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ABSTRACT
Diabetes and its complications are serious medical and global burdens, often manifesting 
as postprandial hyperglycemia. In recent years, considerable research attention has 
focused on relationships between the gut microbiota and circulating postprandial glucose 
(PPG). Different population studies have suggested that PPG is closely related to the gut 
microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and 
trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict 
PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and 
improve glucose metabolism to facilitate the precision treatment of diabetes. However, few 
studies have been conducted in patients with diabetes. Therefore, little is known about the 
relationships between the gut microbiota and PPG in this cohort. Thus, more research is 
required to identify key gut microbiota and associated metabolites and pathways impacting 
PPG to provide potential therapeutic targets for PPG.
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INTRODUCTION

Diabetes is one of  the most common 
chronic non-communicable diseases which 
threatens global human health.[1-2] The 
International Diabetes Federation (10th 
Diabetes Atlas, 2021) reports that global 
disease prevalence, between the ages of  20 
to 79 years, is estimated to be 10.5% (536.6 
million adults),[3] with disease-related health 
expenditure is estimated at 966 billion 
dollars and is expected to reach 10.54 trillion 
dollars by 2045.[4] Diabetic nephropathy, 
diabetic retinopathy, cardiovascular events 
and other diabetes-related complications 
seriously affect the quality of  life of  
patients, increasing the hospitalization rate 
and mortality of  patients.[5-11] In China, 
approximately 33% of  diabetic outpatients 
achieve blood glucose targets.[12] Blood 
glucose fluctuation, especially postprandial 
hyperglycemia, is closely related to diabetes 
complications.[13] Glycemic control was 

assessed using the hemoglobin A1c (HbA1c) 
level.[14] The system evaluation showed that 
a decrease in postprandial glucose (PPG) 
accounted for nearly twice as much as 
fasting plasma glucose (FPG) for the 
decreases in HbA1c.[15] So PPG had a better 
correlation with HbA1c than FPG. The 
American Diabetes Association Guidelines 
2021 suggests that PPG monitoring should 
be conducted in patients with diabetes who 
failed to reach satisfactory HbA1c levels but 
obtained target fasting blood glucose, and 
PPG levels should be maintained below 
10.0 mmol/L to reduce HbA1c.[16] Gastric 
emptying, intestinal proinsulin system, and 
preprandial blood glucose levels affect 
postprandial blood glucose levels. In recent 
years, more studies have reported that the 
gut microbiota may exert important actions 
on blood glucose levels, in addition to the 
effects of  islet functions, diets, exercise, 
and other factors.[17,18] Studies investigating 
relationships between diabetes and gut 
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microbiota have successfully shown that gut microbiota 
composition and abundance are related to fasting blood 
glucose or HbA1c levels, but few studies have focused on 
relationships between PPG and the gut microbiota.[19-21] In 
this review, we address this issue and examine associated 
underlying mechanisms. 

GUT MICROBIOTA OVERVIEW

As the second gene bank of  human beings,[22] the number 
of  gut microbiota is 10 times the total number of  human 
cells, and the number of  genes carried by them is more 
than 100 times their own. At the same time, as the microbial 
organ of  the host, it is closely related to various metabolic 
pathways.[23,24] Gut microbiota is established during 
infancy and develops to maturity across the first 2 years 
of  life. Their stability decreases in one’s old age under the 
combined influence of  genetic and environmental factors.
[25] Gut microbiota can be classified by phylum, class, order, 
family, genus, and species, and mainly includes Firmicutes 
(Lactobacillus, Clostridium, Ruminococcus, etc.), Bacteroidetes 
(Bacteroides, Prevotella, etc.), Proteobacteria (Escherichia coli, etc.), 
and Actinobacteria (Bifidobacteria, etc.). Firmicutes contain 
the greatest number of  genera, comprising more than 
200 genera.[26] Regarded as a unique host microbial organ, 
intestinal microorganisms are closely associated with 
different metabolic pathways. Gut microbiota breaks 
down undigested plant polysaccharides, proteins or amino 
acids by encoding active enzymes of  carbohydrates and 
protein,[27] and those resultant metabolites could exert a 
biological activity and affect the metabolism of  body.[28] 

PPG AND ITS CLINICAL 
SIGNIFICANCE

PPG is one of  the main reasons for increased HbA1c 
levels.[29-30] High PPG is closely related to the occurrence 
and development of  chronic diabetic complications.[31-33] 
Hyperglycemia and its effect after acute myocardial 
infarction on cardiovascular outcomes in patients with 
type 2 diabetes mellitus (HEART2D) study compared the 
effects of  different blood glucose control strategies on 
cardiovascular endpoints in 1115 type 2 diabetes (T2D) 
patients after acute myocardial infarction. The study 
showed that in patients older than 65.7 years, there is no 
significant differences in baseline characteristics including 
HbA1c, diabetic therapies, prior cardiovascular disease 
history, or other clinically relevant measures between 
different study arms.[34] The PPG control group recorded a 
significantly less time to the first cardiovascular event, and 
a significantly lower proportion of  patients experienced a 
first cardiovascular event when compared with the fasting 
blood glucose control group (n = 56 [29.6%] vs. n = 85 

[40.5%]; hazard ratio = 0.69 [95% confidence interval (CI): 
0.49 to 0.96]; P = 0.029). Controlling PPG is important for 
promoting HbA1c levels and preventing microvascular and 
macrovascular diseases and heart events in diabetes.[35] After 
eating the same foods, PPG in an Asian population was 
higher when compared with Caucasians, and was putatively 
related to chewing habits, basic oral hygiene, high amylase 
activity,[36] oral physiological, anatomical parameters and 
other factors in these populations.[37] For these populations, 
PPG appeared to contribute to HbA1c. Therefore, more 
attention must be paid to PPG in this group.

RELATIONSHIPS BETWEEN GUT 
MICROBIOTA AND PPG

In vitro research progress on gut microbiota and 
glucose lipid metabolism
The molecular mechanisms by which gut microbiota 
affects host metabolic balance mainly include the following 
two ways: (1) the role of  gut microbiota itself; (2) the 
effects mediated by metabolites of  gut microbiota.[38,39] 
Gut microbiota can have a direct impact on the host by 
disrupting the integrity of  the intestinal mucosal barrier, 
allowing molecules such as lipopolysaccharides (LPS) to 
enter the host cycle. LPS of  Akkermansia muciniphila can 
specifically activate the expression of  Toll-like receptors 
2 (TLR2).[40] A His-tagged Amuc_1100 produced in E. 
coli (hereafter called Amuc_1100*) could similarly signal 
TLR2-expressing cells to A. muciniphila. Plover et al. [41]’s 
research has shown that Amuc_ 1100 * improves the 
metabolic syndrome in obese and diabetic mice through 
TLR2 signaling. Compared with normal-fed mice, untreated 
high-fat fed mice exhibited lower phosphorylation of  the 
protein kinase B (PKB/Akt) pathway, while mice fed with 
Amuc_1100 * treatment offset this impact and improved 
insulin sensitivity. In addition, gut microbiota can also 
have indirect effects through its metabolites, such as the 
production of  short-chain fatty acids (SCFAs), bile acids 
(BAs), trimethylamine N-oxide (TMAO), etc., which affect 
the metabolism (Table 1).

PPG in different populations
Postprandial glucose responses (PPGR) reflect increased 
areas under blood glucose response curves within 2 hours 
after eating.[42] Despite eating the same food, the PPGR 
of  different individuals was significantly different, and 
the level of  PPG was also different. In addition to food 
characteristics (e.g. carbohydrate content) and genetic 
factors, PPGR may be affected by intestinal microbiome 
differences in different individuals.[43,44]

PPG in non-diabetic individuals
In normal populations, PPG levels may be somewhat 
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predicted by combined information such as diet, body 
composition, and gut microbiota. Zeevi et al.[45] integrated 
data from 800 non-diabetic subjects and generated a 
personalized PPGR prediction model, and showed that 
Proteobacteria and Enterobacter were positively associated with 
PPGR in standardized diets. Using a standardized PPGR 
prediction model in healthy Danish adults, it was suggested 
that intestinal metagenomic species abundance, specifically, 
Clostridia MGS.hg0341 and Bifidobacteria were negatively 
associated with PPG.[46] Nolte et al. reported similar findings 
that Faecalibacterium prausnitzii was negatively associated 
with PPG.[47] In the elderly, certain correlations exist 
between intestinal bacteria and PPG; research in elderly 
healthy individuals (> 65 years old) reported significant 
correlations between gut bacteria and peak glucose levels 
after dinner and the 4-hour area under the curve (AUC) 
period after dinner.[48] Bacteroidetes, Blautia, and Bilophila are 
positive, while Ruminococcus and Holdmannia are negatively 
associated with PPG.[49] 

Relationships between gut microbiota and 
diabetic PPG
Intestinal microbial composition in patients with diabetes 
is distinct when compared with healthy individuals. A 
systematic review of  25 studies comprising 2209 type 1 
diabetes (T1D) and T2D patients reported no significant 
changes in the number of  gut microbiota in this population, 
but Bacteroides, Bifidobacterium, and Clostridium abundance 
had decreased and were negatively associated with blood 
sugar levels.[50] 

For patients with T1D, decreased Firmicutes/Bacteroides 

ratios may be related to T1D incidences and increased 
HbA1c levels.[51] Gut microbiota diversity in T1D patients 
is associated with HbA1c levels.[52] Research has suggested 
that gut microbiota diversity in adult T1D patients who 
are not newly diagnosed and whose mean/median HbA1c 
levels are less than 8% are similar to those of  normal 
individuals, but when HbA1c levels exceed 8%, gut 
microbiota diversity is distinct from healthy individuals.
[53] A previous T1D study reported that gut microbiota 
affected PPG; a prediction model incorporated gut 
microbiota characteristics can predict PPGR in T1D 
patients, except for the effects of  carbohydrate content, and 
the proportion of  carbohydrate to fat on PPG.[54,55] Shilo 
et al. enrolled 121 T1D patients, measured 6377 PPG data 
points, and designed a prediction model, which integrated 
blood glucose levels, insulin doses, dietary habits, and gut 
microbiota to accurately predict PPGR and provide T1D 
patients with optimal meal insulin doses.[56] 

For T2D patients, the study showed that Roseburia and 
Faecalibacterium abundance decreased, while Lactobacillus 
gasseri, Streptococcus mutans, and some Clostridium spp. 
abundance increased when compared with a healthy 
population.[57] Blood glucose levels in T2D patients are 
associated with gut microbiota abundance.[58] Enterobacteria 
and Enterococci abundance is less in patients with good 
blood glucose control (HbA1c < 6.5%) when compared 
with patients with poor blood glucose control (HbA1c 
≥ 6.5%), while Bifidobacteria and Bacteroidetes abundance 
is higher when compared with patients with poor blood 
glucose control.[59] Studies have shown that intestinal 
microbial interventions can affect PPG. In one study, 102 

Table 1: The mechanism of the effect of gut microbiota metabolites on postprandial blood glucose

Gut microbiota 
metabolites

Related signaling 
pathways/signaling 
molecules/key 
enzymes

Microbiota Mechanism

SCFA (butyrate, 
formic, acetic, and 
propionic acids)

FFAR2
FFAR3

Bacteroidetes
Firmicutes
Lachnospiraceae
Ruminococcus

SCFA binds to specific transmembrane receptors FFAR2 and 
FFAR3 stimulates GLP-1 and PYY secretion, inhibits appetite, 
and reduces PPG.

BA FXR
TGR5

Clostridium
Bacteroides
Lactobacillus
Bifidobacterium 

BA regulates PPG through signals from multiple parts of the 
body. Liver BA-FXR promotes glycogen synthesis; Intestinal 
BA-TGR5 promotes GLP-1 expression and secretion, while BA-
FXR inhibits GLP-1 production; BA-TGR5 mediates satiety in the 
brain and increases energy consumption in skeletal muscle and 
brown adipose tissue; Pancreatic islet β BA-TGR5 and BA-FXR 
in cells induce insulin production.

TMAO, TMA FMO3
PKA
IGF-2
PI3K/Akt

Bacteroidetes,
Firmicutes

The levels of TMAO and TMA increase after meals, which 
affect the phosphorylation process of PKA and IGF-2, and block 
the PI3K/Akt insulin signaling pathway to increase PPG.

SCFA: short-chain fatty acid, FFAR2: free fatty acid receptor 2, FFAR3: free fatty acid receptor 3, BA: bile acid, FXR: farnesoid X receptor, TGR5: Takeda G 
protein receptor 5, TMAO: trimethylamine oxide, TMA: trimethylamine, FMO3: Flavin containing monooxygenase 3, PI3K/Akt: phosphatidylinositol 3-kinase/
protein kinase B, IGF-2: insulin-like growth factor 2, PKA: protein kinase A, GLP-1: glucagon-like peptide 1, PPG: postprandial glucose.
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T2D patients were randomly divided into two groups; 
the control group was given basic hypoglycemic drugs 
and the intervention group was given hypoglycemic 
drugs plus triple viable Bifidobacterium capsules. After 8 
weeks, Bifidobacteria and Lactobacilli levels increased in the 
intervention group when compared with the control group, 
and Enterococcus and coccobacillus abundance decreased. Also, 
mean 2-hour PPG levels in the intervention group were 
1.54 mmo/L lower when compared with the control group 
(P = 0.026).[60]

How the gut microbiota affects PPG
In addition to directly acting through its own LPS, gut 
microbiota can generate various bioactive metabolites such 
as short-chain fatty acids, bile acids, and trimethylamine 
oxide through the liver or intestines. These metabolites can 
serve as indirect regulatory factors, regulating host glucose 
metabolism and insulin signaling pathways, and affecting 
postprandial glucose through related metabolic pathways 
in different tissues and organs (Figure 1).

Role of  short-chain fatty acids: Undigested dietary 

fiber generates SCFAs via bacterial fermentation in the 
distal ileum and colon.[61] SCFAs are organic fatty acids 
that contain 1–6 carbon atoms.[62] Butyrate is the main 
energy source for gut epithelial cells,[63] and is closely 
associated with metabolism. SCFAs also include formic, 
acetic, and propionic acids.[64] Many bacteria produce 
acetic acid,[65] while Bacteroidetes is the dominant propionic 
acid producer,[66] and Firmicutes is the dominant butyrate 
producer.[67] SCFAs are implicated in carbohydrate 
metabolism via different metabolic pathways to reduce 
PPG levels.[68] SCFAs and their specific transmembrane 
receptors, including the free fatty acid receptor 2 (FFAR2) 
and the free fatty acid receptor 3 (FFAR3), are involved 
in glucose and lipid metabolism.[69] It was reported that 
acetic acid selectively mediated Gq/11 or Gi/o pathways 
via FFAR2 and FFAR3 to increase or decrease glucose-
induced insulin secretion.[70] FFAR3 has Gi/o coupling, 
and FFAR2 is doubly coupled through the Gi/o and Gq 
families.[71] Additionally, butyrate is mainly produced by 
Lachnospiraceae and Ruminococcus,[72] which reduces PPG 
and improves insulin sensitivity via epigenetic regulation, 
mitochondrial β-oxidation, and β-cell proliferation.[73] 

Figure 1: Mechanisms showing how the microbiota potentially reduce postprandial blood glucose. A. Gut microbiota mainly includes Firmicutes, Bacteroidetes, 
Proteobateria and Actinobacteria. B. Undigested dietary fiber generates SCFAs via microbiota fermentation in the intestine (blue arrow); BA is secreted into 
bile by liver cells, enters the intestine and participates in the hepatointestinal circulation (green arrow); After high-fat food is eaten, TMA is generated through 
gut microbiota enzymes, and TMA generates TMAO under the action of liver FMO3 (red arrow). C. Gut microbiota generates many signaling metabolites, such 
as SCFAs, BAs and TMAO, which participate in different metabolic pathways to ultimately affect PPG. SCFAs: short-chain fatty acids, BA: bile acid, TMA: 
trimethylamine, FMO3: Flavin containing monooxygenase 3, TMAO: trimethylamine oxide, PI3K/Akt: phosphatidylinositol 3-kinase/protein kinase B, FFAR2: 
free fatty acid receptor 2, FFAR3: free fatty acid receptor 3, TGR5: Takeda G protein receptor 5, FXR: farnesoid X receptor, GLP-1: glucagon-like peptide 1, PPG: 
postprandial glucose 
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The gut microbiota impacts PPG by producing SCFAs 
which stimulate glucagon-like peptide 1 (GLP-1) secretion 
via FFAR2 and FFAR3, induce glucose-dependent insulin 
secretion and inhibit glucagon secretion.[74] SCFAs also 
stimulate peptide YY secretion to inhibit the appetite and 
decrease PPG levels.[75] Vitale et al. reported that when 
compared with control meals, a Mediterranean diet group 
had significantly lower PPG and insulin responses, and that 
blood glucose and insulin sensitivity levels were improved 
after an 8-week dietary intervention.[53] Butyric acid levels 
in the Mediterranean diet group also increased significantly 
after meals (P = 0.019) and were directly related to insulin 
sensitivity (r = 0.397, P = 0.050). These metabolic changes 
were accompanied by significant changes in intestinal 
microbiota; when compared with the control group, 
Intestinimonas butyriciproducens and Akkermansia muciniphila 
abundance in the Mediterranean diet group increased. 

Role of  bile acids: BAs are diversified amphipathic steroid 
molecules which promote intestinal absorption and dietary 
lipid transportation,[76] with concentrations dependent 
on biosynthesis, enterohepatic circulation, and intestinal 
microbiota levels.[77] Clostridium, Bacteroides, Lactobacillus, 
Bifidobacterium and Enterococcus have been proven to be 
involved in the production of  bile acid.[78] Recent research 
reported that BAs are key signal molecules in glucose, lipid, 
and energy metabolism as they combine with the farnesoid X 
receptor (FXR) and the Takeda G-protein-coupled receptor 
5 (TGR5) in multiple tissues and organs to regulate GLP-1 
secretion, gluconeogenesis, glycogen synthesis, inflammatory 
responses, and gut microbiome structures.[79-82] FXR is 
widely expressed in various tissues and organs such as 
the intestine, liver, and white adipose tissue, which can 
form heterodimers to inhibit the expression of  the rate 
limiting enzyme cholesterol 7α-hydroxylase (CYP7A1) in 
BA biosynthesis, weakening cholesterol liver conversion; 
The expression of  CYP7A1 alleviated metabolic disorders 
associated with obesity, including glucose intolerance, 
insulin resistance, and dyslipidemia.[83,84] TGR5 is a G 
protein-coupled receptor, which can produce cAMP 
through BAs, and then activate the protein kinase A 
(PKA) pathway.[85] In the liver, BA-FXR signal transduction 
inhibits gluconeogenesis and promotes glycogen synthesis 
by negative modulation. In intestinal cells, BA-TGR5 
signaling promotes GLP-1 expression and secretion, while 
BA-FXR signaling inhibits GLP-1 production. In addition, 
BA-TGR5 signal transduction can mediate satiety in the 
brain, and increase energy consumption in skeletal muscle 
and brown adipose tissue. In the pancreas, β BA-TGR5 and 
BA-FXR signaling in cells induce insulin production.[86-88] 

BA sequestrants (BAS) or bariatric surgery can significantly 
eliminate blood glucose abnormalities. A meta-analysis of  
2950 T2D patients from 17 studies reported that HbA1c 
levels in a BAS group decreased when compared with a 

control group (mean difference -0.55%; 95% CI: -0.64 
to -0.46).[89] Bariatric surgery alters the enterohepatic BA 
circulation, resulting in increased plasma bile levels as well 
as altered BA composition.[90] Weight loss surgery, especially 
Roux-en-Y gastric bypass surgery, can increase circulating 
BA concentrations.[91] Postoperative BA concentrations are 
positively correlated with serum GLP-1 concentrations 
but negatively correlated with PPG.[92] In addition to 
SCFAs and BAs actions, amino acids and their metabolites, 
especially tryptophan and associated derivatives, can affect 
glucose metabolism, but research suggests that amino acid 
metabolic pathways may affect diabetes and fasting blood 
glucose levels.[93-95] However, few studies have investigated 
the effects of  gut microbiota on PPG via amino acid 
pathways.[96]

Effect of  trimethylamine oxide: Ingestion of  high-
fat foods can generate the primary intestinal metabolite 
trimethylamine (TMA) through gut microbiota enzymes 
such as CutC/D,[97,98] CntA/B,[99] and YeaW/X.[100] TMA 
is mostly produced by Bacteroidetes or Firmicutes bacteria.[101] 
Flavin containing monooxygenase 3 (FMO3) in the liver 
can promote TMA to produce TMAO.[102,103] Previous 
studies have found that the TMAO pathway is associated 
with the occurrence and development of  diseases such 
as heart failure, chronic kidney disease, and obesity.[104,105] 

Research has shown that TMA and TMAO peak levels 
occur approximately 4 hours after a single feeding of  a high-
fat diet in fasted mice, indicating that TMA and TMAO 
are produced after meals and exhibit hormonal oscillations 
related to TMA source nutrient intake. Some TMA and 
TMAO are involved in phosphorylation processes such 
as PKA and insulin like growth factor 2 (IGF-2), and 
regulate the cascade reaction of  insulin signaling.[106] 
Animal experiments have shown that mice fed a high-fat 
diet have an increase in TMAO, exacerbating impaired 
glucose tolerance and insulin resistance, and leading to 
inflammation of  adipose tissue in mice fed a high-fat diet. 
This process may be related to block the insulin signaling 
pathway through the phosphatidylinositol 3-kinase/protein 
kinase B (PI3K/Akt) pathway.[107] An 8-week dietary 
intervention was conducted on patients with abnormal 
blood glucose levels, and the results showed a decrease in 
TMAO levels after intervention with a purely vegetarian 
diet, accompanied by a decrease in postprandial blood 
glucose levels.[108] In summary, the gut microbiota can affect 
PPG through the metabolite TMAO of  a high-fat diet. 

Gut microbiota in PPG and its role in precision 
medicine
Under the combined effects of  the intestinal flora and 
other factors, when the same foods are eaten, blood glucose 
levels are differentially affected in individuals.[109] The 
development of  individualized hypoglycemic intervention 
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strategies for different blood glucose responses may 
facilitate more stable blood glucose control strategies. T1D 
depends on insulin treatment, and appropriate insulin doses 
are important to control blood glucose levels in patients. 
The traditional method of  calculating good glycemic 
indices to guide insulin doses is not enough to control T1D 
blood glucose levels.[110] Based on the tenet that the gut 
microbiota impacts PPG, prediction models incorporating 
gut microbiota are important methods for predicting PPGR 
and may provide personalized treatments for T1D in the 
future.[111] Individualized nutrition interventions can also 
affect the gut microbiota and improve PPG. Studies have 
suggested that environmental factors may have greater 
roles than genetics in shaping human gut microbiota 
composition.[112] Personalized nutrition regimens, based 
on the microbiota, have been used to predict and guide 
blood glucose levels to generate individualized diabetes 
prevention and treatment strategies.[113] The cohort study 
of  Zeevi et al.[45] monitored the weekly blood glucose level 
of  800 people and measured the blood glucose response 
to 46898 meals. The prediction algorithm based on the 
above data integrates the blood parameters, eating habits, 
anthropometry, physical activity and intestinal microbiota 
measured in the queue and can accurately predict the 
PPGR to the real diet. In addition, they validated these 
predictions in an independent 100-participant cohort, 
the authors showed that PPG levels in the bad diet group 
were significantly higher when compared with the good 
diet group, and the bad diet group had greater glucose 
fluctuations evaluated by the continuous blood glucose 
monitoring system after 1 week. Gut microbiota analyses 
indicated that Bifidobacteria and Bacteroidetes abundance were 
higher in the healthy diet group.

CONCLUSION

While numerous studies have shown that gut microbiota 
is related to PPG and can predict PPGR in non-diabetic 
populations, limited research focuses on how it predicts and 
affects PPGR in diabetic patients. More research is required 
in this area to identify precise interventions and reduce 
complication risks in diabetic patients. Gut microbiota 
generates many signaling metabolites, such as SCFAs, 
BAs, and TMAO, which participate in different metabolic 
pathways to ultimately affect PPG. However, the precise 
mechanisms underpinning their impact on PPG remain 
unclear. Future research must identify key gut microbiota 
and associated metabolites and pathways impacting PPG 
and provide potential therapeutic targets for improving 
PPG outcomes.
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