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solving the nonlinear problems
Abstract: In the classical geodetic data processing, a non-
linear problem always can be converted to a linear least
squares adjustment. However, the errors in Jacob matrix
are often not being consideredwhenusing the least square
method to estimate the optimal parameters from a sys-
tem of equations. Furthermore, the identity weight matrix
may not suitable for each element in Jacob matrix. The
weighted total least squares method has been frequently
applied in geodetic data processing for the case that the
observationvector and the coe�cientmatrix areperturbed
by randomerrors,which are zeromean and statistically in-
dependent with inequality variance. In this contribution,
we suggested an approach that employ the weighted total
least squares to solve the nonlinear problems and to miti-
gate the a�ection of noise in Jacob matrix. The weight ma-
trix of the vector from Jacob matrix is derived by the law
of nonlinear error propagation. Two numerical examples,
one is the triangulation adjustment and another is a sim-
ulation experiment, are given at last to validate the feasi-
bility of the developed method.
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1 Introduction
The nonlinear problemwidely existed in geodetic, such as
triangulation network adjustment, polynomial regression,
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et al. These nonlinear systems are always being processed
by weighted least squares adjustment after they are lin-
earized,where the Jacobmatrix is always consideredas the
coe�cient matrix. Either the Gauss-Newton adjustment
and its improved methods or the classical least squares
adjustment does not consider the case that the coe�cient
matrix is also perturbed by random errors, when they are
being exploited to compute the parameters of a nonlin-
ear over-determined system. Total least squares, coined
by Golub and Van Loan (1980), has been frequently dis-
cussed in geodetic (Acar et al. (2006); Davis(1999)) and ge-
ographic information science (Yaron A Felus (2004); Felus
and Scha�rin (2005)) to solving this problem where both
the input variables (coe�cientmatrix) and the output vari-
ables (observation vector) are contaminated by randomer-
ror. After the nonlinear model being linearized, although
the original observations either in left vector or coe�cient
matrix is homoscedastic, the elements in Jacobmatrixmay
not be as still as normally distributed with identical vari-
ance, because each elements may be calculated with dif-
ferent kinds of nonlinear elementary function. Therefore,
both in the homoscedastic and heteroscedastic case, the
weighted total least squares adjustment (WTLS) is more
suitable for the linearized system of nonlinear model. In
geodesy, Scha�rin and Wieser (2008) proposed an itera-
tive algorithm for WTLS, where the covariance matrix of
elements in coe�cient matrix is de�ned as a Kronecker
product of two variance matrices. Obviously, the covari-
ance is constrainedwith a special structure, namely the el-
ements in each row holds the identical variance. However,
this algorithm can be used to solving this problem that the
EIV model with singular covariance. In order to overcome
this restriction, two improved iterative algorithm were be-
ing proposed by Mahboub (2011) and Tong et al. (2011), re-
spectively. An alternative iterative algorithm for Scha�rin-
Wieser algorithm also can be found in Shen et al. (2011).
Aims to solve the heteroscedastic multivariate model for
reference frame transformations, a weighted multivariate
TLS method is proposed by Scha�rin and Wieser(2009).
In addition, for these models, a number of approaches
inherit from TLS have been widely discussed by geodesy
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scientist, such as constrained TLS by Scha�rin and Felus
(2009), TLS with condition equations by Scha�rin and
Wieser (2011) and robust TLS by Amiri-Simkooei and Jaza-
eri (2013) .There an alternative solution ofWTLS derived by
standard least squaresmethodwithoutusing theLagrange
approach one can �nd in Jazaeri et al. (2013) and Amiri-
Simkooei and Jazaeri (2012). Moreover, the law of linear
error propagation used to calculate the covariance of co-
e�cient matrix is also discussed by Jazaeri et al. (2013).

In this contribution, the weighted total least squares
method is introduced to solving nonlinear geodetic prob-
lems. The lawof nonlinear error propagation is used to cal-
culate the covariance matrix of Jacob matrix. Two experi-
ments are utilized to demonstrate the usefulness of pro-
posed method.

2 A simple summary to the WTLS
adjustment

Let the WTLS observation model being described as

b − r = (A − E)x. (1)

Where b is them ×1 observation vector (or left vector) per-
turbed by am×1 randomnoise vector r;A is am×n(m > n)
coe�cient matrix (or right matrix) perturbed by a m × n
random noise matrix E; x is a n × 1 parameters vector. Fol-
lowing the discussion in Mahboub (2011), Scha�rin and
Wieser (2008) and Shen et al. (2011), the stochastic model
for WTLS can be described as[

r
e

]
:=
[

r
vec(E)

]
∼

( [
0
0

]
, σ20

[
Qb O
O QA

] )
(2)

Here, Qb and QA are the covariance of r and vec(E) with
the sizes of m × m and mn × mn, respectively; σ20 is the
unknown variance component. Hence the weight matrix
is computed by Pb = Q-1

b and PA = Q−1
A . In the absence of

correlation between r and e, WTLS seeks to solve the opti-
mization problem as follows (Jazaeri et al. (2013)),

rTPbr + eTPAe = min (3)

subject to Eq. (1).
In geodetic, iterative algorithmic is the most fre-

quently approach being used to solving WTLS. Scha�rin
and Wieser (2008), in previous years, proposed an itera-
tive algorithm, which derived by traditional Lagrange ap-
proach, to optimize the following target function,

Φ(r, e, λ, x) = rTPbr + eTPAe + 2λT(b − r − (A − E)x) (4)

Scha�rin and Wieser (2008) de�ned the weight matrix

PA = Q−1
A = (Q0 ⊗ Qa)−1 (5)

where Q0 has size n × n, and Qa has size m × m, which
restricted on a particular structure. An alternative itera-
tive algorithm was developed by Mahboub (2011) with a
more relax weight matrix, more suitable for structured co-
e�cient matrix case. Following above conditions, a series
of necessary equations can be obtained as follows:

0.5 × ∂Φ∂r

∣∣∣∣_r ,_e ,λ̂,x̂ = Pb
_r − λ̂ = 0 (6)

0.5 × ∂Φ∂e

∣∣∣∣_r ,_e ,λ̂,x̂ = PA
_e +

(
x̂ ⊗ Im

)
λ̂ = 0 (7)

0.5 × ∂Φ∂λ

∣∣∣∣_r ,_e ,λ̂,x̂ = b − _r − (A −
_

E)x̂ = 0 (8)

0.5 × ∂Φ∂x

∣∣∣∣_r ,_e ,λ̂,x̂ = −(A −
_

E)T λ̂ = 0 (9)

Hats indicate estimated vectors and frowns indicate pre-
dicted ones. As derived in Mahboub (2011), if the inverse
of R1 existed, the parameters vector can be computed by

x̂ =
(
ATR1A+R2A

)-1 (
ATR1 + R2

)
b (10)

R1 =
(
Qb + (x̂T ⊗ Im)QA(x̂ ⊗ Im)

)−1
(11)

R2=
(
(In ⊗ λ̂T)QA(x̂ ⊗ Im)

)
R1 (12)

With above formulates, the following algorithm has been
proposed by Mahboub (2011) as
1st step:

x̂(0) = (ATPbA)−1ATPbb (13)

2nd step:

R(i)
1 =

(
Qb + (x̂(i−1)T ⊗ Im)QA(x̂(i−1) ⊗ Im)

)−1
(14)

λ̂(i) = R(i)
1 (b − Ax̂

(i−1)) (15)

R(i)
2 =
(
(In ⊗ λ̂(i)T)QA(x̂(i−1) ⊗ Im)

)
R(i)
1 (16)

x̂(i) =
(
ATR(i)

1 A+R
(i)
2 A
)-1 (

ATR(i)
1 + R(i)

2

)
b (17)

3rd step: until
∥∥∥x̂(i) − x̂(i−1)∥∥∥ ≤ ε, ε is the given tolerance

factor; calculate the estimated variance component and
the residual vector as follows,

σ̂20=

(
λ̂(i)
)T (

R(i)
1

)-1
λ̂(i)

m − n (18)
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_r = Qb λ̂(i) (19)

_e = −QA
(
ξ̂ (i) ⊗ Im

)
λ̂(i) (20)

3 Compute the covariance matrix
The observation function of a nonlinear problem can be
expressed as

L ≈ f (X, ξ ), (21)

and the corresponding error functions can be represented
as

L + V = f (X, ξ ). (22)

Where, L ism × n observation vector noised by error vector
V(m×n);X often is them×n input vector, which noised by
random error in some regression models, but here we as-
sume it is error free; ξ is the q×1 parameters vector. There-
fore, as long as the approximation value of ξ is given, the
nonlinear model can be linearized as

fj(Xj,ξ̂T) = fj +
(
dfj
dξ1

∆ξ1 +
dfj
dξ2

∆ξ2 + . . . +
dfj
dξt

∆ξt
)

(23)

where, fj = fj(Xj,ξ0) and dfj
dξk = dfj

dξk

∣∣∣
ξ=ξ0

, as well as j =

1, 2, . . . ,m. Submitting Eq. (23) into Eq. (22) obtain

b−r=(A−E)∆ξ . (24)

Here, b = L−F, r = −V and F = (f1, f2, ..., fm)T; A is the Ja-
cob matrix a�ected by the error matrix E which raise from
the residual of approximation value ξ0. Therefore, Eq. (24)
can be solved by weighted total least squares approach if
known the covariance of Jacob matrix.

According to the law of nonlinear error propagation,
we obtain the following covariance matrix

_

QA = BQξ̂ ξ̂B
T. (25)

where B = ∂{vec(A)}
∂ξ

∣∣∣
ξ=ξ i

with the size mn × q. In the �rst
step we does not know the de�nitely value of Qξ̂ ξ̂ , thus it
should be computed by the WLS results. However, when
the value of ξ̂ being estimated by WTLS, according to the
results of Amiri-Simkooei and Jazaeri (2012) and Jazaeri et
al. (2013), Qξ̂ ξ̂ is calculated by

Qξ̂ ξ̂ = ((A-E)TR1(A-E))−1. (26)

Only the second partial existed and nonzero the cofac-
tor matrix can hold the mathematical sense, and only the
residual of parameters being taken into account here.

4 An improved WTLS algorithm for
nonlinear problem

Following the designed algorithm by Mahboub (2011),
Scha�rin and Wieser (2008) and the formulas derived in
previous section, an improved algorithm for nonlinear
problem can be designed as follows.
1st step: Given the initial value ξ (0), calculate

∆ξ̂ (0) = (A(0)TPbA(0))−1A(0)TPbb
(0)

(27)

and
_

Q
(0)
A = B(0)(A(0)TPbA(0))−1B(0)T (28)

2nd step:

R(i)
1 =

(
Qb + (∆ξ̂ (i−1)T ⊗ Im)

_

Q
(i−1)
A (∆ξ̂ (i−1) ⊗ Im)

)−1

(29)

λ̂(i) = R(i)
1 (b

(i−1) − A(i−1)∆ξ̂ (i−1)) (30)

R(i)
2 =
(
(In ⊗ λ̂(i)T)

_

Q
(i−1)
A (∆ξ̂ (i−1) ⊗ Im)

)
R(i)
1 (31)

∆ξ̂ (i) =
(
A(i−1)TR(i)

1 A
(i−1)+R(i)

2 A
(i−1)
)-1(

A(i−1)TR(i)
1 + R(i)

2

)
b(i−1)

(32)

_r
(i)
= Qb λ̂(i) (33)

_e
(i)
= −Q̃(i−1)

A

(
∆ξ̂ (i) ⊗ Im

)
λ̂(i) (34)

3rd step: Calculate the newly parameters with ξ̂ (i) = ξ̂ (i−1)+
∆ξ̂ (i) and refresh the cofactor matrix

_

QA with

_

Q
(i)
A = B(i−1)


(A(i−1)-E(i))T× Qb + (∆ξ̂ (i)T ⊗ Im)

_

Q
(i−1)
A (∆ξ̂ (i) ⊗ Im)

−1

×

(A(i−1)-E(i))


−1

B(i−1)T,

(35)
as well as update the Jacob matrix A and the left vector b
with ξ̂ (i).
4th step: repeat the second step and the third step until
∆ξ̂ (i) < τ, which is a given tolerance.
5th step: calculate the estimated variance component as
follows,

σ̂20=

(
λ̂(i)
)T (

R(i)
1

)-1
λ̂(i)

m − n . (36)
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5 Numerical examples

5.1 Triangulation adjustment

Triangulation adjustment is a typical nonlinear problem in
geodetic. A trilateration network as described in Fig. 1 will
being used to test our algorithm, its corresponding mea-
sured distances and weights are listed in Table 1.

Fig. 1. Trilateration network

In Fig. 1, P1 ,P2 and P3 are the given points, they are
being listed in the second and the third column of Table 2,
T1 and T2 are the unknown points needs us to estimate,
its approximation value listed in the �fth and the sixth col-
umn of Table 2.

Table 1. The measured distance and corresponding weight

No. Distance(m) Weights
S1 249.124 1
S2 380.916 50
S3 317.414 200
S4 226.939 350
S5 321.157 650
S6 215.116 800
S7 194.847 1500

As we know, any measured distance in trilateration
network can be presented as

Si − ei =
√(

x̂j − x̂k
)2 + (ŷj − ŷk)2 (37)

Where, j is the start points and k is the end point of side Si.
Therefore, this nonlinear function should be linearized by

Taylor series expansion method as follows

Si − S0jk = −
∆x0jk
S0jk

δxj −
∆y0jk
S0jk

δyj +
∆x0jk
S0jk

δxk +
∆y0jk
S0jk

δyk (38)

Where, S0jk =
√(

x̂0j − x̂0k
)2

+
(
ŷ0j − ŷ0k

)2
=√(

∆x̂0jk
)2

+
(
∆ŷ0jk

)2
is the approximation distance. In

this paper, the given point is the start point if it included
in one side. Consequently, we can employ these formu-
las to organize the coe�cient matrix A and matrix B as
description in section 3.

The estimated parameters by our algorithm are listed
in Table 3.

From the expression in Table 3, the estimated param-
eters after the second iteration do not have any remark-
able changes. The parameters are also estimated by least
squares, the results equal to the value being listed in the
second column of Table 3, namely, the �rst iteration.

The computed residuals and the estimated component
variance are listed in the Table 4. Of course, the estimated
residual r and the variance component σ̂20 from LS adjust-
ment still equal to the value being listed in second column
of Table 4, but in which not included the residual_e . After
�ve iterate the algorithm converged at a stable point, the
residual of Jacobwill decreased swiftly. On the other hand,
this proposed algorithmwill ensure the constant elements
in coe�cient matrix do not have any residual.

This experiment validated that the suggested algo-
rithm can be used to compute the parameters in practical
geodetic and can obtainmore reasonable results than gen-
eral nonlinear least squares.

5.2 Simulation experiment

In order to further investigate the a�ections of the sug-
gested method on the solution of a nonlinear problem, a
nonlinear regression being discussed in this section.

The nonlinear regression model as follows,

y = f (X, ξ ) = e
ξ1x + eξ2x
ξ2xξ1 + 2

(39)

where, the given value of parameters [ξ1, ξ2]T are respec-
tively 2.3618 and 0.7631, and the true value of x and y data
are given in Table 5.The case 1 ismainly designed to test af-
fection in di�erent standard deviation conditions. The ini-
tial value e�ect will be examined by the case 2.

Case 1: We assume x data is known exactly without
any errors, andydata is noisedby randomerrors. This case
is to validate the feasibility of the developed algorithmand
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Table 2. The given and approximation value of coordinates

Points Given Coordinates(m) Points Approximation coordinates(m)
x y x y

P1 486.642 388.325 T1 780 267
P2 676.209 468.991 T2 485 138
P3 695.367 91.879

Table 3. The estimated parameters at each iteration

Iterations Parameters 1 2 3 4 5
x̂T1 780.1332 780.1334 780.1334 780.1334 780.1334
ŷT1 267.3075 267.3076 267.3076 267.3076 267.3076
x̂T2 485.5550 485.5586 485.5586 485.5586 485.5586
ŷT2 139.3434 139.3388 139.3388 139.3388 139.3388

to examine the results under di�erent variance assump-
tion with weighted least squares (WLS) andWTLS, respec-
tively. Therefore, the random errors with standard devi-
ation 1, 5 and 10 are added in y data, respectively. Then
we independently implement the iterative algorithm and
WLS adjustment 1000 times and compute the di�erences
of parameters between the estimated value and the true
value, which are presented in Fig. 2 and Fig. 3 respect to
the two parameters. In this test, the initial value of param-
eters β01=2.36 and β02 = 0.76.

Following the two �gures, it is easily to �nd that al-
though the observation vector y perturbed by di�erent
amount of errors, the mean of the di�erences from WLS
and WTLS are equal to zero.

Fig. 2. The di�erence of β1 between the estimate value and the true
value respect to WLS and WTLS; the ‘blue cross’ and the ‘red circle’
denotes the results of WLS and WTLS respectively; each sub�gure
from top to button are corresponding to the case of that the stan-
dard deviation 1,5 and 10, respectively.

Fig. 3. The di�erence of β2 between the estimate value and the
true value respect to WLS and WTLS; the ‘red cross’ and the ‘blue
circle’ denotes the results of WLS and WTLS, respectively; each
sub�gure from top to button are corresponding to the case of that
the standard deviation 1,5 and 10, respectively.

Case 2: There still assume that x data is known exactly
and only y data subjected to the random error, and the
standard deviation is constantly �xed at 2. However, the
initial parameters are designated as β10 = 2.33, β02 = 0.73
and β10 = 2.39,β02 = 0.79, running this test 1000 by WLS
and WTLS, respectively. Under the �rst designation, the
di�erence of parameters between the estimated value and
the true value are illustrated in Fig. 4 and Fig. 5 respect to
β1 and β2, respectively.

Under the second designation, similarly, the di�er-
ences are represented in Fig. 6 and Fig. 7 for β1 and β2,
respectively.

As described in Fig. 4 to Fig. 7, the results from WTLS
are closer to the real value thanWLS adjustment when the
initial parameters are known inexactly. The means of dif-
ference fromWTLS are almost equal to zero under the two
di�erent designations, in the meanwhile, the mean di�er-
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Table 4. The computed residual and the component of variance at each iteration

Iterations Items 1 2 3 4 5

_r

0.1406 1.4859 0.1309 0.1355 0.1355
0.1057 1.5465 0.1014 0.1036 0.1036
-0.0481 -0.0542 -0.0487 -0.0485 -0.0485
0.0549 0.2671 0.0546 0.0547 0.0547
-0.0136 0.7851 -0.0119 -0.0132 -0.0132
0.0069 0.2471 0.0114 0.0068 0.0068
0.0125 -0.3223 0.0122 0.0124 0.0124

_e

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

-0.0255E-5 -0.0558E-7 -0.0240E-11 -0.1336E-15 0.0329E-18
0.0002E-5 0.0004E-7 0.0001E-11 0.0006E-15 -0.0001E-18
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

-0.0467E-5 -0.0768E-7 -0.0662E-11 -0.2408E-15 0.0536E-18
0.0270E-5 0.0443E-7 0.0383E-11 0.1392E-15 -0.0310E-18
0.0034E-5 0.0014E-7 0.0074E-11 0.0276E-15 -0.0061E-18
0.0082E-5 0.0035E-7 0.0180E-11 0.0670E-15 -0.0148E-18
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

-0.0334E-5 -0.0707E-7 -0.0273E-11 -0.2151E-15 0.0550E-18
-0.0172E-5 -0.0363E-7 -0.0141E-11 -0.1109E-15 0.0283E-18
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

0.0206E-5 0.0298E-7 0.0362E-11 0.0731E-15 -0.0127E-18
-0.0471E-5 -0.0681E-7 -0.0834E-11 -0.1683E-15 0.0292E-18
-0.0206E-5 -0.0298E-7 -0.0362E-11 -0.0731E-15 0.0127E-18
0.0471E-5 0.0681E-7 0.0834E-11 0.1683E-15 -0.0292E-18
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

0.0283E-5 0.0399E-7 0.0469E-11 0.1479E-15 -0.0313E-18
0.1290E-5 0.1819E-7 0.2073E-11 0.6538E-15 -0.1386E-18
-0.0769E-5 -0.1357E-7 -0.0850E-11 -0.5227E-15 0.1289E-18
0.0372E-5 0.0656E-7 0.0411E-11 0.2526E-15 -0.0623E-18
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

σ̂20 0.8300 250.8700 0.8232 0.8171 0.8171

Table 5. The given set of x and y data

i x y i x y
1 5.9000 21464.0387 6 3.7000 333.2986
2 5.4000 8051.8135 7 2.8000 70.5047
3 5.2000 5465.2431 8 2.8000 70.5047
4 4.6000 1740.9123 9 2.4000 36.8200
5 3.5000 233.7155 10 1.5000 9.4531

ences from WLS are equal to 0.0029, 0.0022 and 0.0055,
0.0044, which are corresponding to β1 and β2, respec-
tively.

6 Conclusions
To solving the nonlinear problem with weighted total lest
squares method, an improved algorithm is investigated in
this article. A triangulation adjustment example is used
to test the applicable of our suggested algorithm. Because
the residual of parameters in Jacobmatrix is taken into ac-
count, the estimated component variance from the devel-
oped algorithm is smaller than WLS. Through the simula-



On weighted total least squares adjustment for solving the nonlinear problems | 55

Fig. 4. The di�erence of β1 between the estimate value and the true
value respect to WLS and WTLS; the ‘green dot’ and the ‘pink dash’
denotes the results of WLS and WTLS, respectively; where the initial
value of β1 is 2.33.

Fig. 5. The di�erence of β2 between the estimate value and the true
value respect to WLS and WTLS; the ‘blue dot’ and the ‘red dash’
denotes the results of WLS and WTLS, respectively; where the initial
value of β2 is 0.73.

Fig. 6. The di�erence of β1 between the estimate value and the true
value respect to WLS and WTLS; the ‘black dot’ and the ‘red dash’
denotes the results of WLS and WTLS, respectively; where the initial
value of β1is 2.39.

Fig. 7. The di�erence of β2 between the estimate value and the true
value respect to WLS and WTLS; the ‘dark cyan dot’ and the ‘pink
dash’ denotes the results of WLS and WTLS, respectively; where the
initial value of β2 is 0.79.

tion experiment, the feasibility of the developed algorithm
is being validated, and two conclusions can be presented
as 1), if the initial value is known very much exactly, the
di�erence of estimated results fromWLS andWTLS is qui-
etly small, hence we recommend using the classical WLS
adjustment to solving the nonlinear problem in this situ-
ations; 2) if we cannot obtain the exactly initial parame-
ters, employing theWTLSmethod to processing nonlinear
problem is better than WLS adjustment.
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