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Abstract: Modeling of repulsive forces is essential to the understanding of certain bio-physical processes,

especially for the motion of DNA molecules. These kinds of phenomena seem to be driven by some sort of

“energy” which especially prevents the molecules from strongly bending and forming self-intersections.

Inspired by a physical toy model, numerous functionals have been de�ned during the past twenty-�ve years

that aim at modeling self-avoidance. The general idea is to produce “detangled” curves having particularly

large distances between distant strands.

In this survey we present several families of these so-called knot energies. It turns out that they are quite

similar from an analytical viewpoint. We focus on proving self-avoidance and existence of minimizers in

every knot class. For a suitable subfamily of these energies we show how to prove that these minimizers are

even in�nitely di�erentiable.
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1 Introduction

Self-repelling forces play an important rôle in nature, e.g. for the behaviour of protein foldings [19] and the

motion of knotted DNA structures in electrophoresis gels [12]. For instance, in order to access the information

stored in theDNA, speci�c topological and geometrical transformations have to be applied by the correspond-

ing enzymes. Therefore, the topological shape of DNAmolecules has an important impact in this process [28].

In fact, one is led to speculate that these kinds of phenomena are driven by some “energy” [20] which is of

course di�cult to determine. Especially, such an energy should prevent the molecule from strongly bending

and forming self-intersections.

Inspired by a physical toy model, several functionals appeared in the literature during the past twenty-�ve

years that aim at modeling self-avoidance. The original idea tracing back to Fukuhara [15] was to consider

the deformation of a thin �bre charged with electrons lying in a viscous liquid. Assuming that this �bre is

in�nitesimally thin, it may be regarded as a curve

γ : [0, 1]→ Rn
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Fig. 1. The pull-tight phenomenon.

where, in general, n = 3. We will restrict to closed curves, so the points 0 and 1 can be identi�ed and the

preimage becomes the quotient spaceR/Z, i.e., the curve is a 1-periodic mappingR→ Rn
. Heuristically, the

electrostatic energy acts as a repulsive potential, so the interaction of two given points γ(u) and γ(v) can be

written as

1∣∣γ(u) − γ(v)∣∣α
for some α > 0 which has to be chosen in an appropriate way. If we are not in an equilibrium, the electrostatic

energy is turned into kinetic energy which will result in some deformation of the curve. As the electrons lead

to self-avoidance, we expect the curve to “detangle”, resulting in a shape having particular large distances

between di�erent strands.

In this spirit, the basic idea in constructing self-repelling forces is to penalize distant points of the curve hav-

ing a small Euclidean distance.Weparticularly aim atmaintaining the knot type or, synonymously, knot class,
which de�nes an equivalence relation among all embedded closed curves. Roughly speaking, two given knots

belong to the same knot class if one can continuously be deformed into the other without self-intersections

or pulling-tight of small knotted arcs as indicated in Figure 1. A precise de�nition can be found, e.g., in [10].

The motivation to restrict to closed curves is mainly due to convenience. In this case the topological shape

of a closed embedded curve is essentially determined by its knot type while there is no satisfactory notion of

“knottedness” of open curves. Of course, one could adopt the de�nition of “knot type contained in a ball” [14],

but this leads to several technical di�culties which we would like to avoid here.

However, there are in fact bacteria whose genome is a single closed duplex DNA circle [28], so we are even

now not too far away from “real world” problems. Of course, we are still on the level of an idealized situation

that lacks a concrete biophysicalmodel. Nevertheless,wehope for future applications of the theory presented

in this survey.

Since we consider closed curves, we may extend their parametrizations to periodic functions—which is quite

convenient for applying tools of harmonic analysis. Though our proofs seem to rely to a large extent on this

setting, with some additional techniques a similar analysis of the energies in question should be possible for

open curves.

In this text, we will provide a short outline of knot energies proposed by several authors and prove existence

and regularity for a large class of knot energies. We start by giving a widely adopted de�nition of knot ener-

gies [24, 27].

De�nition 1 (Knot functionals, knot energies and strong knot energies). By C1(R/Z,Rn
)we denote the class

of all continuously di�erentiable functions R/Z→ Rn. A knot functional is a mapping C1(R/Z,Rn
)→ [0,∞].

A knot functional KE : C1(R/Z,Rn
) → [0,∞] is said to be a knot energy if it is self-repulsive, i.e., if for any

sequence (γk)k∈N ⊂ C1 uniform (in C0) convergence to a non-injective curve γ
∞
∈ C1 implies

KE(γk)→∞ as k →∞. (1)

If there are, for given E, L > 0, only �nitely many knot types having a representative with KE ≤ E and length = L
then KE is a strong knot energy.
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Note that being self-repulsive is stronger than assuming that the functional is in�nite on all non-injective

curves.

By minimizing a knot energy one hopes to �nd curves having a particularly nice shape that, as indicated

above, could presumably characterize a steady state in some biophysical model or help to determine the knot

type.

In a broader sense, a knot energy can be seen as some sort of “measure” for the “entangledness” of a given

curve. It is natural to ask to what extent a knot energy also measures smoothness and curvature.

To this end it is crucial to answer the following questions:

• Is the functional under consideration in fact a knot energy?

• Are there minimizers in every knot class?

• How smooth are those (local) minimizers?

In the next section we will present some examples of knot functional families and discuss for which param-

eters they are self-repulsive and non-singular. We will be able to give an a�rmative answer to the �rst two

questions raised above (Theorems 4 and 9). As to the third one, we will show that, for a certain sub-family,

any stationary point is C∞, i.e., in�nitely di�erentiable (Theorem 10).

2 A parade of knot energies

In this section we present some families of knot functionals. Although they stem from di�erent geometric

concepts, they turn out to be quite similar from an analyst’s viewpoint. This fact will become apparent in

the subsequent section where we present an axiomatic form which covers all of the knot energies discussed

in this section. We will use this abstract setting for simultaneously proving self-avoidance and existence of

minimizers within any knot class.

Here we intend tomotivate for which parameter range of the respective families we expect to �nd proper knot

energies.

2.1 O’Hara’s energies

Adapting Fukuhara’s idea, O’Hara [22, 23] de�ned the family of knot functionals

O’H

(α,p)
(γ) :=

∫∫
(R/Z)2

(
1∣∣γ(u) − γ(v)∣∣α − 1

Dγ(u, v)α

)p ∣∣∣γ ′(u)∣∣∣ ∣∣∣γ ′(v)∣∣∣ du dv. (2)

Here α, p > 0, and γ ∈ C0,1(R/Z,Rn
). The quantity Dγ(u, v) measures the intrinsic distance between γ(u)

and γ(v) on the curve γ.

As

∣∣γ(u) − γ(v)∣∣ ≤ Dγ(u, v), the integrand is non-negative, so the integral takes a value in [0,∞]. The �rst

term penalizes pairs of points (γ(u), γ(v)) having a small Euclidean distance by taking the latter to a neg-

ative power in order to produce a singularity. As neighboring points γ(u), γ(u + ε) naturally have a small

Euclidean distance, we have to add some sort of regularization: substracting the intrinsic distance Dγ(u, v)
taken to the same negative power as the Euclidean distance, the singularities stemming from neighboring

points are cancelled while those for distant points are essentially una�ected. Finally we average over the p-
th power of this term over all pairs of points by integrating. The factors

∣∣γ ′(u)∣∣ ∣∣γ ′(v)∣∣ guarantee invariance

under reparametrization.



Modeling repulsive forces on �bres via knot energies | 59

Now we have to determine the parameters α, p > 0 for which this procedure works. We �rst remark

O’H

(α,p)
(rγ) = r2−αpO’H(α,p)

(γ) for r > 0, i.e., O’H

(α,p)
is positively homogeneous of degree 2 − αp. There-

fore, in case αp > 2 the integral blows up as the curve shrinks down.

There is an immediate heuristics why we should stick to that range. Choose a �nite-energy smooth curve that

contains a straight line segment. Insert a small knotted arc in that line segment producing a smooth curve.

Shrinking down that knotted arc component while leaving unchanged the rest of the curve would produce

a sequence of knotted arcs leaving the knot class at the limit, the so-called pulling-tight e�ect, see Figure 1.

However, (1) does not apply for αp ≤ 2.

De�nition 2 (Preventing pulling-tight). A knot functional is said to prevent pulling-tight if pulling-tight of a
small knotted arc as in Figure 1 implies (1).

A formal de�nition is provided in O’Hara’s monography [24].

From the argument sketched above we infer that a knot functional being positively homogeneous of non-

negative degree it very unlikely to prevent pulling-tight.

However, self-avoidance as in the de�nition of knot energies does not imply the prevention of pulling-tight.

A counterexample is already the �rst geometric knot energy O’H

(2,1)

which was shown by O’Hara to be self-

repulsive. But due to its invariance under the Möbius group [14] it cannot prevent a curve from being pulled

tight.

In order to be self-repulsive, two perpendicular line segments must produce an energy blow-up as they ap-

proach each other.Wewill show that this is not the case for αp < 2. To this end consider a curve γδ containing

the two strands γ
1
(u) := (u, 0, 0) and γ

2
(u) = (0, u, δ) for δ > 0, u ∈ [−1, 1]. In order to compute the respective

energy values, we switch to polar coordinates, u = r cosφ, v = r sinφ, which gives¹

O’H

(α,p)
(γδ) ∼

∫∫
[−1,1]

2

(
1∣∣γ

1
(u) − γ

2
(v)
∣∣α − 1

D(γ
1
(u), γ

2
(v))α

)p

dv du ≤
∫∫

[−1,1]
2

dv du
(u2 + v2 + δ2)αp

≤

√
2∫

0

2π∫
0

r dφ dr
(r2 + δ2)(αp)/2

≤ C

√
2∫

0

r dr
(r + δ)αp

≤ C

√
2∫

0

(r + δ)1−αp
αp < 2

≤ C
((√

2 + δ
)
2−αp

− δ2−αp
)
.

The last term stays bounded as δ ↘ 0 if αp < 2.

On the other hand, not every functional O’H

(α,p)
with αp ≥ 2 leads to a suitable knot energy. In fact, for γ being

parameterizedbyarc-length, i.e.,

∣∣γ ′∣∣ = 1almost everywhere,wededuce as in [4] using1−〈a, b〉Rn = 1

2

|a − b|2
for a, b ∈ Rn

, |a| = |b| = 1, as well as Dγ(u + w, u) = |w|

O’H

(α,1)
(γ) =

∫∫
(R/Z)2

(
1∣∣γ(u + w) − γ(u)∣∣α − 1

Dγ(u + w, u)α

)
dw du

=

∫∫
(R/Z)2

(
|w|∣∣γ(u + w) − γ(u)∣∣

)
︸ ︷︷ ︸

≥1

α
1

|w|α

(
1 −

∣∣γ(u + w) − γ(u)∣∣α
|w|α

)
dw du

≥ c
∫∫

(R/Z)2

1

|w|α

(
1 −

∣∣γ(u + w) − γ(u)∣∣2
|w|2

)
dw du

≥ c
∫∫

(R/Z)2

1

|w|α

1 −

∫∫
[0,1]

2

〈
γ ′(u + ϑ

1
w), γ ′(u + ϑ

2
w)
〉
Rn

dϑ
1
dϑ

2

 dw du

1 By writing A ∼ B we mean that A essentially behaves like B up to lower-order terms.
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≥ c̃
∫∫

(R/Z)2

1

|w|α

∫∫
[0,1]

2

∣∣∣γ ′(u + ϑ1w) − γ ′(u + ϑ2w)∣∣∣2 dϑ1 dϑ2
 dw du

≥ c̃
∫

R/Z

1/2∫
−1/2

1

|w|α

∫∫
[0,1]

2

∣∣∣γ ′(u + (ϑ1 − ϑ2)w) − γ ′(u)∣∣∣2 dϑ1 dϑ2
 dw du

≥ c̃
∫∫
[0,1]

2

∫
R/Z

1/2∫
−1/2

1

|w|α
∣∣∣γ ′(u + (ϑ1 − ϑ2)w) − γ ′(u)∣∣∣2 dw du dϑ

1
dϑ

2

≥ c̃
1∫

1−ε

ε∫
0

∫
R/Z

1/2∫
−1/2

1

|w|α
∣∣∣γ ′(u + (ϑ1 − ϑ2)w) − γ ′(u)∣∣∣2 dw du dϑ

1
dϑ

2

≥ c̃
1∫

1−ε

ε∫
0

∫
R/Z

(ϑ
1
−ϑ

2
)/2∫

−(ϑ
1
−ϑ

2
)/2

(ϑ
1
− ϑ

2
)

α−1

|w̃|α
∣∣∣γ ′(u + w̃) − γ ′(u)∣∣∣2 dw̃ du dϑ

1
dϑ

2

≥ c̃
1∫

1−ε

ε∫
0

(ϑ
1
− ϑ

2
)

α−1
dϑ

1
dϑ

2

︸ ︷︷ ︸
∈(0,∞)

∫
R/Z

1/2−ε∫
−1/2+ε

∣∣γ ′(u + w̃) − γ ′(u)∣∣2
|w̃|α dw̃ du,

where ε ∈ (0, 1
2

). More generally, one can show

O’H

(α,p)
(γ) ≥ c

∫
R/Z

ε∫
−ε

∣∣γ ′(u + w) − γ ′(u)∣∣2p
|w|αp dw du for ε � 1,

see [4] for details. As for closed curves γ ′ cannot be constant, the right-hand side must be positive. Applying

the following result which is proven in Brezis [9, Prop. 2], we then get that, in case

(α − 2)p ≥ 1, (3)

the right hand side must be in�nite for any closed curve!

Proposition 3 (Highly singular potentials). Assume Ω is a connected open set in RN and f : Ω → R is a
measurable function with ∫∫

Ω×Ω

∣∣f (x) − f (y)∣∣p
|x − y|N+p

dx dy < ∞ for some p ∈ [1,∞) (4)

then f is constant.

An alternative way to see O’H

(α,p) ≡ ∞ for (3) is provided by Abrams, Cantarella et al. [1]. They prove that

O’H

(α,p)
is (for closed curves) always globallyminimizedby the (round) circle. It is easy to see that it is assigned

to in�nite energy in case (3).

In light of these facts it is reasonable to restrict oneself to the sub-critical range

αp > 2, (α − 2)p < 1. (5)

The respective parameter ranges discussed in this subsection are visualized in Figure 2 (left).
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αp = 2 (α − 2)p = 1
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Fig. 2. The range of O’Hara’s energies (left); the range of abstract energies (right). On the left-hand side we depict the situation
of O’Hara’s energies O’H

(α,p). Below the green curve, the respective functionals are not self-repulsive, thus no knot energies.
On and above the red line the functionals are so singular that they only take the value in�nity. The yellow area between the
two curves marks the sub-critical range for which we prove self-repulsiveness and existence of minimizers in every knot class.
The darker yellow line α ∈ (2, 3), p = 1 denotes the non-degenerate sub-critical range where local minimizers are C∞. Any
functional O’H(α,p) corresponds to the abstract functional KE(s,ϱ) where s = α

2

−

1

2p + 1 and ϱ = 2p. The respective parameter
ranges are shown on the right-hand side. The energy increase does not follow from the axioms (K

1
), (K

2
), (K

3
), but applies for

the examples discussed in this section.

2.2 Tangent-point energies

Another important family of knot energies is the (generalized) tangent-point energy family

TP

(p,q)
(γ) =

∫∫
(R/Z)2

∣∣∣P⊥γ ′(u) (γ(u) − γ(v))∣∣∣q∣∣γ(u) − γ(v)∣∣p
∣∣∣γ ′(u)∣∣∣ ∣∣∣γ ′(v)∣∣∣ du dv (6)

where γ ∈ C0,1(R/Z,Rn
) and

Pγ ′(u)a :=
〈
a, γ ′(u)∣∣γ ′(u)∣∣

〉
γ ′(u)∣∣γ ′(u)∣∣ , P⊥γ ′(u)a := a − Pγ ′(u)a for a ∈ Rn

(7)

denote the projection onto the tangential and normal part along γ respectively. In case p = 2q the factor∣∣∣P⊥
γ′ (u)(γ(u)−γ(v))

∣∣∣q
|γ(u)−γ(v)|p in (6) is just the q-th power of the reciprocal of the diameter of the circle being tangent to γ(u)

and passing through γ(v).
Proceeding as for O’Hara’s energies, we will show that the functionals are not self-repulsive if p < q +2 while

they are singular for p ≥ 2q + 1. Therefore we will restrict our attention to the sub-critical range

p ∈ (q + 2, 2q + 1). (8)

This range is sketched in Figure 3. The lower bound q + 2 is due to the fact that as before for a curve γδ
containing the strands γ

1
(u) := (u, 0, 0) and γ

2
(u) = (0, u, δ) for δ > 0, u ∈ [−1, 1], one gets

TP

(p,q)
(γδ) ∼ 2

∫∫
[−1,1]

2

(
v2 + δ2

)q/2
(u2 + v2 + δ2)p/2

du dv ≤ 2

√
2∫

0

2π∫
0

(
r2 sin2 φ + δ2

)q/2
(r2 + δ2)p/2

r dφ dr ≤ 4π

√
2∫

0

(
r2 + δ2

) q−p
2 r dr.

(9)

The integral on the right-hand side is bounded for δ ↘ 0 if p < q + 2.
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Fig. 3. The ranges of the tangent-point energies (left) and the integral Menger curvature (right). Above the green line, the func-
tionals are not self-repulsive; below the red line, they are highly singular. The yellow area marks the sub-critical range, the
dark yellow line the non-degenerate sub-critical range, cf. Fig. 2. The blue line indicates the “classical” energy functionals in-
vestigated by Strzelecki et al. [26, 27]. The functionals TP

(p,q) and intM

(p,q) correspond to KE

(s,ϱ) where s = p−1
q or s = 3p−2

q − 1

respectively and ϱ = q, see [6, 8] for details.

Using techniques from [3] we justify the upper bound 2q + 1 as follows. Let us again assume that γ is

parametrized by arc-length. By continuity we may choose some δ > 0 depending on γ such that∣∣∣γ ′(u) − γ ′(v)∣∣∣ ≤ 1

2

√
2 for all u ∈ R/Z, |u − v| ≤ δ. (10)

This leads to∣∣∣P⊥γ ′(v) (γ(u) − γ(v)) − P⊥γ ′(u) (γ(u) − γ(v))∣∣∣2
=

∣∣∣〈γ(u) − γ(v), γ ′(v)〉 γ ′(v) − 〈γ(u) − γ(v), γ ′(u)〉 γ ′(u)∣∣∣2
=

∣∣∣〈γ(u) − γ(v), γ ′(v)〉∣∣∣2 + ∣∣∣〈γ(u) − γ(v), γ ′(u)〉∣∣∣2 − 2〈γ(u) − γ(v), γ ′(u)〉〈γ(u) − γ(v), γ ′(v)〉〈γ ′(u), γ ′(v)〉
=

∣∣∣〈γ(u) − γ(v), γ ′(v)〉 − 〈γ(u) − γ(v), γ ′(u)〉∣∣∣2 + 〈γ(u) − γ(v), γ ′(u)〉〈γ(u) − γ(v), γ ′(v)〉 ∣∣∣γ ′(u) − γ ′(v)∣∣∣2
≥

∣∣∣γ ′(u) − γ ′(v)∣∣∣2 |u − v|2 1∫
0

〈
γ ′(u + ϑ

1
(v − u)), γ ′(u)

〉
︸ ︷︷ ︸
=1−

1

2

|γ ′(u+ϑ
1
(v−u))−γ ′(u)|2≥ 3

4

dϑ
1

1∫
0

〈
γ ′(u + ϑ

2
(v − u)), γ ′(v)

〉
︸ ︷︷ ︸

≥

3

4

dϑ
2

≥

9

16

|u − v|2
∣∣∣γ ′(u) − γ ′(v)∣∣∣2

which in turn allows to estimate using

∣∣γ(u) − γ(v)∣∣ ≤ |u − v|
TP

(p,q)
(γ) =

∫∫
(R/Z)2

∣∣∣P⊥γ ′(u) (γ(u) − γ(v))∣∣∣q∣∣γ(u) − γ(v)∣∣p du dv = 1

2

∫∫
(R/Z)2

∣∣∣P⊥γ ′(v) (γ(u) − γ(v))∣∣∣q + ∣∣∣P⊥γ ′(u) (γ(u) − γ(v))∣∣∣q∣∣γ(u) − γ(v)∣∣p du dv

≥ c̃q
∫∫

(R/Z)2

∣∣∣P⊥γ ′(v) (γ(u) − γ(v)) − P⊥γ ′(u) (γ(u) − γ(v))∣∣∣q∣∣γ(u) − γ(v)∣∣p du dv

≥ cp,q
∫∫

|u−v|≤δ

|u − v|q
∣∣γ ′(u) − γ ′(v)∣∣q∣∣γ(u) − γ(v)∣∣p du dv ≥ cp,q

∫∫
|u−v|≤δ

∣∣γ ′(u) − γ ′(v)∣∣q
|u − v|p−q du dv.

Applying Proposition 3, we again get that for p > 2q+1 the energy is only �nite for pieces of one straight line.
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2.3 Integral Menger curvature

Instead of the circle passing through one point and being tangent to another we can also consider the cir-
cumcircle, i.e. the circle passing through three distinct points x, y, z ∈ Rn

. The circumcircle radius is given

by

R(x, y, z) := |y − z| |y − x| |z − x|
2 |(y − x) ∧ (z − x)| =

|y − z|
2 sin^ (y − x, z − x) , x, y, z ∈ Rn

. (11)

Decoupling powers in the nominator and denominator we arrive at

R(p,q)(x, y, z) := (|y − z| |y − x| |z − x|)p
|(y − x) ∧ (z − x)|q

=

|y − z|p |y − x|p−q |z − x|p−q
sin^ (y − x, z − x)q

which is the integrand of the generalized integral Menger curvature functionals [8]

intM

(p,q)
(γ) :=

∫∫∫
(R/Z)3

∣∣γ ′(u)∣∣ ∣∣γ ′(u + v)∣∣ ∣∣γ ′(u + w)∣∣
R(p,q)(γ(u), γ(u + v), γ(u + w)) dw dv du, p, q > 0. (12)

Due to the three dimensional integration domain the situation is a little bit more involved. In order to exclude

the case p <

2

3

q + 1 we again look at a curve γδ containing the strands γ
1
(u) := (u, 0, 0) and γ

2
(u) = (0, u, δ)

for δ > 0, u ∈ [−1, 1]. Applying spherical coordinates u = r cos ϑ, v = r sin ϑ cosφ, w = r sin ϑ sinφ, leads us
to

intM

(p,q)
(γδ) ∼ C

∫∫∫
[−1,1]

3

(
δ2 + u2

)q/2
|v − w|p−q (δ2 + u2 + v2)p/2 (δ2 + u2 + w2

)

p/2 dw dv du

≤ C
∫∫∫
[−1,1]

3

(
δ2 + u2

)
(q−p)/2

|v − w|p−q (δ2 + u2 + v2 + w2

)

p/2 dw dv du

≤ C

√
3∫

0

π∫
0

(
δ2 + r2 cos2 ϑ

)
(q−p)/2 r2 sin ϑ

rp−q sinp−q ϑ (δ2 + r2)p/2
dϑ dr

2π∫
0

dφ
|cosφ − sinφ|p−q︸ ︷︷ ︸

≤C

≤ C

√
3∫

0


∫

[0,

π
4

]∪[ 3π
4

,π]

(
δ2 + r2

)
(q−p)/2

dϑ
rp−q−2 sinp−q−1 ϑ︸ ︷︷ ︸

≥1

(δ2 + r2)p/2
+

3π
4∫

π
4

(
δ2 + r2 cos2 ϑ

)
(q−p)/2 r sin ϑ

rp−q−1 sinp−q ϑ (δ2 + r2)p/2
dϑ

 dr

≤ C

√
3∫

0


(δ + r)−3p+2q+2 + r−p+q+1 (δ + r)−p

r∫
0

(
δ2 + σ2

)
(q−p)/2

dσ


dr

≤ C
(
1 − δ−3p+2q+3

)
.

Proceeding in a similar way as for the tangent-point energies, we infer the restriction p < q + 2

3

to exclude the

highly singular range, see [5, 8].

2.4 Ropelength

In this subsection we brie�y mention a special case which is related to the integral Menger curvature family.

In fact, it corresponds to the limit case p = q →∞.

Taking the in�mum of (11) over all points of the curve γ, we obtain a notion of thickness. This particular

de�nition which goes back to Gonzalez and Maddocks [17] has the advantage over other de�nitions not to

require any initial regularity of the curve.
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It is elementary to see that ropelength, i.e. the quotient of length over thickness, is a knot energy. Ropelength

minimizers are referred to as ideal knots. As taking in�ma is a non-smooth operation, one cannot proceed by

the techniques presented in this text.

The existence of ideal knots has been proven in [18], [13], and [16]; they have at least a Lipschitz continuous

tangent (if parametrized by arc-length). For further information we refer to [11] and references therein.

3 Existence of minimizers

In this sectionwe discuss the existence ofminimizers in any knot class. There is almost nothing known about

the shape of those minimizers up to the fact that circles are unique minimizers among all closed curves for

O’Hara’s energies [1].

In order not to prove the existence result for minimizers of O’Hara’s energies, tangent point energies and

integral Menger curvature separately, we gather all the properties of these energies we need in one abstract

framework:

For k ∈ N, k > 1, we let f (s,ϱ) : C1(R/Z,Rn
) ×

(
R/Z

)k → [0,∞] be a measurable non-negative function

and de�ne the energy of a curve γ by

KE

(s,ϱ)
(γ) :=

∥∥∥f (s,ϱ)(γ; · · · )∥∥∥
L1((R/Z)k)

=

∫
· · ·

∫
(R/Z)k

f (s,ϱ)(γ; u
1
, . . . , uk) du1 · · · duk .

We assume that f (s,ϱ) and KE

(s,ϱ)
satisfy the following properties for arbitrary γ ∈ C1(R/Z,Rn

).

(K
1
)We have f (s,ϱ)(rγ + x; · · · ) = r−(s−1−1/ϱ)f (s,ϱ)(γ; · · · ) for all r > 0 and x ∈ Rn

. Furthermore, KE

(s,ϱ)
(γ) is

invariant under reparametrization of γ.

(K
2
)If f (s,ϱ)(γ; · · · ) vanishes on U

1
× · · · × Uk where Uj ⊂ R/Z, j = 1, . . . , k, then the image of γ restricted

to

⋃k
j=1 Uj is collinear, i.e., lies on a straight line.

(K
3
)For any C > 0 there is some C′ = C′(C) > 0 such that KE

(s,ϱ)
(γ) ≤ C implies

∥∥γ ′∥∥C0,s−1−1/ϱ ≤ C′ for any
arc-length parametrized curve γ.

It is not di�cult to see that O’H

(α,p)
, TP

(p,q)
, and intM

(p,q)
satisfy (K

1
) and (K

2
) for appropriatly chosen s and

ϱ. However, in order to prove (K
3
) one can either use an approach based on fractional Sobolev spaces and

Morrey’s embbeding theorem, see [6–8], or use a sophisticated scaling argument as shown in [21], [26], and

[27].

Theorem 4 (Prototype knot energies in the sub-critical range). Let (s, ϱ) belong to the sub-critical range, i.e.,

s ∈ (1 + 1

ϱ , 2), ϱ ∈ (1,∞). (13)

The prototype functional KE(s,ϱ) : C1(R/Z,Rn
)→ [0,∞] given by

KE

(s,ϱ)
(γ) :=

∥∥∥f (s,ϱ)(γ; · · · )∥∥∥
L1((R/Z)k)

=

∫
· · ·

∫
(R/Z)k

f (s,ϱ)(γ; u
1
, . . . , uk) du1 · · · duk

is a strong knot energy that prevents pulling-tight.

Proof. Pulling-tight produces a singularity of the tangentwhich is excluded by (K
3
). Strong self-repulsiveness

is proven in Proposition 8.
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γ′
1(0)

γ1(0)

γ2(0)
γ′

2(0)

Fig. 4. The situation in Lemma 6. Note that γ
1
and γ

2
are always disjoint.

Note that KE

(s,ϱ)
(γ) might be in�nite although γ ∈ C1,s−1−1/ϱ is an embedded arc-length parametrized curve.

However, in all the cases discussed here, the energy values are �nite for su�ciently regular embedded curves,

for example curves having a Lipschitz continuous tangent.

We start with a rigorous proof of bi-Lipschitz continuity providing a bi-Lipschitz constant depending only on

the energy, not on the curve itself.

Proposition 5 (Uniform bi-Lipschitz estimate). For every M < ∞ and (13) there is a constant C(M) < ∞ such
that any embedded curve γ ∈ C1(R/Z,Rn

) parametrized by arc-length with

KE

(s,ϱ)
(γ) ≤ M (14)

satis�es the bi-Lipschitz estimate

|u − v| ≤ C(M)

∣∣γ(u) − γ(v)∣∣ for all u, v ∈ R/Z.

We will give an easy proof that essentially boils down to combining the regularity from (K
3
) with a scaling

argument. The following lemma will be one of the essential parts in the proof. We de�ne for two arc-length

parametrized curves γi : Ii → R, i = 1, 2, I
1
, I

2
open intervals,

KE

(s,ϱ)
(γ

1
, γ

2
) :=

∫
· · ·

∫
Ik
1

f (s,ϱ)(γ; u
1
, . . . , uk) du1 · · · duk +

∫
· · ·

∫
Ik
2

f (s,ϱ)(γ; u
1
, . . . , uk) du1 · · · duk

+

∫
· · ·

∫
I
1
×Ik−1

2

f (s,ϱ)(γ; u
1
, . . . , uk) du1 · · · duk

in order to state

Lemma 6. Let α ∈ (0, 1). For µ > 0 let Mµ denote the set of all pairs (γ
1
, γ

2
) of embedded arc-length

parametrized curves γi ∈ C1([− 1

2

,

1

2

],Rn
) satisfying

• |γ
1
(0) − γ

2
(0)| = 1,

• γ ′
1
(0) ⊥

(
γ
1
(0) − γ

2
(0)

)
⊥ γ ′

2
(0),

•
∥∥γ ′i∥∥C0,α ≤ µ, i = 1, 2.

Then there is some c = c(α, µ) > 0 with

KE

(s,ϱ)
(γ

1
, γ

2
) ≥ c for all (γ

1
, γ

2
) ∈ Mµ .
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Proof. We will show that KE

(s,ϱ)
(·, ·) attains its minimum c on Mµ. From this we immediately infer c > 0 for,

otherwise, KE

(s,ϱ)
(γ

1
, γ

2
) = 0 implies by (K

2
) that both γ

1
and γ

2
are part of one single straight line. This

contradicts the fact that Mµ does not contain straight lines by the �rst two properties.

Let (γ(n)
1

, γ(n)
2

) be a minimizing sequence in Mµ, i.e., we have

lim

n→∞

KE

(s,ϱ)
(γ(n)

1

, γ(n)
2

) = inf

Mµ
KE

(s,ϱ)
(·, ·).

Subtracting γ
1
(0) from both curves, i.e., setting

γ̃(n)i (τ) := γ(n)i (τ) − γ
1
(0), i = 1, 2,

and using the Arzelà-Ascoli theorem (due to the third property), we may pass to a subsequence

γ̃(n)i → γ̃i in C1.

Furthermore, (γ̃
1
, γ̃

2
) ∈ Mµ since Mµ is closed under convergence in C1. Since, by Fatou’s lemma, the func-

tional KE

(s,ϱ)
is lower semi-continuous with respect to C1 convergence, we obtain

inf

Mµ
KE

(s,ϱ)
(·, ·) ≤ KE

(s,ϱ)
(γ̃

1
, γ̃

2
) ≤ lim

n→∞

KE

(s,ϱ)
(γ̃(n)

1

, γ̃(n)
2

)

(K
1
)

= lim

n→∞

KE

(s,ϱ)
(γ(n)

1

, γ(n)
2

) = inf

Mµ
KE

(s,ϱ)
(·, ·).

Let us use this lemma to give the

Proof of Propsition 5. Applying (K
3
) to (14) we obtain∥∥∥γ ′∥∥∥

C0,α
≤ C′(M)

for α = s − 1 − 1

ϱ > 0. As an immediate consequence there is a δ = δ(α, C′) > 0 such that

|u − v| ≤ 2|γ(u) − γ(v)|

for all u, v ∈ R/Z with |u − v| ≤ δ. Let now

S := inf

{∣∣γ(u) − γ(v)∣∣ ∣∣∣ u, v ∈ R/Z, |u − v| ≥ δ
}
≤

1

2

.

We will complete the proof by estimating S from below. Using the compactness of {u, v ∈ R/Z, |u − v| ≥ δ},
there are s, t ∈ R/Z with |s − t| ≥ δ and

|γ(s) − γ(t)| = S.

In case |s − t| = δ we infer

2S = 2|γ(s) − γ(t)| ≥ δ

and hence

|u − v| ≤ 1

2

≤

S
δ ≤

∣∣γ(u) − γ(v)∣∣
δ(α, C′)

for all u, v ∈ R/Z with |u − v| ≥ δ. This proves the proposition in this case. If, on the other hand, |s − t| > δ
then the minimality of |γ(s) − γ(t)| implies

γ ′(s) ⊥ (γ(s) − γ(t)) ⊥ γ ′(t).

We let for τ ∈ [− 1

2

,

1

2

]

γ
1
(τ) := 1

Sγ(s + Sτ) and γ
2
(τ) := 1

Sγ(t + Sτ).

Since ∥∥∥γ ′i∥∥∥C0,α ≤ ∥∥∥γ ′∥∥∥C0,α (
≤ C′(M)

)
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we may apply Lemma 6 which gives

KE

(s,ϱ)
(γ

1
, γ

2
) ≥ c(α, C′) > 0.

Together with

KE

(s,ϱ)
(γ

1
, γ

2
) = Ss−1−1/ϱKE(s,ϱ)(Sγ

1
, Sγ

2
) ≤ Ss−1−1/ϱKE(s,ϱ)(γ),

where we used (K
1
) twice, this leads to

S ≥
(
c(α, C′)
KE

(s,ϱ)
(γ)

) 1

s−1−1/ϱ

≥

(
c(α, C′)
M

) 1

s−1−1/ϱ

.

Hence,

|u − v| ≤ 1

2

≤

∣∣γ(u) − γ(v)∣∣
2S ≤ C(M)

∣∣γ(u) − γ(v)∣∣
for all u, v ∈ R/Z with |u − v| ≥ δ.

We are now in the position to prove the following mighty

Theorem 7 (Compactness). For each M < ∞ and (13) the set

AM :=

{
γ ∈ C1(R/Z,Rn

)

∣∣∣ γ embedded,
∣∣∣γ ′∣∣∣ ≡ 1, KE

(s,ϱ)
(γ) ≤ M

}
is sequentially compact in C1 up to translations.

Proof. By (K
3
) there are C′ = C′(M) < ∞ and α > 0 such that∥∥∥γ ′∥∥∥

C0,α
≤ C′

for all γ ∈ AM and hence

‖γ̃‖C1,α ≤ C
′

+ 1

where γ̃(u) := γ(u) − γ(0). Furthermore, from Proposition 5 we infer the bi-Lipschitz estimate

|u − v| ≤ C(M)|γ(u) − γ(v)|

for all γ ∈ AM, u, v ∈ R/Z. Considering a sequence (γn)n∈N ⊂ AM we obtain

‖γ̃n‖C1,α ≤ C
′

+ 1 for any n ∈ N

and hence, after passing to suitable subsequence,

γ̃n → γ
0

in C1.

Since γn was parametrized by arc-length, γ
0
is still parametrized by arc-length and still

|u − v| ≤ C(M)|γ
0
(u) − γ

0
(v)|

for all u, v ∈ R/Z. So, especially, γ
0
is embedded. From lower semi-continuity with respect to C1 convergence

we infer

KE

(s,ϱ)
(γ

0
) ≤ lim inf

n→∞

KE

(s,ϱ)
(γn) ≤ M.

So γ
0
∈ AM.

Let us conclude this section by deriving two simple corollaries of this sequential compactness and the lower

semi-continuity of the energies with respect to C1-convergence.
The �rst one states that, on the sub-critical range (13), the prototype energies KE

(s,ϱ)
are in fact knot energies

as de�ned in the introduction. The second one, already announced in the introduction, ensures that there

exist minimizers of the energies within every knot class—which are then smooth by Theorem 10.
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Proposition 8 (KE

(s,ϱ)
is a strong knot energy). Let (13) hold.

• If (γk)k∈N ⊂ C1 is a sequence uniformly converging (in C0) to a non-injective curve γ
∞
∈ C1 then

KE

(s,ϱ)
(γk)→∞.

• For given E, L > 0 there are only �nitely many knot types having a representative with KE

(s,ϱ)
≤ E and

length = L.

Proof. The �rst statement immediately follows from the bi-Lipschitz estimate in Proposition 5.

To show the second statement, let us assume that it was wrong, i.e., that there are curves (γk)k∈N of length L,
all belonging to di�erent knot classes, with energy less than E. Of course we can assume L = 1. By Theorem 7,

after suitable translations and passing to a subsequence, there is some γ
0
∈ AM with γn → γ

0
in C1. As the

intersection of every knot class with C1 is an open set in C1 [2, Cor. 1.5] (see [25] for an explicit construction),

this implies that almost all γk belong to the same knot class as γ
0
, which is a contradiction.

Theorem 9 (Existence of minimizers in knot classes). In the sub-critical case (13) there is a minimizer of
KE

(s,ϱ) in any knot class K.

Proof. Let (γk)k∈N ∈ C1,
∣∣γ ′k∣∣ ≡ 1, be a minimal sequence of embedded curves for KE

(s,ϱ)
in a given knot class

K, i.e., let

lim

k→∞

KE

(s,ϱ)
(γk) = inf

C1∩K
KE

(s,ϱ)
.

After passing to a subsequence and suitable translations, we hence obtain by Theorem 7 an embedded arc-

length parametrized γ
0
∈ C1 with γk → γ

0
in C1. Again by [2, 25] the curve γ

0
belongs to the same knot class

as the elements of the minimal sequence (γk)k∈N. The lower semi-continuity of KE

(s,ϱ)
furthermore implies

that

inf

C1∩K
KE

(s,ϱ)
≤ KE

(s,ϱ)
(γ

0
) ≤ lim

n→∞

KE

(s,ϱ)
(γn) = inf

C1∩K
KE

(s,ϱ)
.

Hence, γ
0
is the minimizer we have been searching for.

By the same reasoning one derives the existence of a global minimizer of KE

(s,ϱ)
.

4 Regularity of stationary points

The aim of this section is to outline the proof of

Theorem 10 (Regularity of local minimizers). Any local minimizer of O’H(α,1), α ∈ (2, 3), TP(p,2), p ∈ (4, 5),
and intM

(p,2), p ∈ ( 7
3

,

8

3

), is C∞-smooth.

The parameter ranges in the above statement are referred to as the non-degenerate sub-critical case which is

depicted as yellow line in Figures 2 and 3. For the abstract energies KE

(·,·)

this is equivalent to

s ∈ ( 3
2

, 2), ϱ = 2. (15)

In contrast to the previous section, we do not provide an axiomatic approach as this would demand quite a

lot of additional requirements. Therefore, mainly due to convenience, our analysis presented below re�ects

the case where KE

(·,·)

stands for either O’H

(·,·)

, TP

(·,·)

, or intM

(·,·)

. However, our argument can be adopted for

similar problems.

Recall that O’H

(α,p)
corresponds to KE

(
α
2

−

1

2p +1,2p
)
, TP

(p,q)
to KE

(
p−1
q ,q

)
, intM

(p,q)
to KE

(
3p−2
q −1,q

)
.

We now sketch the strategy of proof for C∞-smoothness of local KE

(s,2)
-minimizers in the non-degenerate

sub-critical case (15). All details are to be found in [6–8].
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The �rst task is to compute the �rst variation

δKE(s,2)(γ; h) := lim

τ→0

KE

(s,2)
(γ + τh) − KE

(s,2)
(γ)

τ . (16)

Any local minimizer γ of KE

(s,2)
is a stationary point, i.e., it satis�es the Euler-Lagrange equation

δKE(s,2)(γ; h) + λ
〈
γ ′, h′

〉
L2
= 0 for all h ∈ C∞(R/Z,Rn

) (17)

where λ ∈ R is a Lagrange parameter stemming from the side condition (�xed length) and the L2-scalar
product is de�ned in (20) below. We will prove Theorem 10 by exploiting this identity in the following way:

a suitable decomposition allows to concentrate the highest-order term on the left-hand side of the equation

while the right-hand side turns out to be a lower-order term. By a so-called bootstrapping argument we in-

ductively deduce that the curve γ is more andmore regular. Consequently, the statement in Theorem 10 holds

even for stationary points. In the sequel we sketch the main steps being prerequired for its proof.

Computing the �rst variation demands a quite subtle argument for O’Hara’s energies O’H

(α,p)
while it is rather

straight-forward for TP

(p,q)
and intM

(p,q)
.

In order to start a bootstrapping process, we decompose δKE(s,2) into the sum of a bilinear elliptic term Q(s)

and a remainder term R(s) of lower order, i.e.,

δKE(s,2)(γ; h) = Q(s)
(γ; h) + R(s)(γ; h). (18)

The general idea how to constructQ(s)
is just to “linearize” the integrand of δKE(s,2), e.g. by replacing negative

powers of

∣∣γ(u) − γ(v)∣∣ by the corresponding ones of |u − v|.
We will brie�y illustrate this idea by exemplifying it for O’H

(α,2)
, α ∈ (2, 3). The �rst variation at an arc-length

parametrized (su�ciently smooth) embedded curve is given by

δO’H(α,2)
(γ; h) = lim

ε↘0

∫∫
u,v∈R/Z
|u−v|≥ε

(
(α − 2)

〈
γ ′(u), h′(u)

〉
|u − v|α + 2

〈
γ ′(u), h′(u)

〉∣∣γ(u) − γ(v)∣∣α − α
〈
γ(u) − γ(v), h(u) − h(v)

〉∣∣γ(u) − γ(v)∣∣α+2
)
du dv.

Linearizing as indicated above leads to

Q(

α+1
2

)

(γ; h) = α lim
ε↘0

∫∫
u,v∈R/Z
|u−v|≥ε

(〈
γ ′(u), h′(u)

〉
|u − v|α −

〈
γ(u) − γ(v), h(u) − h(v)

〉
|u − v|α+2

)
du dv. (19)

The remainder is then obtained by computing the di�erence according to (18)

R( α+12 )(γ; h) = 2

∫∫
u,v∈R/Z

〈
γ ′(u), h′(u)

〉(
1∣∣γ(u) − γ(v)∣∣α − 1

|w|α

)
du dv

− α
∫∫

u,v∈R/Z

〈
γ(u) − γ(v), h(u) − h(v)

〉(
1∣∣γ(u) − γ(v)∣∣α+2 − 1

|w|α+2

)
du dv,

where the limits ε ↘ 0may be omitted, see [7] for details.

Here it becomes apparent that the setting ϱ = 2 corresponds to the Hilbert case which is characterized by the

existence of a scalar product

〈f , g〉L2 :=
1∫

0

〈
f (u), g(u)

〉
Cn du for f , g ∈ L2(R/Z,Cn

). (20)

This enables us to apply the theory of Fourier series. Recall that we may express a function f by its Fourier

series ∑
k∈Z

ˆf e2πikx
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where
ˆfk :=

∫
1

0

f (x)e−2πikx dx is the k-th Fourier coe�cient. A function f belongs to L2(R/Z,Rn
) if and only if

the sequence of its Fourier coe�cients belongs to `2, i.e., they are square summable,∑
k∈Z

∣∣∣ˆfk∣∣∣2 < ∞.

In this case f (x) = ∑k∈Z
ˆf e2πikx for almost every x ∈ R/Z. On the level of Fourier coe�cients regularity is

expressed by multiplication of powers of k, more precisely, f̂ ′ = 2πikˆf and f̂ ′′ = −4π2k2ˆf . Therefore, in order

to prove f ∈ C∞, we have to show(
|k|σ ˆf k

)
k∈N
∈ `2 for arbitrarily large σ > 0.

To this end we need an initial amount of regularity, namely(
|k|s γ̂k

)
k∈N ∈ `

2

. (21)

In fact, this is not an additional requirement as, for the energy families presented in this text, any�nite-energy

curve in arc-length parametrization satis�es the latter claim already. This can be seen by the computations

used to exclude the highly singular range and the fact that (21) is equivalent to

∫∫
(R/Z)2

|γ(u)−γ(v)|2
|u−v|1+2s du dv < ∞.

Nowwe have to investigate the regularity properties of both Q(s)
and R(s). Using Parseval’s theoremwe obtain

Q(s)
(f ; g) =

∑
k∈Z

ϱk
〈
ˆfk , ĝk

〉
Cd

where ϱk = c |k|2s + o
(
|k|2s

)
as |k| ↗ ∞ (22)

and c > 0. Here o
(
|k|2s

)
denotes a quantity with

o(|k|2s)
|k|2s → 0 as |k| ↗ ∞.

To see this for the example O’H

(α,2)
, just insert the basis functions ϕk(t) := e2πikt, k ∈ Z, into (19) which gives,

for basis vectors e` ∈ Rn
, ` = 1, . . . , n,

Q(

α+1
2

)

(ϕke`;ϕk′e`′ ) = δk,k′δ`,`′cα |k|α+1 + O(k)

where δ
·,·

denotes the Kronecker symbol, cα is a positive constant, and

O(k)
|k| ≤ C as |k| ↗ ∞.

The next crucial step is to show that all terms belonging to R(s) have the same structure, so one can treat them

simultaneously. Since the exact form of a multilinear mapping (Rn
)

N → Rwill not matter in our analysis, let

us introduce the “f notation” which represents any sort of these operators, e. g., 〈(a ⊗ b) c, d〉 = afbf cfd
for a, b, c, d ∈ Rn

. Now the term R(s)(γ, h) is a (�nite) sum of expressions of type

∫
R/Z

1/2∫
−1/2

∫
· · ·

∫
[0,1]

K

g(s)(u, w)f h′(u + σKw) dθ1 · · · dθK dw du

where

g(s)(u, w) := G(s)
(∣∣∣∣γ(u + w) − γ(u)w

∣∣∣∣)
∣∣γ ′(u + σ

1
w) − γ ′(u + σ

2
w)
∣∣2

|w|2s−1

(
K−1æ

i=3
γ ′(u + σiw)

)
,

G(s) is some analytic function de�ned on [c, ∞), and σi ∈ {0, θi} for all i = 1, . . . , K.
From this we can state the regularity of the remainder term as follows: if(

|k|s+σ γ̂k
)
k∈N ∈ `

2

for some σ ≥ 0 (23)

then for any ε > 0 there is some g = gε : R/Z→ Rn
with

R(s)(γ; h) =
∑
k∈Z

〈
ĝk , ˆhk

〉
Cn

and

(
|k|σ−ε−3/2 ĝk

)
k∈N
∈ `2. (24)

By (22) and (24) we are able to proceed to the
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Proof of Theorem 10. Rewriting (17) using (18), we arrive at

Q(s)
(γ; h) + λ

〈
γ ′, h′

〉
L2
+ R(s)(γ; h) = 0 (25)

for any h ∈ C∞(R/Z). Since �rst variation of the length functional satis�es〈
γ ′, h′

〉
L2
=

∑
k∈Z

|2πk|2
〈
γ̂k , ˆhk

〉
Cd

,

we deduce using (22) that there is a c > 0 with

Q(s)
(γ, h) + λ

〈
γ ′, h′

〉
L2
=

∑
k∈Z

ϱ̃k
〈
γ̂k , ˆhk

〉
Cd

where ϱ̃k = c |k|2s + o
(
|k|2s

)
as |k| ↗ ∞. (26)

Assuming (23) we infer

Q(s)
(γ; h) + λ

〈
γ ′, h′

〉
L2
+

∑
k∈Z

〈
ĝk , ˆhk

〉
Cn

= 0 (27)

from applying (24) to (25). Equation (26) implies∑
k∈Z

〈
ϱ̃kγ̂k + ĝk , ˆhk

〉
Cn

= 0.

Testing this identity with the basis functions
ˆhj = δj,k we obtain ϱ̃kγ̂k + ĝk = 0 for all k ∈ Z. Applying (24)

yields (
ϱ̃k |k|σ−ε−3/2 γ̂k

)
k∈Z
∈ `2.

Recalling that ϱ̃k |k|−2s converges to a positive constant as |k| ↗ ∞, we are led to(
|k|2s+σ−ε−3/2 γ̂k

)
k∈Z
∈ `2.

Choosing ε := s
2

−

3

4

> 0, this reads (
|k|s+σ+ε γ̂k

)
k∈Z ∈ `

2

. (28)

Consequently, compared to the initial assumption (23), we gain a positive regularity amount ε that does not
depend on σ. So, starting with (21), we arrive at γ ∈ C∞ by iterating (23)–(28).
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