 =70))[
= (500 -2, 7 ) Y 0) = (50 50,7 ) v )|
= [ (500 =102,y O]+ [{3) 20,7 @)] = 2 (5 =70),7/ ) (360 = 1, 7 W) (), v W)
- ’<v(u) W), ) - <v(u) 10,7 @)+ (30 10, 7@ (00 =102, 7 W) [ @) -5 0

<iv2  forallu e R/Z,|u-v|<8. (10)

1
\u v|? / (u+91(v u)),v(u) d81/ v(u+82(V—u)),v'(V)> dg,
0

=1-3 |y (w81 (v-w) -~ () |23 >

Slw

, , 2
> 55 lu-vP |7/ -0

which in turn allows to estimate using jy(u) - y(v)’ <|u-v|

Py (1) -1 ) | P2, (1) =) [ + [P, () =) [
Tp®2) ’ 7() 7( Y dud
) @J/ @) -0 UR//Z @) -~ W) e
[PLo) (1) = 1) = P,y (60 =1 0)[°
’Y(V) v ()
> dud
qu/zé (W) — W) e
u=v|? [y @) -~ W) R Iy -~ W)
2 Cp, Tu/v/ ) - 'y(v)| dudv = ¢p, qu/V|<6 TP dudv.

Applying Proposition 3, we again get that for p > 2g + 1 the energy is only finite for pieces of one straight line.
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2.3 Integral Menger curvature

Instead of the circle passing through one point and being tangent to another we can also consider the cir-
cumcircle, i.e. the circle passing through three distinct points x, y, z € R". The circumcircle radius is given
by

y-zlly-xllz-x| _ ly - 2|

n
2y -x)A(z-x)| 2sin<(y-x,z-x)’ XY,z € R (1D

Rx,y,2) :=
Decoupling powers in the nominator and denominator we arrive at

P — 2Py — %P9 |5 — x|P~4
RO e,y 2y WY =2y =Xl z=x) _ly =2 ly = xPjz—x
(v -x) A (z-x)1 sin< (y - x,z - x)?

which is the integrand of the generalized integral Menger curvature functionals [8]

R Y Y @] |y @+ )| |7 @+ w)
intM®9 () := /// REDO ). AW+ V)2 s W) dwdvdu, p,q>0. (12)

R/Z)?

Due to the three dimensional integration domain the situation is a little bit more involved. In order to exclude
the case p < %q + 1 we again look at a curve -4 containing the strands ~; (1) := (u, 0, 0) and v (u) = (0, u, 6)
for § > 0, u € [-1, 1]. Applying spherical coordinates u = rcos 9, v = rsin 9 cos ¢, w = r sin 9 sin ¢, leads us

to
62 2\4/2
intM®9(5) ~ C/// (8% + ) dwdvdu
L lv-w

P79(82 + u? + v2)P'? (62 + u? + w2)P/?

2 21 (@-p)/2
<C/// 5+u) dwdvdu
v —w[P™9(82 +u2 +v2 + w2)P/?

[-1,1]3
_ 2
C// +r COSZS)(q P22 ging de
< r T . =g
rp=asin”~1 9 (62 + r2y?/? |cos ¢ — sin @[P™?
0 0 0
<C
V3 _ 7 _
C/ / (52+r2)(q P2 49 / (6% +r* cos? 8)(q P2 sing q
< + r
rp-a-25inP =471 9 (62 + r2)P/? rp=a-15inP= 9 (62 + r2)P/?
0 \[o,Z]u[32,7] — i

>1

do | dr

r
(g-p)/2
(6+ r)73p+2q+2 : r—p+q+1 (6+ r)fp/ (62 0_2) q-p

|<_/\3
o"\§

cc(1-5mas).

Proceeding in a similar way as for the tangent-point energies, we infer the restriction p < g + % to exclude the
highly singular range, see [5, 8].

2.4 Ropelength

In this subsection we briefly mention a special case which is related to the integral Menger curvature family.
In fact, it corresponds to the limit case p = ¢ — oo.

Taking the infimum of (11) over all points of the curve ~, we obtain a notion of thickness. This particular
definition which goes back to Gonzalez and Maddocks [17] has the advantage over other definitions not to
require any initial regularity of the curve.
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It is elementary to see that ropelength, i.e. the quotient of length over thickness, is a knot energy. Ropelength
minimizers are referred to as ideal knots. As taking infima is a non-smooth operation, one cannot proceed by
the techniques presented in this text.

The existence of ideal knots has been proven in [18], [13], and [16]; they have at least a Lipschitz continuous
tangent (if parametrized by arc-length). For further information we refer to [11] and references therein.

3 Existence of minimizers

In this section we discuss the existence of minimizers in any knot class. There is almost nothing known about
the shape of those minimizers up to the fact that circles are unique minimizers among all closed curves for
O’Hara’s energies [1].

In order not to prove the existence result for minimizers of O’Hara’s energies, tangent point energies and
integral Menger curvature separately, we gather all the properties of these energies we need in one abstract
framework:

Fork € N, k > 1, we let f&@ : CY(R/Z, R") x (R/Z)k — [0, oo] be a measurable non-negative function
and define the energy of a curve ~ by

KE®2(4) := ’ FSO(y;+-)

_ (5,0) (1.
= [ sUL, oo W) dug -+ - dug.
P / / [P ) du k

®R/2)

We assume that £ and KE®? satisfy the following properties for arbitrary v € C*(R/Z, R").

(K1) We have f&Q(ry + x; - -) = r 6-1-1V/0f0(: ... ) forall r > 0 and x € R". Furthermore, KE®?(y) is
invariant under reparametrization of ~.

(K)If f&(y; - - ) vanishes on U; x - - - x U, where U; C R/Z, j = 1,..., k, then the image of ~ restricted
to Ul’.‘:1 Uj is collinear, i.e., lies on a straight line.

(K3)For any C > 0 there is some C' = C'(C) > 0 such that KE®?(4) < C implies ||| g 1, < C for any
arc-length parametrized curve ~.

It is not difficult to see that O’H®P), TP®? | and intM®*? satisfy (K;) and (K,) for appropriatly chosen s and
o. However, in order to prove (K3) one can either use an approach based on fractional Sobolev spaces and
Morrey’s embbeding theorem, see [6-8], or use a sophisticated scaling argument as shown in [21], [26], and
[27].

Theorem 4 (Prototype knot energies in the sub-critical range). Let (s, o) belong to the sub-critical range, i.e.,

se(1+%,2), o € (1, ). (13)

The prototype functional KE&9 : C1(R/Z, R") — [0, oo] given by

_/"‘/f(s’g)(“r;ul,u-,uk)dul"'duk

(CHFS =
Vi O )Ll((R/Z)k)

KE®2(:) i= |

(R/Z)*

is a strong knot energy that prevents pulling-tight.

Proof. Pulling-tight produces a singularity of the tangent which is excluded by (K3). Strong self-repulsiveness
is proven in Proposition 8. O
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v2(0)

Fig. 4. The situation in Lemma 6. Note that v, and v, are always disjoint.

Note that KE®?)(y) might be infinite although v € C*"1"1/ is an embedded arc-length parametrized curve.
However, in all the cases discussed here, the energy values are finite for sufficiently regular embedded curves,
for example curves having a Lipschitz continuous tangent.

We start with a rigorous proof of bi-Lipschitz continuity providing a bi-Lipschitz constant depending only on
the energy, not on the curve itself.

Proposition 5 (Uniform bi-Lipschitz estimate). For every M < oo and (13) there is a constant C(M) < oo such
that any embedded curve € C'(R/Z, R") parametrized by arc-length with

KES9(y) < M (14)
satisfies the bi-Lipschitz estimate
lu—v| < CM) |y(u) - ~(v)| forallu,v € R/Z.
We will give an easy proof that essentially boils down to combining the regularity from (K3) with a scaling

argument. The following lemma will be one of the essential parts in the proof. We define for two arc-length
parametrized curves ; : I; — R, i = 1, 2, I, I, open intervals,

KE(S’Q)(%,’Yz) !=/"'/f(s’g)(%ul,---,uk)dul"' duk+/"'/f(s’g)(%ub---,uk)dul"' duy
If I

+/~--/f(s"’)(v;u1,...,uk)dul---duk

I xI’z"l

in order to state

Lemmaé6. Let a € (0,1). For u > 0 let My, denote the set of all pairs (1, v2) of embedded arc-length
parametrized curves v; € C'([-3, 3], R") satisfying

e Mm0)-%0)=1,

o 71(0) L (71(0) - 72(0)) L 7,(0),

o il o s i=1,2.

Then there is some ¢ = c(a, u) > 0 with

KE(s,Q)(M, v)z=c for all (11, v2) € My.



66 —— Simon Blatt and Philipp Reiter DE GRUYTER OPEN

Proof. We will show that I(E(S’Q)(-, -) attains its minimum ¢ on M,,. From this we immediately infer ¢ > 0 for,
otherwise, KE®?(v;, ~,) = 0 implies by (K,) that both v; and ~, are part of one single straight line. This
contradicts the fact that M, does not contain straight lines by the first two properties.

Let ('ygn), ’ygn)) be a minimizing sequence in My, i.e., we have

lim KE“?(4{", +{") = inf KE*2(, ).
i

frarest
Subtracting ~; (0) from both curves, i.e., setting
@ =@ -0, i=1,2,
and using the Arzela-Ascoli theorem (due to the third property), we may pass to a subsequence
W 5 inc.

Furthermore, (31, 72) € M, since My, is closed under convergence in C'. Since, by Fatou’s lemma, the func-
tional KE®? is lower semi-continuous with respect to C! convergence, we obtain

inf KE®O(., ) < KESO(Fy, 3,) < lim KEGO(FM, 50) &) Jim KECO(1(, 1) = inf KESO(., .).
M n—oo n—oo My

"
Let us use this lemma to give the

Proof of Propsition 5. Applying (K3) to (14) we obtain

< C'(M)
CO,zx

|
fora=s-1- é > 0. As an immediate consequence thereisa § = 6(a, C) > 0 such that
lu=v|<2[y() - y)|
forall u,v € R/Z with |u - v| < §. Let now
S:= inf{ RIOERT] ‘ u,veR/Z,ju-v|2 6} <1

We will complete the proof by estimating S from below. Using the compactness of {u, v € R/Z, |u - v| = 6},
there are s, t € R/Z with |s - ¢| = § and
[y(s) = (O] = S.
In case |s - t| = 6 we infer
28 =2|y(s)-~(0)| 2 6

and hence
|u—v‘<l<§<M
2767 6(a,C)

for all u, v € R/Z with |u - v| = §. This proves the proposition in this case. If, on the other hand, |s - t| > §
then the minimality of |vy(s) — v(t)| implies

7(8) L (v(s) = () L~ (0).

We let for 7 € [-1, 1]
71(1) := 39(s+S1)  and (1) := 1A(t + ST).

Since

il 7l (s €0)
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we may apply Lemma 6 which gives
KE®? (11, 72) 2 ¢(a, €) > 0.

Together with
KE®D (71, 7,) = S VeRESD(Sy, S7,) < S VERES (),

where we used (K;) twice, this leads to

A o L
g [l C) \ (el C)\
" \KEG9(4) N M ’

M < C(M) [7(w) - (v)|

forallu,v € R/Z with |u -v| = 6. O

Hence,

lu-v|<3<

We are now in the position to prove the following mighty

Theorem 7 (Compactness). For each M < o and (13) the set

Ay o= {7 e CH(R/Z,R") | v embedded,

'y" = 1,KE®9(y) < M}
is sequentially compact in C* up to translations.
Proof. By (K3) there are C' = C'(M) < oo and a > 0 such that

. <€

COoa

for all v € Ap; and hence
e < C +1

where (u) := v(u) — v(0). Furthermore, from Proposition 5 we infer the bi-Lipschitz estimate
lu—v| < CMD|y() -~(v)|
forall v € Ay, u, v € R/Z. Considering a sequence (vn),cy C Ay We obtain
|5nllcne s C+1  foranyn e N
and hence, after passing to suitable subsequence,
Jn— o  inCL
Since v, was parametrized by arc-length, o is still parametrized by arc-length and still
lu—v| < C(M)|yo() - )|

forallu, v € R/Z. So, especially, ~o is embedded. From lower semi-continuity with respect to C! convergence
we infer
KE®? (7o) < lim inf KE®?(v,) < M.
n—oo

SO’Y() € Ay O

Let us conclude this section by deriving two simple corollaries of this sequential compactness and the lower
semi-continuity of the energies with respect to C1-convergence.

The first one states that, on the sub-critical range (13), the prototype energies KE®® are in fact knot energies
as defined in the introduction. The second one, already announced in the introduction, ensures that there
exist minimizers of the energies within every knot class—which are then smooth by Theorem 10.
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Proposition 8 (KE®? is a strong knot energy). Let (13) hold.

* If ken C C! is a sequence uniformly converging (in C°) to a non-injective curve vo € C! then
KE®0 (7)) — oo

e For given E,L > O there are only finitely many knot types having a representative with KE®? < E and
length = L.

Proof. The first statement immediately follows from the bi-Lipschitz estimate in Proposition 5.

To show the second statement, let us assume that it was wrong, i.e., that there are curves (), ¢y of length L,
all belonging to different knot classes, with energy less than E. Of course we can assume L = 1. By Theorem 7,
after suitable translations and passing to a subsequence, there is some o € Ay with v, — 7o in C!. As the
intersection of every knot class with C! is an open set in C? [2, Cor. 1.5] (see [25] for an explicit construction),
this implies that almost all v belong to the same knot class as ~o, which is a contradiction. O

Theorem 9 (Existence of minimizers in knot classes). In the sub-critical case (13) there is a minimizer of
KE®? in any knot class 8.

Proof. Let (vi)en € C,
R, 1.e., let

'yk’ = 1, be a minimal sequence of embedded curves for KE®? ina given knot class

lim KE®9(y;) = inf KE®?.
k—>o0 CINR

After passing to a subsequence and suitable translations, we hence obtain by Theorem 7 an embedded arc-
length parametrized v, € C! with v, — 70 in C!. Again by [2, 25] the curve ~, belongs to the same knot class
as the elements of the minimal sequence (7). The lower semi-continuity of KE®® furthermore implies
that

inf KE®® < KE®?(y) < lim KE®?(y,) = inf KE®?.
ClNA n—oo CINK

Hence, vy is the minimizer we have been searching for. O

By the same reasoning one derives the existence of a global minimizer of KE®-?,

4 Regularity of stationary points

The aim of this section is to outline the proof of

Theorem 10 (Regularity of local minimizers). Any local minimizer of O’H®Y, a € (2, 3), TP®?, p € (4, 5),
and intM®?, p ¢ (%, 8), is C=-smooth.

The parameter ranges in the above statement are referred to as the non-degenerate sub-critical case which is
depicted as yellow line in Figures 2 and 3. For the abstract energies KEC” this is equivalent to

se(3,2, o=2. (15)

In contrast to the previous section, we do not provide an axiomatic approach as this would demand quite a
lot of additional requirements. Therefore, mainly due to convenience, our analysis presented below reflects
the case where KE®) stands for either O’H®?, TP, or intM"*”. However, our argument can be adopted for
similar problems.

1

5+1.27) , TP®9 to k(%) , intM®9 to Ke(%19)

a_
2

Recall that O’H®P) corresponds to KE(

We now sketch the strategy of proof for C*°-smoothness of local KE®:?-minimizers in the non-degenerate
sub-critical case (15). All details are to be found in [6-8].
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The first task is to compute the first variation

(s,2) _ (s,2)
SKECD (3 h) = lim RE (0 *+ Th) ~KEP7(5) (16)
7—0 T
Any local minimizer ~ of KE®?) is a stationary point, i.e., it satisfies the Euler-Lagrange equation
SKECD (v h) + A <7’, h’> =0 forallh e C*(R/Z,R") 17)
L

where A € R is a Lagrange parameter stemming from the side condition (fixed length) and the L?-scalar
product is defined in (20) below. We will prove Theorem 10 by exploiting this identity in the following way:
a suitable decomposition allows to concentrate the highest-order term on the left-hand side of the equation
while the right-hand side turns out to be a lower-order term. By a so-called bootstrapping argument we in-
ductively deduce that the curve  is more and more regular. Consequently, the statement in Theorem 10 holds
even for stationary points. In the sequel we sketch the main steps being prerequired for its proof.

Computing the first variation demands a quite subtle argument for O’Hara’s energies O’H*P) while it is rather
straight-forward for TP®*? and intM®*?,

In order to start a bootstrapping process, we decompose §KE®? into the sum of a bilinear elliptic term Q%
and a remainder term R of lower order, i.e.,

SKEC2)(y; h) = Qs b) + RV (o3 ), 1)

The general idea how to construct Q® is just to “linearize” the integrand of SKE®?, e.g. by replacing negative
powers of |y(u) - v(v)| by the corresponding ones of [u - v|.

We will briefly illustrate this idea by exemplifying it for O'H*?, a € (2, 3). The first variation at an arc-length
parametrized (sufficiently smooth) embedded curve is given by

SOH) (03 h) = I _2 (7' (u), ' (w)) 2<7'(u),h'(u)>_ (v(u) = ~+(v), h(u) - h(v)) dudy,
i -ty [ (“‘ T o Y pwwmer )M

u,veR/Z
|u-v|ze

Linearizing as indicated above leads to

Sy gy (YW, K@) (v -~), W) - h(v))
Q' 2 ’(v; h) alglgol // ( L P dudv. 19)
e

The remainder is then obtained by computing the difference according to (18)

RUD(y;m) =2 // <7’(u), h'(u)> (M - |W1a> dudv

u,v€ER/Z

1 1
—a (u) = v(v), h(w) - h(v) 5 - —o | dudv,
u,vz]R/Z <FY ! > < "Y(u) - ’Y(V)‘a 2 |W‘ 2 )

where the limits € N 0 may be omitted, see [7] for details.

Here it becomes apparent that the setting p = 2 corresponds to the Hilbert case which is characterized by the
existence of a scalar product

1
o8 o= / (f), g, du  forf, g € L*(R/Z,C"). (20)
0

This enables us to apply the theory of Fourier series. Recall that we may express a function f by its Fourier

series
Zermkx

keZ
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where fk = fol f(x)e 2™ * dx is the k-th Fourier coefficient. A function f belongs to L?(R/Z, R") if and only if
the sequence of its Fourier coefficients belongs to ¢2, i.e., they are square summable,

>

kez

2
< oo,

PN

fr

In this case f(x) = >, f e2™kx for almost every x € R/Z. On the level of Fourier coefficients regularity is

expressed by multiplication of powers of k, more precisely, f = Znikf and fA = —4m1? sz. Therefore, in order
to prove f € C*°, we have to show

(|k\"fk) cen € & for arbitrarily large o > 0.
€

To this end we need an initial amount of regularity, namely
(Il 4) ey € € (1)

In fact, this is not an additional requirement as, for the energy families presented in this text, any finite-energy

curve in arc-length parametrization satisfies the latter claim already. This can be seen by the computations
2

used to exclude the highly singular range and the fact that (21) is equivalent to [ ®/Z)? % dudv < oo,

lu-v

Now we have to investigate the regularity properties of both Q®® and R*). Using Parseval’s theorem we obtain

Q9= o <fk,§k>

kez

where g, = ¢ [k + 0 (uq“) as k| 7 oo 22)
(Cd

2s
and ¢ > 0. Here o (|k|25) denotes a quantity with 0(“;“23) — 0as |k| 71 oo.

To see this for the example O’H®?), just insert the basis functions ¢(t) := 2™, k € Z, into (19) which gives,
for basis vectorse, ¢ R",/=1,...,n,

QT (pres; pre,) = 81 800Ca k| +0(K)

where §.,. denotes the Kronecker symbol, c, is a positive constant, and % < Cas k| 7 oo.

The next crucial step is to show that all terms belonging to R have the same structure, so one can treat them
simultaneously. Since the exact form of a multilinear mapping (]R")N — R will not matter in our analysis, let
us introduce the “® notation” which represents any sort of these operators, e. g., (a® b) ¢, d) = a@b®c®d

for a, b, c, d € R™. Now the term R®(, h) is a (finite) sum of expressions of type

1/2

/ / /.../g(s)(u,w)@h'(u+0Kw)d01--- dOx dw du

R/Z-1/2  [0,1]K

where "
_ (u+ow) -~ (u+ow)|” (K1,
g(s)(u’ w) := 9(5) <‘ ~(u+w) —~(u) ) ”Y 1 211 2 | @ Y+ ow) |,
w [w| i=3
G is some analytic function defined on [c, <), and 0; € {0,0;}foralli=1,...,K.

From this we can state the regularity of the remainder term as follows: if
(1% ) ren € 7 for some o = 0 23)

then for any € > O there is some g = g, : R/Z — R" with

RO (y; h) = kezz (whe), and  (K7Pg) el (24)

By (22) and (24) we are able to proceed to the
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Proof of Theorem 10. Rewriting (17) using (18), we arrive at
Qs +A (5, ) +ROGsh) =0 25)
LZ

for any h € C*(R/Z). Since first variation of the length functional satisfies

(vo1') = o lamk? (b)),

keZ

we deduce using (22) that there is a ¢ > 0 with

Q9(, h) + 1 <’y,, h/>L2 =Y o <%<, flk>cd where  pr=clk|* +o (|k|25) as |k| 7Aoo, (26)
kez

Assuming (23) we infer

QUGsm +A (Y 1)+ > (Bnhi) =0 @27)

kez

from applying (24) to (25). Equation (26) implies

> <@k’AYk + 8k f?k>cn =0.

kez

Testing this identity with the basis functions ﬁ,- = 0;  we obtain 9,9, + g, = O for all k € Z. Applying (24)
yields
5o |k 0-e-3/2 ~ c 62.
(e1k”=25)

Recalling that §, |k| > converges to a positive constant as |k| 71 oo, we are led to

(|k|2$+a—s—3/2 'AYk) c 2.
kEZ

Choosing € := § - 2 > 0, this reads

(|k|s+a+s 'S/k) c 62' (28)

kez

Consequently, compared to the initial assumption (23), we gain a positive regularity amount ¢ that does not
depend on g. So, starting with (21), we arrive at v € C* by iterating (23)—(28). O
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