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Abstract:
Airborne gravimetry has been proved to be the primary technique to efficiently obtain middle to short wavelength signals of the Earth’s
gravity öeld in regional geodetic applications. In particular, the LCR (LaCoste & Romberg) based scalar system (i.e., only measuring the
vertical component of the gravity) is widely used or still in use for regional geoid improvements. In various aspects, many previous pub-
lications have shown positive contributions from the airborne gravity data obtained from such a system. However, the system equation
used in these publications has several unnecessary or unclear approximations. By using the exact formulas and realistic data sets, the nu-
merical analysis in this paper clearly shows that: 1) the higher order terms in the Eötvös correction neglected by Harlan (1968) are rather
small (in µGal level), but are systematic mainly depending on latitude and height; 2) neglecting the roll and pitch angles can cause up to
hundreds of mGal errors in the raw (unöltered) gravity measurements if the lever-arm is not set up appropriately; 3) large (200s) smooth-
ing windows have to be applied to reduce the lever-arm noise into sub-mGal level; 4) even under strong lever-arm setup conditions, i.e.,
no “horizontal offset” between the GPS antenna and the gravimeter, accurate (10 arc-minute ∼ 5 arc-minute) attitude angles from IMU
(Inertial Measurement Units) are required to keep the lever-arm noise in sub-mGal level in the raw observables.
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1. Introduction

As a physical variable that is closely related to themass distribution
of the Earth, gravity is very helpful to geodesists and geophysicists
in determining the ögure of the Earth and understanding its sub-
surface structure (Heiskanen and Moritz 1967, Wahr 1996). For in-
stance, in geodesy, gravity is needed almost everywhere, because
only this quantity offers the spatial orientation of the local horizon
plane (Wahr 1996). Manymethods suchas SST (satellite-to-satellite
tracking, Rummel 1979), SGG (satellite gravity gradiometry, Rum-
mel 1979), INS/GPS vector gravimetry (Jekeli 2000, Kwon and Jekeli
2001), and airborne scalar gravimetry (Brozena et al. 1988, Fors-
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berg et al. 2001) have been developed for gravity öeld determina-
tion over the decades.

The satellite missions are mainly designed to obtain medium to
long (∼>50 km) wavelength gravity öeld information, while the
other moving base gravimetric systems are used for detecting the
medium to short (∼<50 km) wavelength contribution. For in-
stance, in the scalar system,Olesen (2003) reporteda spatial resolu-
tion of 6kmor even better with 1∼2mGal accuracy. A relatively re-
cent study (Li and Jekeli 2008) in the vector systemobtained about
2km spatial resolution with 1∼3 mGal precision and as good as
sub-mGal (0.64 mGal) repeatability. SGL (Sander Geophysics Lim-
ited) showed even better resolution and accuracies (30 0m with
RMS=0.4 mGal; Sander et al., 2011) in their unique AIRGrav (Air-
borne Inertially Referenced Gravimeter) system, which is based on
a customized gyroscopically stabilized platform, when operating
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in a slow speed (∼16 m/s). Note: these sub-km spatial resolution
and sub-mGal accuracy from SGL were not along the survey lines
as it is customary. They were the grid resolution and grid accuracy,
which were based on 1.25 km frequency domain spatial low pass
of the 20-second öltered line data that were 50 to 100meters apart
to each other (Sander and Ferguson, 2010). However, Studinger et
al. (2008) indeed showed in a case study that the AIRGrav system
is superior to the LCR system in terms of resolution and accuracy.

Beside the mechanical differences of these two systems, where
geodesists have limited power to control, the equations in the
scalar systems have several ambiguous issues that need to be
cleared when compared with the equations used in the 3D cases,
for instance as derived by Jekeli (2000). At present, the scalar air-
borne equations used in most of cases ignore the higher order
terms in the Eötvös term and have a fuzzy positioning transfor-
mation from the phase center of the GPS antenna to the gravime-
ter’s mass center. Several groups, such as Laboratoire de Gé-
physique at UniversitéMontpellier (Verdun 2000), and LAboratoire
de Recherche en Géodésie, Institut Géographique National France
(de Saint-Jean et al 2007) among others, tried to analyze these
problems in some case studies, and found that these approxima-
tions can be ’safely’ neglected in their applications. By both rigor-
ous yet succinct derivations and extensive numerical evaluations,
this study conörms themagnitudes of these approximation effects
are indeed small in the context of the current airborne survey ac-
curacies, i.e., mGal level, especially after öltering, smoothing or de-
noising processes. However, these approximations need to be re-
moved for the theoretical completeness and for the future high ac-
curacy systems, µGal level. The rest of this paper is organized as
follows. By using both simulated and real øight data, section 2 ex-
amines the approximations made by Harlan (1968) in computing
the Eötvös correction. With the accurate attitude information pro-
vided by the on-board IMU, the lever-arm effects are also studied
based on both simulated and real data in Section 3. From the an-
alytical developments and the numerical tests, some conclusions
are given in Section 4.

2. The analysis of the Eötvös correction

Unlike the equations of vector gravimetry (Jekeli 2000) that solves
the full gravity vector, the scalar system (Brozena and Peters 1988,
Forsberg et al. 2001, and Olesen 2003, among others) only com-
putes the vertical gravity component. Usually, they are solved in
the local navigation frame (Jekeli 2000), which requires the com-
putation of the Eötvös correction that is the gravity changes due
to the change in the centrifugal acceleration induced by the hor-
izontal velocities of the reference frame. Even though the closed
form equation for this computation had been published for many
years, for instance see last page in Jekeli (2000), interestingly, some
researchers are still using the approximated version developed by
Harlan (1968), where higher order (O2) terms of the Earth’s øatten-
ing were omitted. The total neglecting error is the difference be-
tween Eq. (4) and Eq. (13) in Harlan (1968) (for the reader’s con-

venience, these two equations are listed again in appendix A as
Eq. (A1) and Eq. (A2), respectively). Based on these approxima-
tions, Harlan (1968) gave the following Eötvös correction as shown
in Eq. (1).
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wherea and f are the semi-major axis and the øattening of the ref-
erence ellipsoid;h is the ellipsoid height;ϕ is thegeodetic latitude;
VN and VE are the north and east velocities; and ωe is the Earth’s
angular rotation rate.
If the same velocity information is used, Eq. (1) is basically the örst
order approximation of the closed formula as shown in Eq. (2) after
we work out the following partial derivatives as shown in Eqs (3)-
(6) (The basic evaluation of the Taylor series are left for interested
readers):
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where A := 1 − (2f − f2) sin2 ϕ
Harlan (1968) only mentioned that the magnitude of the second
order term is small (<0.03mGal at mid-latitude) without investi-
gating the nature of it in real cases. Three typical real øight data
sets (see Fig. 1) are selected from the Alabama survey campaign
conducted by the National Geodetic Survey as a part of its GRAV-
D (Smith, 2007) project to test all the neglecting effects. The total
approximation errors along each of the selected øights are shown
by the thick solid lines in Fig. 2; all referring to the red axes. The
velocity information (V 2

E + V 2
N ) of each øight is also plotted in the

same ögure by using the thin dotted line with the same color as
the color for the corresponding errors, but is referring to the black
y-axis on the right. Fig. 2 shows that the approximation errors are
basically proportional to the velocity information because of the
multiplication of the velocity squares in Eq. (1).

Instead of directly plotting the errors, Fig. 3 shows the ap-
proximation errors on the coefficients of V 2

N and V 2
E in Eq. (1),
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landing periods clearly show that the amplitudes grow with
respect to the height changes. The trend in the business part,
when the aircraft was øying in the north-south direction, basically
tells that the approximation errors are also latitude-dependent.
To verify this, Flight A is shifted 20o to 40o north by a step of
5o , where the ellipsoid heights and longitudes are remaining the
same. The corresponding coefficient errors along these simulated
øights are shown in Fig. 4. The latitude depended biases are
shown clearly at the beginning and the end of the lines where
the “aircraft” are supposed to be stationary with respect to the
Earth. Furthermore, the V 2

N coefficient bias is more sensitive to
the latitude than the counterparts for V 2

E . The intersections of the
colored lines for the same type of coefficient errors in Fig. 4 also
remind us that the effects is a combination of the latitude and
height, which makes the errors in higher latitudes having a larger
amplitude than the one in lower latitudes.

From the above analysis, we see that the total approximation error,
which includes not only the second order term but also all higher
order terms, is generally at theµGal level. However, it shows a sys-
tematic characteristic related to latitude and height in a compli-
cated way, which cannot be easily removed once the approximate
equation is employed. Even though the magnitude is indeed very
small in the context of the current airborne instrument’s accuracy,
no approximate formula should be used in order to avoid these
systematic effects, especially considering the fact that the closed

formula is not very difficult to be implemented with today’s com-
putation power.

3. The analysis of the lever-arm effect

Due to the physical limitations in airborne surveying, the posi-
tion of the GPS antenna cannot coincide exactly with the posi-
tion of the gravimeter. As a result, the GPS positioning solution
needs to be transformed into the gravimeter’s position. Thus, the
lever-arm correction (Jekeli 2000, Li 2007, de Saint-Jean et al 2007,
Melachroinos et al 2010) has to be applied to account for the po-
sition difference between the GPS antenna and the gravimeter,
b⃗ = [∆x, ∆y, ∆z]T as shown in Fig. 5. In the 3D cases, this can
be done rigorously by using all the attitude angles provided by the
IMU; see Li (2011a,b) for the details. However, for the scalar sys-
tem based on the LCR system (Valliant 1992 among other similar
manuscripts), the lever-arm correction is a gray area in some previ-
ous publications, where not toomuch information was given. Ole-
sen (2003) found in a case study that the RMS value of the öltered
lever-arm effectwas 0.4mGalwhen the “horizontal” component of
the lever-arm is 7.2 m, and concluded that for “horizontal” offsets
less than 1 meter, the effect can safely be neglected.

Based on a set of real pitch and roll angles (as shown in Fig. 6 and
Fig. 7) that were provided by the on board IMU during a typical air-
borne øight, the lever-arm effects on the vertical accelerations at
various scenarios are computed. For instance, Fig. 8 shows the ef-
fect corresponding to the case of [∆x = 1 m, ∆y = 1 m, ∆z =
1 m]T with both the roll and pitch in presence. From the ögure, we
see that themagnitudeof theseerrors arenormally from100mGals
to 200mGals; the extreme values can be larger than half thousand
mGals; the RMS is about 100 mGals. By altering the appearance
of the attitude angle and the components of the lever-arm, we
can easily compute the lever-arm effects in other scenarios, which
gives a thorough understanding of the effects resulted from var-
ious cases. Table 1 summaries the error statistics under all possi-
ble combinations. The upper portion tests the effect due to the
presence of pitch only. The middle part examines the roll effect.
The bottom one shows the results for general cases. From the ta-
ble, we see that the noise level of the lever-arm error is extremely
high if the lever-arm component is not along the rotation axis of
the attitude angles. This is exactly what happened in the Alabama
survey campaign whose lever-arm is [∆x = −2.87 m, ∆y =
0.15 m, ∆z = 0.91 m]T . The along track roll and pitch angles
for Flight A are shown in Fig. 9. Beside the big jumps in the roll an-
gle due to the turnof the aircraft around7200 seconds, the attitude
angles are generally small and smooth. However, the lever-arm er-
rors as shown in Fig. 10 easily reachhundreds ofmGals. Even after a
100-second window öltering, the errors (blue curves in Fig. 11) are
still substantially large for any serious geodetic applications even
when the RMS is indeed very small, 0.39mGal. One has to increase
the smoothing window to reduce the magnitude of the error if no
accurate IMU attitude information is available. However, increas-
ing the window size will not only reduce the spatial resolution of
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Figure 1. The Alabama aerogravity campaign conducted by NGS (Thicker lines, dotted lines, and dashed lines represent the trajectories of Flight
A at 11 km high, Flight B at 6km high, and Flight C at 1.7 km high, respectively).

Figure 2. The approximation errors and their associated velocities
along the entire selected flights. (The horizontal axes are
unified at the corresponding initial epoch of each line.)

the data but also potentially under estimate the peak values of the
gravity signal.

The next question that comes into mind is that under the perfect
lever-arm setup, i.e. ∆x = 0 m, ∆y = 0 m, how accurate the
attitude angles should be if one wants to do a perfect job and
keep theseerrors in sub-mGal level in the rawgravityobservations?
To answer this question, we superpose certain amount of random
noise on top of the real attitude angles that are shown in Figs 6-7.

Figure 3. The approximation errors by neglecting the higher order
terms (units are 1/m) in the coefficients of V 2

N and V 2
E in

Eq. (1).

The lever-arm effect differences due to these artiöcial random at-
titude errors for the case of the perfect setup ([∆x = 0 m, ∆y =
0 m, ∆z = 1 m]T ) are then computed. Table 2 gives the statistics
corresponding to different noise levels, fromwhichwe can see that
10-arc-minute accuracy of the attitude angles is require for under
1mGal noise and5-arc-minute accurate attitudeangles areneeded
if onewants to keep the raw errors under sub-mGal level so that no
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Figure 4. The approximation errors by neglecting the higher order
terms (units are 1/m) in the coefficients of V 2

N and V 2
E in

Eq. (1) along the simulated flights.

Figure 5. A diagram of the lever arm (the Down direction of navigation
frame, indicated by the solid axes, and the z-axis of the
b-frame (Jekeli 2000), indicated by the dashed axes, are
pointing into the paper).

Figure 6. The IMU measured pitch angles along a typical flight.

Figure 7. The IMU measured roll angles along a typical flight.

Figure 8. The simulated lever-arm effect.

more worries are needed for this issue in most of the mGal level or
sub-mGal level accurate surveys.

4. Conclusions

The approximations in the Eötvös computation and lever-arm cor-
rection in the LCR based scalar gravimetric system are rigorously
evaluated based on both simulated and real øight data sets. Nu-
merical analysis shows that the magnitude of the higher order
terms (not only the second order effect, but also the combination

Figure 9. The attitude angles along the track of Flight A.
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Table 1. The lever-arm simulation plans and their corresponding effects on the vertical acceleration. (The 0 and the 1 in the attitude columns
represent their absence or appearance, respectively, in the simulation.)

roll ptich ∆x = 1 ∆y = 1 ∆z = 1 Mean Std Min Max
(m) (m) (m) (mGal) (mGal) (mGal) (mGal)

0 1 1 0 0 -0.019 20.421 -119.124 98.823
0 1 0 1 0 0.00 0.00 0.00 0.00
0 1 0 0 1 -0.001 1.617 -8.869 7.845
0 1 1 1 1 -0.020 22.035 -127.992 106.668
1 0 1 0 0 0.00 0.00 0.00 0.00
1 0 0 1 0 0.056 112.825 -993.303 995.482
1 0 0 0 1 0.001 1.385 -9.901 9.985
1 0 1 1 1 0.057 114.163 -993.443 992.693
1 1 1 0 0 -0.019 20.421 -119.124 98.823
1 1 0 1 0 0.048 111.832 -598.254 586.830
1 1 0 0 1 -0.001 2.187 -13.710 10.861
1 1 1 1 1 0.033 116.274 -632.732 628.501

Table 2. Attitude accuracy requirement analysis for lever-arm errors under perfect setup condition.

Added Noise Mean Std Min Max
roll ptich mGal mGal mGal mGal
0’ 60’ 0.002 0.278 -1.904 9.920
60’ 0’ 0.001 0.278 -1.143 4.597
60’ 60’ 0.001 0.390 -2.971 9.943
30’ 30’ 0.001 0.113 -0.743 5.612
10’ 10’ 0.000 0.012 -0.083 0.624
5’ 5’ -0.000 0.003 -0.021 0.011
5” 5” -0.137E-7 0.727E-6 -0.573E-5 0.314E-5

Figure 10. The lever-arm errors along the track of Flight A.

effect of all high order terms) is indeed very small, at theµGal level.
But it shows a systematic characteristic that is largely dependent
on latitude and height. Thus, once themeter’s observables are cor-
rected into the local navigation frame, the exact formula such as
given in Jekeli (2000) needs to be applied if one cannot tolerate
these systematic effects or simply wants to avoid any arguments
related to this issue.

Figure 11. The filtered lever-arm errors along the track of Flight A.

With the on-board IMU provided attitude information, the lever-
arm effects are also thoroughly analyzed. Simulation tests clearly
show that the “horizontal” components of the lever-armneed tobe
kept as small as possible to avoid large (hundreds of mGals) errors.
For real øights with poor lever-arm setup, large smoothing win-
dowshave tobe applied if no accurate attitude information is avail-
able. However, this will deönitely reduce the spatial resolution of
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the gravity data. Even in the ideal lever-arm setup scenario, where
no “horizontal offset” between the GPS antenna and the gravime-
ter is in presence, accurate (10 arc-minutes for mGal level and 5
arc-minutes for sub-mGal level) attitude information is required in
order to totally remove the lever-arm induced noise that is in the
accuracy range of most of the current airborne surveys. The bene-
öt is that the wrong signal is directly removed from the raw gravity
observables instead of by using various ölters which are essentially
stochastic tools whose result is always an estimate.

Appendix A: HARLAN’S APPROXIMATION

The exact formula for the kinematic vertical acceleration, a⃗ · l⃗z , in
the local frame, i.e., Eq. (4) in Harlan (1968), is repeated in Eq. (A1).

a⃗ · l⃗z = −r̈′ cos D + 2ṙ′Ḋ sin D
+r′Ḋ2 cos D + r′D̈ sin D
−2ϕ̇(ṙ′ sin D + r′Ḋ cos D)
−r′ϕ̈ sin D + ϕ̇2(r ′ cos D + h)
+(̇l + ωe)2(r′ cos ϕ cos ϕc + h cos2 ϕ)
−ḧ

(A1)

The approximated one, i.e., Eq. (13) in Harlan (1968), is also re-
peated here:

a⃗ · l⃗z
∼= aϕ̇2 [

1 + h
a + f (3 sin2 ϕ − 2)

]

+a(̇l + ωe)2 cos2 ϕ
×

[
1 + h

a + f sin2 ϕ
]

− ḧ
(A2)

where a⃗ is the total kinematic acceleration; l⃗z is the unit vector
along the vertical direction; a, b, and f are the semimajor axis,
semiminor axis and øattening of the reference ellipsoid; ωe is the
mean Earth’s angular rotation rate; r′ is the distance from the cen-
ter of the reference ellipsoid to the aircraft’s corresponding point,
p, on the surface of the reference ellipsoid; h and ḧ are the ellip-
soid height of the aircraft and its second derivatives with respect
to time; ϕc and ϕ are the geocentric and geodetic latitudes and D
is their angular deviation along the normal of the surface of the ref-
erence ellipsoid at point p (all their overhead dot/dots are for the
örst or second order derivatives with respect to time); and l̇ is the
longitude derivative with respect to time.
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