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The goal of this paper is to generalize the Fréchet-Hoeffding bounds when additional information on the dependence
is available. Earlier work on this topic dates back to Rachev and Riischendorf [21] who derive bounds on copulas when
there are inequality constraints. Nelsen et al. [19] find best possible bounds on the bivariate distribution function of
continuous variables with given marginals and given measure of association such as Kendall’s tau or Spearman’s rho.
Nelsen [18] derives best possible bounds when the copula is known at a specific point. Our objective in this paper is
to extend this literature to the case when the copula is known in more than one point and to show how these bounds
can be useful in quantifying dependence misspecification. Assuming that marginals are given and that the dependence
is unspecified, or partly unspecified, bounds on copulas can be indeed used to quantify this type of model risk.

To do so, we make use of the recent work of Tankov [25] who generalize Nelsen [18]'s result by giving explicit expressions
for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0, 1]? are known (see
also Sadooghi-Alvandi et al. [23]). Tankov shows that they are quasi-copulas and not necessarily copulas. In this paper,
we focus on deriving bounds on copulas that are also copulas. The first section focuses on finding simple conditions
to ensure that Tankov's bounds are copulas. When the bounds are not copulas, it is possible to approximate them by
a copula. The second section illustrates a method to find the best copula for the uniform norm that approximates the
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bounds. For example, these bounds can be used to find the worst dependence and the best dependence to maximize or
minimize a risk measure, which respects concordance order. This is directly useful to quantify model risk as we illustrate
in the paper by finding bounds on capital requirements or on insurance premiums when the dependence is partially
known.

We work on bounds for two-dimensional copulas. One reason is that bounds on two-dimensional copulas can easily be
transfered on bounds on risk measures (as long as they are consistent with concordance order). In higher dimensions,
it is not clear how this property can be extended. In particular the recent work of Embrechts, Puccetti and Riischendorf
[10] and Bernard, Jiang and Wang [4] show that the dependence structure of the minimum and maximum convex order
bounds are “marginal” dependent' and thus cannot be obtained from bounds on copulas only. Although the problem of
model risk and dependence misspecification is also relevant in higher dimensions, alternative methods are needed and it
is outside the scope of this paper. In addition, obtaining expressions for bounds on copulas in a multidimensional setting
is challenging without any constraints on the dependence as there are almost no results on the lower Fréchet-Hoeffding
bound for multidimensional copulas with n > 3. Our focus in this paper is on two-dimensional copulas. Bounds on
copulas in two dimensions are extremely useful to solve portfolio selection problems, as it appears clearly in Bernard
et al. [1, 2] where the key element is the dependence between a portfolio and a market index. When there are no
constraints, it is shown that optimal portfolios (respectively worst portfolios) are generally comonotonic with the market
portfolio (respectively anti-monotonic). However when investors have state-dependent preferences and look for optimal
portfolios that verify additional constraints then the problem of solving the optimal portfolio amounts to solving an upper
and lower bound on copulas with constraints. The optimal portfolio can be constructed if and only if the bound on
copulas is a copula (and not only a quasi copula) and corresponds thus to a feasible dependence structure.

Recall that Q : [0,1 — [0,1] is a quasi-copula if it satisfies the following three properties. (1) For all u €
[0,1], Q(0,u) = Q(u,0) = 0, and Q(1,u) = Q(u,1) = u (boundary conditions). (2) Q is non-decreasing in each
argument. (3) For all uy,vq,uz,vo € [0,1], |Q(uz, v2) — Quq, v1)| < |uz — us| + |v2 — vy| (Lipschitz property). If, in
addition, Q is 2—increasing® then it is a copula. More details on quasi-copulas can be found for example in Genest et
al. [12). Let S denote a compact subset of the unit square [0, 12. Tankov [25] shows that AS? and BS9 defined by

ASQ(y,v) = min {u, v, ( n})&gS{Q(a, b)+ (u—a)t +(v— b)*}} , (1)

B59u,v) = max {0, u+v— 'I,(mb?é(S{Q(a, b)—(a —u)" —(b— v)+}} ’

where (u,v) € [0, 1], are the best possible upper (resp. lower) bounds for the set of all quasi-copulas Q’ such that
Q'(a, b) = Q(a, b) for all (a, b) € S (see Tankov [25], Theorem 1). When S is the empty set, BS9(u, v) := max(0, u+v—1)
and ASQ(u, v) := min(u, v) are the Fréchet-Hoeffding bounds.

Tankov [25] proves that a sufficient condition for A9 (resp. BS?) to be a copula is to suppose that S is non-increasing
(resp. non-decreasing). Bernard et al. [3] extend this result and show that when Q is a copula, A5 (resp. BS9) is a
copula when S is a compact set satisfying some additional conditions, precisely some “monotonicity” and “connectivity”
conditions®. For instance, when S is a rectangle then both AS? and BS© are copulas.

Our first contribution is to derive weaker and simpler conditions than Tankov [25] and Bernard, Jiang and Vanduffel 3]
to ensure that AS? and B5? are both copulas. This is particularly important as it is then possible to construct explicitly
the dependence that maximizes, respectively minimizes a given bivariate risk measure. As discussed above, it allows for

' When changing the marginal distribution, the worst possible dependence may be obtained for different copulas.

2 Q is Z-increasing if Vo(R) = Q(uz, v2)+ O(u1, vi) — Q(u1, v2) — Q(uz, v1) = 0 for every rectangle R = [uy, u]x [v1, 2] C
[0,1F.

3 The precise result is given as follows. Denote by S; the set obtained by the first variable projection of the compact set S
and S, as the second variable projection. Define the two following functions y, from Sy to S, as yq(u) = min {v|(u,v) € S}
and y; from S8y to S; as ya(u) = max{v|(u,v) € 8}. For a copula Q and a compact set S C [0, 1]2 with both y, and
y> non-decreasing functions, and satisfying the following property ¥ (u, v), (u,vi) € S, (u, 23) € S, then B is a
copula. A similar result is available for AS©.
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instance to extend earlier works on optimal portfolio selection by Bernard, Boyle and Vanduffel [1] and Bernard and
Vanduffel [5].

Our second contribution is to derive a novel application to quantitative risk management and financial engineering. The
idea builds on the observation that the dependence between two companies and two variables is often state-dependent.
There is empirical evidence that regimes exist in the financial market and that the dependence structure depends on the
regime. For example, Stoeber and Czado [24] find that regime switches are present in the dependence structure of various
data sets and show that regime switching models can describe accurately inhomogeneity during times of crisis. Observe
also that many sectors and companies appear to be independent unless systemic events happen (causing common shocks
in the market). In practice, the dependence may not be known in all regimes. For example the dependence in the financial
market can easily be observed in normal conditions but the lack of data makes it difficult to estimate it during extreme
conditions. Our results can be applied to compute bounds on a bivariate risk measure when such partial information on
the dependence is known. This turns out to be useful in pricing reinsurance claims in a multivariate setting, in pricing
bivariate derivatives or in determining capital requirements. We are also able to exhibit explicitly the “worst” (resp. the
“best”) copula which makes the underlying risk the largest (resp. the smallest).

Our last contribution is to study what happens when at least one of the two bounds is not a copula. We illustrate our
approach when there are exactly two constraints on the copula. Nelsen [18] derives best possible bounds when there
is one constraint but the problem is more difficult when there is more than one constraint as either the lower bound or
the upper bound may not be a copula. We derive explicit expressions for the smallest copula above the lower bound
and the largest copula below the upper bound for the infinite norm when there are exactly two constraints. This can be
useful to approximate the lower or upper bound when they are not sharp (that is when they could not be attained by
copulas). Although the work is done with two constraints a similar technique can be applied when there are more than
two constraints on the copula.

Section 1 gives a sufficient simple condition to ensure that both AS? and BS9 are copulas. We propose an application
to computing bounds on capital requirements and illustrate our findings with some numerical examples in Section 2.
Section 3 focuses on the case when there are exactly two constraints on the copula and gives explicit expressions for
the smallest copula above the lower bound and the largest copula below the upper bound for the infinite norm.

1. Sufficient Conditions for Both Lower and Upper Bounds to be Copulas

This section is an extension of Theorem 1 of Tankov [25] and Sadooghi-Alvandi et al. [23]. To prove our results, we use
the following well-known lemma. Its proof is omitted as it is proved in Lemma 3.1 of Durante and Jarworski [8] or Lemma
1 of Bernard, Jiang and Vanduffel [3].

Lemma 1.

Assume f : [0, 1] — R is 2-increasing, non-decreasing in each argument and satisfies the Lipschitz property. Define
the function g : [0,1F — R as g(u, v) = max{f(u,v), W(u,v)}, where W(u,v) = max{u+v—1,0} is the anti-monotonic
copula. Then g is also 2-increasing, non-decreasing in each argument and satisfies the Lipschitz property.

Theorem 2.
If S is a compact set satisfying the following property:

W(ao, bo) € S, ¥(a1,by) €S, (ao, by) € S (a1, bo) € S. 2
Furthermore, suppose Q is a quasi-copula such that ¥(ao, bo), (a1, b1) € S with ag < a4, by < by, we have
Q(a1, b1) + Q(ao, bo) — Qlao, b1) — Q(a1, bo) > 0, 3)
then ASC and BS9 are copulas. Note that condition (3) is automatically satisfied when Q is a copula.

Proof.  The proof of Theorem 2 is inspired from Bernard, Jiang and Vanduffel [3]. It is sufficient to prove that BS©
is a copula as the proof for AS? follows immediately. Since Tankov [25] already proved that B is a quasi-copula, all

39



VERSITA

Carole Bernard, Yuntao Liu, Niall MacGillivray, Jinyuan Zhang

that remains is to establish that it is also 2-increasing. Define 59 as

F*0u,v) = max {Q(a,b) —(a—u)" = (b—v)"}. (4)

Consider any rectangular area R = [u1, uy] x[v1, v2] C [0, 17%. To establish the 2-increasing property of BS?, it first must
be shown that ¢ is 2-increasing, that is Vjso([u1, u2] x [v4, v2]) = 0. By the compactness of S, there exist (u},v}) € S
and (u3,v{) € S, such that

)

59 (ur,va) = Q(ui, v3) — (uf — )" — (v; —va) ",
59 (ug, vi) = Q(us, vi) — (5 — uz)" — (v —wi) "

For convenience, two cases are considered depending on whether {(u},v5), (u3, vy)} forms a non-decreasing set or a
decreasing set.
Case 1: (ut,v3) and (u3, vf) form a non-decreasing set. From the definition (4) of €, it is clear that

50 (ur,v) = Qus, vy) — (U3 —un)" = (vf —w)", (6)
59 (uz, va) = Q(ui, v3) — (U5 —uz)" — (v —wa) "
Using (5) and (6), the volume of the rectangle [u1, uz] X [v4, v2] can be bounded below as follows:
fS.Q (Uz, V2) - fS’Q (LI1 ’ VZ) - fs’o (Uz, V1) + fS,O (U1 ’ V1)
>[Q (U7, v3) = (U7 —u2)" = (v, =) "] = [Q (7, v3) = (uf —un)" = (v; = v2)"]
—[Q (3, v)) = (U5 = u2)" = (v =) ]+ [Q (3, ) = (U5 — ur)" = (v —n)7]
=[(u7 = )" = (07 = w2) "] = [(u5 = w1)" = (u5 = w2)"]. (7)

It is clear that if uf > u3, then Viso([u1, uz] x [v1, v2]) = 0 using (7). On the other hand, consider when v} < u%; the
process is similar. Indeed, realize that the following inequalities also hold:

59 ur,v) = Q(ui, v3) — (uf — )" — (v —w)*,
59 (uz,va) = Q(u3, vi) — (U3 — wa)" — (v — )",

and therefore using (5), it follows that,

59 (ug, v) — 59 (ur, va) — 59 (ug, vi) + 59 (uq, vy)

> [ —vw) = —w)]=[vy —w)" = (v —wv)"] >0,

which follows from the fact that v < v{, since (u7, v5) and (u3, v{) form a non-decreasing set, and we have assumed that
uy < us.

Case 2: Assume that (u7,v5) and (u3, v{) form a decreasing set. It is also known that (u3,v{) € S and (u3,v3) € S.
From the definition (4) of £59, bound 5 (uy, v4) and 59 (u,, v») from below:

(Ui, vi) = (Ui —un)" = (v =wm)",

(U5, v3) = (U3 —uz)" — (v —v2)".

{ £5:2 (uy, i)

fS’O(UZ, v2)

=20
=0

Writing down the volume of 59 and using the aforementioned lower bounds on 5 (uq,v4) and 59 (uz, v) it follows
that the volume of the rectangle [u1, u3] X [v1, v2] is non-negative.

fS.Q (Uz, Vz) - fS.Q (Ll1, Vz) - fS.Q (Uz, V1) =+ fSVO (U1, V1)
> [Q(u5,v3) = (U3 —ua)" — (v; =) | = [Q(u},v5) — (uf —un)" — (v, — )]
—[0(u3, i) = (u5 = u2)" = (i =) ]+ [Q (7, v) = (U} — ur)" — (v —w)"]

= 0(u3,v7) = Quy, v3) = Q(u3, i) + Q(uj, vi) = 0,
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where the last inequality follows from the fact that Q is 2-increasing over S and {(u3, v3), (u5, v{)} is a decreasing set.
This completes the proof of Case 2.

Combining Case 1 and Case 2, it follows that S is 2-increasing. Since 59 is Lipschitz, non-decreasing in each
argument, and 2-increasing, Lemma 1 implies that the quasi-copula BS? is 2-increasing in (u,v) and therefore, by
definition, a copula*.

As in the proof of Theorem 1 from Tankov(2011), note that

A5y, v) = u — BSPu,1—v) = BSQ(u, v) 8)

where S is defined as S = {(a, b)|(a,1 — b) € S} and Q(u,v) = u — Q(u,1 —v).
It is clear that S satisfies condition (2) in Theorem 1 as S satisfies (2). In addition, Q is a quasi-copula which satisfies
condition (3), since for V(ay, bo), (a1, bq) € S with ag < a4, by < by,

Q(ax, b1) + Q(ao, bo) — O(ao, b1) — O(as, bo)
=da1 — 0(01,1 —b1)+00— 0(00,1 —bo)—(ao— 0(00,1 —b1))—((71 — 0(01,1 —bo))
= Q(ao, 1 — bq) + O(a1,1 — bg) — Q(ap, 1 — bo) — O(a1,1 —by) >0,

Using the proof that BS© is a copula, it follows directly that BS? is also a copula. Thus BS@ is a copula and hence
ASC is a copula. O

Theorem 2 gives alternative conditions than Tankov [25] and Bernard, Jiang and Vanduffel [3]. For example it can be
applied with the compact S which consists of 4 points: S = {(aq, bo), (a1, bo), (ao, b1), (a1, by)} for some 0 < ap < a1 < 1
and 0 < by < by < 1. This compact set does not satisfy the monotonicity property needed in Tankov [25] and does not
satisfy the connectivity property of Bernard et al. [3]. However as soon as Q satisfies condition (3) (which is automatically
satisfied when Q is a copula), both AS? and BS© are copulas. Note that it is also possible to construct a compact, e.g.
Sy = {y = 2x,x € [}1]}, that satisfies conditions in Bernard, Jiang and Vanduffel [3] for BS1"? to be a copula but not
(2) in Theorem 2. Note however that the condition for AS1'? to be a copula is not satisfied as Sy is an increasing set
and thus the two bounds are not simultaneously copulas.

There are many other sets satisfying the assumptions of Theorem 2 including for example two vertical areas {x €
[3.3l.x €13, 2],y €[0,1]} (or more vertical areas), similarly a set of horizontal areas or unions of horizontal and
vertical areas satisfy (2).

Note that when S is a rectangle that intersects the boundaries of [0, 1] then (3) is automatically satisfied in view of
Section 4 in Genest et al. [12].

2. Application to Quantitative Risk Management

We here describe potential applications of Theorem 2 in quantifying uncertainty on dependence (which is a type of
model risk when marginals can be well estimated but when the dependence may be misspecified). See Embrechts et
al. [10] for a discussion of quantifying model risk by computing bounds on Value-at-Risk when marginals are given and
dependence is totally unspecified. The goal of this section is to illustrate a methodology to assess model risk and to
illustrate the potential use of bounds on copulas.

Consider a bivariate risk (X, Y). We assume that one has an accurate assessment of the marginal distributions of X and
Y but only partial information on the dependence. Here are some potential applications.

For example, consider an insurance company with two lines of business: life insurance and non-life insurance. Let us
denote the respective aggregate losses of each business line as X and Y. We assume that the risk of the company can
be assessed as E[h(X, Y)] where h is some bivariate risk measure. For example h(X, Y) = (max(X, Y) — K)* for some
K >0, 0r h(X,Y):=(X+ Y —K)*. These risk measures are particularly relevant to a reinsurer. The first risk measure

* Note that Theorem 7.1 of Durante et al. [9] can also be invoked here to conclude that BS© is a copula.
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is indeed the pure premium (expected value) for a stop-loss policy written on the maximum loss of this company. The
second risk measure is the pure premium for a stop-loss on the aggregate risk of the company.

In addition, we assume that the copula between X and Y is state-dependent, that is, it may change when market
conditions change. Specifically, we assume that both risks are observed for many years in “normal” conditions and that
very few observations are available during market crashes and catastrophes (tail dependence is hard to observe). We
thus suppose that the dependence observed in the data is essentially well suited for X and Y each belonging to the
90% confidence intervals X € [ag, a1] and Y € [bg, b1] and that the copula is unspecified outside of the 90% confidence
intervals as there is not enough data.

Another example is to study a bivariate derivative linked to two stocks or two sectors. The respective losses of the two
underlying stocks (or sector indices) may look independent most of the time. However when the market is stressed,
both companies (or sectors) can be hit by common shocks, so that the two companies become dependent. Such systemic
elements are not observed in normal conditions. Pricing this bivariate derivative by ignoring this possible change of
dependence in extreme scenarios would potentially underestimate or overestimate its price.

It may also be useful to specify the dependence in the tails only. For example, one may choose to not specify the
dependence in the middle of the distribution and constrain it to being comonotonic or antimonotonic when one knows
that the two companies will be hit the same way when the market is in extreme conditions (in extremely good and in
extremely bad scenarios). This is also referred as systemic risk factors. The set of constraints on the dependence then
consists of four rectangles corresponding to the four corners of the unit square. Our numerical example illustrates these
different situations.

2.1. Setting

We propose to model the problem as follows. The first case that we consider is S = [ag, a1] X [bo, b1]. Assume that the
dependence between the risks X and Y is known on § and modeled by a copula Q over the region S = [ay, a1] x [bo, b1]
(Figure 1, Case 1). Similarly we define S as the union of the four corners as can be seen from Case 2 in Figure 1.

Vx € [ag, 1], Vy € [bo, bi], P(X < x, Y < y) = Q(Fx(x), Fy(y)). )

In practice, Q could be obtained from fitting from market data, where there is sufficient data available for a good fit of
a copula.

A A
1 1
E B A E B A
b1 b1
F S C F s [
b0 b0
H G D H G D
> S
0 a0 al 1 0 a0 al 1
Case 1 Case 2

Fig 1. Partition of the unit square. In each case, the darker areas denote the compact where the copula is known and equal to Q as formulated
in (9).

We are now solving for the minimum and maximum copulas so that we could use these results to find bounds on prices
or capital requirements. Consider the bivariate risk measure E[h(X, Y)] where h(X, Y) = (max(X, ¥Y) — K)* and assume
the marginals of X and Y are known. For instance we assume that both risks X and Y are lognormally distributed so
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that Fy(x) = ®{"=2} and Fy(y) = {lnm wy,

PIX < xY < y) = P, Frlg) = 0 (@[ M= | o [ =00 1)

Oy

for all (x, y) € S and where C is the copula for (X, Y) and C = Q on S. To illustrate the study we consider Q(u, v) = uv
(independent risk), Q(u, v) = min(u, v) (comonotonic risks) and Q(u, v) = max(v + v — 1,0) (anti monotonic risks) in the
example but our analysis holds for more general choice of Q.

2.2. Theoretical Developments
Let us define 7(C) = E[h(X, Y)] where C is the copula for (X, Y) and observe that

- [0 /O hx, y)dC(Fx (), Fy (). (10)

Tchen [26] showed that for every 2-increasing function h such that (10) exists, the mapping C — (C) is non-decreasing
with respect to the concordance order of copulas (for example for h(X, Y) = (X + Y — K)*). Similar properties can be
proved for 2-decreasing functions. For example, since h(X, Y) = (max(X, Y) — K)* is 2-decreasing, and AS:9, BS9 and
C are quasi-copulas such that for all (u,v) € [0,1F, B59(u,v) < C(u,v) < AS9(u, v), we have

7a = m(A%?) < 7(C) < g == 7(B>O).

As S is a compact set and Q is a copula, it satisfies all of the properties from Theorem 2, then AS-?(u, v) and BSC(u, v)
are copulas. Since both AS? and BS© are copulas, the bounds mg and 74 are attained and correspond to a possible
dependence between X and Y.

For the purposes of this example, it is more convenient to express (10) as follows:

- j 1 [ h(FE ), F () dClu, v, (1)
0 0

Similarly as in Nelsen [18], page 38, the double-integral ;4 (resp. 7g) can be rewritten as integrals over the support of
ASQ (resp. BS9). Let us give some explanations to compute m4. It is clear that A5 is equal to Q on S but is singular
everywhere else.

In what follows, we assume Q(u,v) = uv and S = [ag, a1] x [bg, b1]. The support of AS? is displayed in the first
column of Figure 2. To obtain Figure 2, we simulate 10,000 couples (U, V) from the copula AS? when Q(u,v) = uv
and § = [ag, a1] X [bg, b1]. The simulation procedure follows from a general method explained for instance in Mai
and Sherer [16]. In our special case, we first compute ASP(u,v) using (1) for all (u,v) € [0,1], and then calculate
A, i=vie— %(AS’Q(U, v)). Recall that it is a conditional cdf (P(V < v|U = u)), and we then compute its pseudo inverse
A1 similarly defined as the inverse of a cdf. We obtain

[ u if 0 < u < Gobo
% if agbg < u < agby
u+b1—00b1 .lfaob1<l,l<00
AN (W) = 3 k(u, w) ifag <u < ay

u—ay+aiby ifay <u<ay+byg—aibg
if a1+ by —a1bg < u<ay+by—aqby
u ifay+by—a1by <u<1

where k(u, w) := boull,cpy + Wlpycwen, + (b1 + (1 — b1)u)L,>p,. The algorithm to simulate (U, V) consists of the two
following steps. First we simulate two independent variables (U, W) from the uniform distribution 24(0, 1). Second, we
compute V = Aj'(W). We then repeat these two steps 10,000 times and display the couples (U, V) in Figure 2.
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Qu.vI=uv QU VI=min(u,v) Qu,v)=max(u-+v—1,0)

1 1
o.of
o.s8|
o.7|
o.6f
= o.5F =
o.al
o.af
o.z|
o.1f
o 0.2 o.a o.6 0.8 ES o 0.2 o.a o.6 o.8 ES
u u
Qu,v)=uv Qu,v)=min(u,v)
1 - 1 -
o.oF 0.9~ B
o.8- 0.8 B
0.7 O.7 N 4
o.6- 0.6 B
= o.5F > o.5| 4
o.al o.al 4
o.3f o.3k
o.z| o.2F 4
o.1f o.al i
°c %6 0.2 o.a o.6 o.8 ES

Fig 2. Case 1 for S in Figure 1. Supports of A5 (top graphs) and B (bottom graphs) when Q(u,v) = uv, Q(u,v) = min(u,v) or Q(u,v) =
max(u + v — 1) and the copula is constrained on a rectangle agp = 0.3, bp = 0.3, a1 = 0.7, by = 0.7.

Let I'; denote the support of A5 over a particular subset J C [0, 1]>. Over region H = {u < ap, v < by} (see Figure 1,
Case 1 for a graphical illustration), the support of AS:9 is given by

Ci={(u,v) € H|lu = v:u < Q(ag, bo), v < Q(ag, bo) }
Similarly on region A = {u > ay,v > by},
Ma:={(u,v)€Alu=v:u>=ai+by—Qar, bi),v=ar+by—Qar, b))}

A similar analysis over each region yields the following supports: ¢ := {(u,v) € G| v = Q(u, bo)};Tp := {(u,v) €
D|v=u—a+0(a,b)}ilTc:={(uv)e C|lv—0(ar,v) =u—ar};Tr:={(uv) € F| Qag,v) = u}; g :=
{(u,v) € E|v=u+by—0Q(ag, b1)}; and T'g:={(u,v) € B|v=u—Q(u, bi) + bi }.

Denote by I' = J,c; i where T = {A, B, C, D, E, F, G, H} and simplify the double integral 74 by splitting the compu-
tation into nine parts. The only region we have ignored so far is S, where the support of AS? is equal to the support
of the non-degenerate quasi-copula Q restricted to S as AS? = Q. For example when Q(u,v) = uv then ['s = S. The
double integral ;4 can be reduced to single integrals over A,B,C,D, E, F, G, H and a double integral over S. The
calculations are straightforward (see Appendix A for more details). Similar calculations can be done with other choices
of Q(u, v) and to obtain mg.

2.3. Numerical Analysis

Assume p, = py = y = 2, a1 = by, ap = by, that 0, = g, = ¢ = 1 and that K = 5. We assume that g, and
Gi—o correspond respectively to the quantile at the level a and 1 — a where «a takes different values. Note that
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Qu.vI=uv QU VI=min(u,v) Q(u.v)=max(u+v—1,0)
1 1
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Fig 3. Case 2 for S in Figure 1. Supports of A5 (top graphs) and B (bottom graphs) when Q(u,v) = uv, Q(u,v) = min(u,v) or Q(u,v) =
max(u + v — 1) and the copula is constrained in the 4 corners of the unit square where ag = 0.3, bp = 0.3, a1 = 0.7, by = 0.7.

Table 1. Numerical example ap = bg = a and a1 = by = 1 — a. We compute n4 and 7z which are the respective upper and lower bounds of
E[h(X,Y)]when C(u,v) = uv, C(u,v) = min(u, v) and C(u, v) = max(0, u + v — 1) for the extreme cases a = 0 and a = 1/2. All numbers
are obtained with a standard deviation smaller than 0.01.
Q(u, v) uv min(u, v) max(0, u +v—1)
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2
g =137 | ng =155 || ng=79 | ng=155| ng =155 | ig =155
a=137 | na=79 Aa=79 | ma=79 A =155 | ma=7.9
1 || 7 =149 | i =137 || g =131 | ng=7.9 g =155 | g =15.5
a=910 | ma =137 || ta=79 | ma=7.9 || 14 =1549 | 14 =155

ao = Fx(g.) = @ and a1 = Fx(g1-o) =1 — a. Similarly by = @ and by =1 — a. Figure 4 and Table 1 show the impact
on the quantity 7(C) of the model risk on the copula.

Note that in Case 1, when a = 0 and in Case 2, when a = 1/2 the copula is fully fixed and w4 = mg. In Case 1, when a =
1/2, the copula is fixed at one point and we find back the results of Nelsen [18], page 71, section 3.2, Figure 3.10 on bounds
on copulas when there is a constraint at one point. When o = 1/2 and Q(u, v) = max(0, u+v—1), then the constraint on
the copula becomes C(1/2,1/2) = 0. Obviously B(u, v) = max(0, u+v—1) and A(u, v) = min(u, v, (u—=1/2)" +(v—=1/2)*).
This implies that A(u,v) = B(u,v) for all (u,v) € {[0,1/2] x [0,1/2]} U {[1/2,1] x [1/2,1]}. The constraint at 1 point
is already quite constrictive, and it turns out that there is almostno difference between w4 and mg for a constraint of 1
point only and thus for all a € [0,1/2]. Finally for Case 2, when a = 0, the problem seems to be constrained in the 4
corners, but the constraints are automatically satisfied and thus we find back the Fréchet bounds.

The limit cases obtained in Table 1 appear now clearly on the graph 4 obtained by Monte Carlo simulations representing
74 and ;g in Case 1 and Case 2 for the 3 types of constraints considered above.
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Fig 4. 74 and 5z with respect to @ when the information on the copula is only known over the square [a,1 — a]*. On each graph, we show the
upper bound and the lower bound for the comonotonic, antimonotonic and independence copula.

3. Compact set S with 2 points

In this last section we assume that there are exactly two constraints on the copula. Nelsen [18] derives best possible
bounds when there is one constraint but the problem is more difficult when there is more than one constraint as either
the lower bound or the upper bound may not be a copula. Thus the bounds are not sharp. The purpose of this section is
to illustrate how to construct the best bounds in the sense of the infinite norm in the case when there are two constraints.
Sadooghi-Alvandi et al. [23] also solve this problem but assume that the two constraints are either non-decreasing or
non-increasing and thus are special cases of Tankov [25] main result> Hereafter, we derive explicit expressions for the
smallest copula above the lower bound and the largest copula below the upper bound for the infinite norm. To do so, we
start with a lemma. Note that although the derivations are done with two constraints, similar derivations can be done
with a given number of constraints but this will lead to tedious calculations.

Lemma 3.
The infimum of functions with the 1-Lipschitz property also is 1-Lipschitz property.

We omit the proof of this lemma as it follows from the general fact that the aggregation of Lipschitz functions preserves
the Lipschitz property of kernel aggregation functions (in particular max and min) are used, see for instance Grabish et
al. [13] and Kolesarova et al. [15].

Theorem 4.
Let S = {(ao, bo), (a1, b1)} be an increasing set (ag < a1, by < bq) and Q be a quasi-copula, such that Q(ay, bo) =

5 Precisely, Tankov [25] proves that if S is increasing, then BS© is a copula and if S is decreasing, then AS© is a copula.
Thus, in Theorem 2.1 of Sadooghi-Alvandi et al. [23] S is increasing, C, is obviously not empty. Similarly, when S is
decreasing which is indicated in Theorem 2.4 of Sadooghi-Alvandi et al. [23] C, is also not empty. Theorem 2.2 and 2.3
of Sadooghi-Alvandi et al. [23] assume that S is increasing or decreasing thus the same conclusion as in Tankov [25] is
obtained. Although it seems at first that the result of Sadooghi-Alvandi et al. [23] is a special case of Tankov [25] the
proofs are different.
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90, Q(G1,b1) = 91. Let
C={ C copula | C(ag, bo) = 6y, C(ay, by) =61} (12)
(i) 3 C* € C such that
1A% = C*[|oo = inf [|A* — Clls (13)
cecC

(ii) C* satisfies C*(ag, b1) = a* and C*(a1, by) = B*, where a* solves the following equality
min(ag — a, 60 — a + by — by, 61 —a) =min(bp+ a—y, 00+ a—y+ a1 —ag, 61+ a—vy),

where y = min {6y + 6y, min(ag, b1) + min(aq, bo)} and B* =y — a*.

Proof.  Tankov [25] shows that if {(ao, bo), (a1, b1)} is an increasing set then B is a copula; hence, C defined
by (12) is non-empty. To establish the existence of C*, we establish that C is closed and that g : C — R, where
g(C) = ||A5? — (|| is continuous.
To prove that C is closed, consider a sequence {D,} in C converging uniformly to D*. Since each D, is a copula, and
uniform convergence preserves the properties of copulas, D* is a copula. Moreover, for constant 6, and 6; such that
D, (ao, bo) = 6y and D, (a4, by) = 64,

lim D,,(Go, bo) = D*(Go, bo) = 90 and lim Dn(01, b1) = D*(CH, b1) = 91.
Therefore, D* € C and hence C is closed. To prove the continuity of g, consider G; € Cand G, € C
19(C1) — g(G)] = [IIA%C = Gl — [|A%C = Gloo| < |G = G oo
where the inequality follows from the triangle inequality. Thus g is 1-Lipschitz and therefore continuous.
As C is closed and g(C) = [|AS? — (|| is continuous, the infimum in (13) is a minimum. Let us denote this minimum
by C*. Define a* := C*(aq, by), B* := C*(a1, bg) and S by
S = {(ao, bo). (a0, b1), (a1, bo), (a1, b1)}
Since C* is a copula, and S satisfies condition (2). Using the result of Theorem 2, ASLC* is a copula 0 such that
Q(ag, bo) = 6y, Q(ap, by) = a* Q(a1 by) = B*, and Q(a1 by) = 6;. We have that C* < ASC" by definition of ASC" as
an upper bound on a set of copulas with constraints on S. We also have ASC < AS: ¢ - = A5C because C* = Q on S
and S C 8. Moreover [|ASQ — C*||s < ||ASQ — ASC'||, because of the optimality of C* in (13). Thus C* = ASC".

Let us now solve for a* and B*. To do so, we can simplify the initial problem by the following parametric optimization
over all a and B such that C* is a copula

1459 — A% |oo = tnf A0 — A%, (14)
where Q is defined previously with Q(ao, b1) = a, Q(a1, bo) = B, Q(ao, bo) = 6 and O(ay, b1) = 6;.

Notice that ASQ(u,v) = min(fu(u,v), fg(u, v), ASQ(u,v)), where fo(u,v) = a + (u— ap)* + (v — by)* and fa(u,v) =
B+ (u—a1)t + (v — bo)*". For convenience, the optimality can be written as follows:

mii?||AS'Q—A§'a||m = mig{ max {ASC(u, v) = min (fa(u, v), f(u, v), A% (u, v))}} (15)
a, a, (u,v)€[0,1]

For later reference, recall some key properties of copulas:

b<aB<O, a+B< O+ 06, (16)
max(u +v —1,0) < Q(u, v) < min(u, v), (17)
Qluz, v2) — Qur, vi) < (u2 — uq) + (v2 — wr). (18)
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For the purpose of this proof, it is more convenient to consider nine different cases, by dividing the domain [0, 1] x [0, 1]
into nine areas as in Figure 1.

||AS© — ASO||, = max,co.p |ASC(u, v) — ASO(u, v)| = max{Ma, Mg, Mc, Mp, Mg, M, M, My, Ms}

where Mz = max, ez |ASC(u, v) —Ag'a(u, v)‘ To solve for o* and B*, we need to solve (15). To do so, we consider a
breakdown to compute Mz. Calculations are not difficult although a bit tedious. Details are given in Appendix B.

My=0, My=0

Mg = min{ag — a, 6y — a + by — by, 6 — a},

Mc = min{bo — B, 6y — B + a1 — ag, 61 — B},

Mp = min{by — B, 6y — B+ a1 — ay, 61 — B},
Mg = min{ag — a,6p — a + by — by, 61 — a},

Mg = min{ag — @, 6y — a + by — by, 61 — a},

Mg = min{bg — B, 6y + (a1 — a¢) — B, 61 — B}.

Nothing can be concluded immediately in Section S in Figure 1 (ap < u < a1 and by < v < bq) since it cannot be

distinguished which is larger: f,(u,v) = a + (u — ayg) or fg(u,v) = B+ (v — bg). However, consider two separate cases
where a line a + (u — ag) = B + (v — byg) divides area S into two subareas:

S=81[Js:
where 8y = {fy(u,v) < fg(u,v)} and S; = {fa(u, v) > fg(u,v)}.

Ms1 = min(—a + ag, 6p — a + b1 — by, 61 — q)
Ms, = min(bo — B, 6o — B+ a1 — ao, 61 — B)

Define n(a) and ¢(B) as follows

n(a) = max(Mg, Mg, Mg, Ms,) = min(—a + ag, 6p — a + by — by, 61 — a),
¢(B) = max(/\/lc, MD, /\/’G, M31) = mln(bg — B, 90 — B + aq — aop, 91 — B)

Notice that (15) is decreasing in terms of @ and B. In order to minimize the function, the constraints in (16) need to
show that a + B = 6y + 6;. However, it cannot be neglected that a + B < min(ag, b1) + min(a4, by). So

a+ B =min {6y + 61, min(ag, b1) + min(aq, bo)}

Let y = min {6 + 6, min(ag, b1) + min(aq, bo)}, which is known from the assumptions of the theorem; then B can be

rewritten as y — a and ¢(B) as
¢(a) =min(bg+a—vy, 8 +a—y+a,—ag, 6 +a—y)
It remains to minimize over a and B

max, {max (A%? —min(f.(u, v), fg(u, v)), 0)} = max(n(a), ¢())
over [0,1] x [0, 1] to find a value for o*. It can be seen that n(a) is decreasing in terms of @, while ¢(a) is increasing in
terms of a. Moreover, if @ is constrained to min, {max(n(a), ¢(a))}, a* is obtained by setting n(a) = ¢(a). Otherwise,
the optimality would be violated since there would exist some a such that a > a* (a < a*) where max(n(a), ¢(a)) =
$(a) > @(a”) (max(n(a), () = na) > n(a’)). N
Therefore, a* is the solution to the function n(a) = ¢(a) and B* = y — a*. To conclude, A% is a copula in the set C
and C* = AS for the parameters a* and B*. O
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Example 5.

Let S = {(1/3,1/3),(5/6,5/6)} and suppose Q is the independence copula (i.e. Q(u,v) = uv) then Q(1/3,1/3) = 1/9
and Q(5/6,5/6) = 25/36. Define S= {(1/3,1/3),(5/6,5/6), (1/3,5/6), (5/6,1/3)}. From Theorem 2, a* is obtained by
solving n(a) = ¢(a) that is min(—a +1/3,1/9 — a +1/2,25/36 — a) = min(1/3 — B,1/9 — B+ 1/2,5/6 — B). We then
obtain 1/3 — a = 1/3 — B, equivalently @ = B. Recall that

B = min {17/18, min(1/3,5/6) + min(5/6,1/3)} — a = 2/3 — a.

Finally we obtain that
ot =g =1/3.

Similar analysis can be done for the lower bound for a decreasing set.

This approach can be useful to approximate the lower or upper bound when they are not sharp (that is when they could
not be attained by copulas). Although the work is done with two constraints a similar technique can be applied when
there are more than two constraints on the copula. In this case, the derivations become very tedious and a numerical
search may be more efficient.

Theorem 4 has direct applications in optimal portfolio selection. To be able to implement the optimal strategy, one needs
a bound that is attainable by a copula (and not only a quasi copula). This was already used in Bernard, Boyle and
Vanduffel [1], Bernard and Vanduffel [5] and in Bernard, Chen and Vandufel [2]. Let us give an example of application of
Theorem 4 which extends the probability constraint considered in Boyle and Tian [6].

Example 6.
In Example 3 of Bernard, Boyle and Vanduffel [1], they consider a Black Scholes market and assume that an investor
wants to achieve the same distribution F as an investment in the risky asset Sy but is subject to additional constraints®.

P(S; < 95, Y7 > 100) = 0.2 and P(Sy < 80, Y; > 100) = 0.05. (19)

It turns out that the optimal portfolio is obtained when the copula between Sy and Y7 is maximum. In their paper,
they are able to solve explicitly for the optimum as the constraints on the copula amount to constraint in a compact set
consisting of two points S := {(ao, bo) := (Fs,(95), Fy,(100)), (a1, b1) := (Fs,(80), Fy,(100))}. This compact satisfies
for example the conditions of Theorem 2 and thus the maximum bound on the set of constrained copulas on S is a
copula and thus can lead to an explicit optimal strategy. In the case when the constraints (19) are on an increasing
set, ap < a1, by < by the exact optimal strategy cannot be constructed and Theorem 4 allows to construct the best
approximate strategy.
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Appendix A: CALCULATIONS NEEDED FOR SIMPLIFYING 4

For i € 7, the support of the copula on I'; can be described by a set of points (u, v;(u)) where v; is going to be specified
below. Aggregating the analysis together,

ma=Ps+) P

i€l

where Ps:= [ bl: h(Fx'(u), Fy'(v))dQ(u, v), and Pi:= [ h(u, vi(u))du. Precisely,

Py = [0 h(F ! (u), Fy () du

Pe = Joturim B (Fx'(0), F (67 (u)) du

ag,bo)

Pe =[50 oy hF5 (), Fy ' (u + by — Q(ao, by)))du

P¢ = by fa”(; h(Fx(u), Fy1(O(u, bo)

))du

Pg = (1—bn) fa‘: h(Fy'(u), Fy ' (u — O(u, by) + by))du

Pp = [0 p(F (), Fy ' (Qan, bo) + u — ar))du

Pe = [t Oenb p (F (), Fyt (¢! (u — av))) du

a1+bo—0(ay,bg)

1

Pa= I o otoron MK (), Fy (w))du

where ¢r(v) = Q(ap, v) and ¢c(v) = v — Q(ay, v).

1.

Example of Bounds on a Bivariate Risk Measure

VERSITA

Assume that Q(u, v) = uv and that h(u, v) = (max(u, v) — K)* and let us compute the upper and lower bounds for 7(C).
The support of the copula A5? can be simplified. We find that

FH:

Blv

Ma:={(u,v)eAlu=v:uza+by—arby,v=a +by—ab},

{luv) e H |[u=v:u<aghy,v<agbo}, Ig:={(u,v) € Glv=bou}, I'p:={(u,v) € Dlv =u+ ai(1 = bg)},
{luv)eQlv=7Lh Tr={(uv) € Flv= 3t} Te = {(u,v) € Elv =u+bi(1 —ao)}, and I'g := {(u,v) €

1—aq

u(1 = by) + bq}. The expression for 4 then writes as

7a =Ps +

agbg

0

ag

agby

/ h(F ! (u), Fy () du + [ hFy (u), Fy

agbg

aq

u
(g du

+ j h(Fx'(u), Fy N u + bi(1 = ap)))du + by / h (Fx'(u), Fy'(bou)) du

+(1 _b1)/h(F;1(u),Fy_1(U(1 — b1) + b1)) du +

J’_

agby

aqy+bo(1—aq)

aq

ao

h (Fx'(u), Fy ' (a1(bo — 1) + u)) du +
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ay+bo(1—aq)
1

ay+by(1—aq)

a1+by(1—ay)

_ _ u—a
(A (2

h (Fx'(u), Fy ' (u)) du.
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On computing the double integral over the region S, the expression can be rewritten strictly in terms of du and dv,
since Q is the independence copula.

aq by
Ps = / [ (max(uy + a,® " (u), 1y + 0,07 (v)) — K) " dudv.
bo

Appendix B: AUXILIARY CALCULATIONS TO PROVE THEOREM 4

Section A in Figure 1: v > ay and v > by.

(u—aq) + (v — by

folu,v) = a+ (u—ag)+ (v—>b1) >
= (u—a1)+(v—>b

> A%%(u,v)
fp(u,v) = B+ (u—aq) + (v — by) >

A9 (u, v)

)
)

where the first inequality in each expression follows from the Lipschitz property of Q(u,v). Thus ASC = A5 and
My = 0.
Section B in Figure 1: a9 < u < a;y and v > by.

folu,v) = a+ (u—ag) + (v — by)
fa(u,v) = B+ (v —bo) = 6; + (v — by) = ASC(u, V)

which implies that

Mg = max {max (A%C(u,v) — fu(u,v), 0) }

(u,v)eB

.
— max min u—fo(u,v), 6y + (u— ag) + (v — bo) — fo(u, v),

(uv)eB v—fo(u,v), 61 + (v — b1) — falu,v),
= max {(min(—a + a9 — v+ by, 00— a+ by — by, 6 — a — u + ap))"}

(u,v)eB

=min{—a + ag, 6 — a + by — by, 61 — a}

where in the third equality, v — f,(u, v) is discarded because (17) implies Q(a1, by) = 67 < min(aq, by) < by so that
v =2 v+ 6; — by = 61+ (v— by). Notice that the third equation is decreasing in terms of u and v, so the maximum value
can be obtained by the point (ag, b1); this yields the fourth equality.

Section C in Figure 1: u > ay and by < v < by.

folu,v) = a+ (u—ap) = 6 + (u—ar) = A5%(u,v)
fg(u,v) = B+ (u—aq) + (v — bo)

which implies that M¢ = max,,ec {(AS’Q(U, v) — fg(u, v))+}

Mc = max {(mm{ u— fg(u, v), 6 + (u = ao) + (v = bo) = fylu, V), })}

(uv)EC v—fg(u,v), 61+ (u—aq) —fg(u,v)
= max_{(min(—B + by — (u—a1), 60 — B+ a1 — ag, 6 — B — (v — bo)))"}

(u,v)eC

= an{—B+bo,90—B+a1 — agp, 64 —B}

where in the third equality, u — fg(u, v) is discarded because (17) shows that u > u + 6; — ay = 6; + (u — a1). Notice
that the third equation is decreasing in terms of u and v, so the maximum value can be obtained by (a1, bo).
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Similarly as in the Sections A, B and C considered above, we find the following results in the remaining sections D, E,
F, G and H from Figure 1.
Section S in Figure 1: ap < u < ay and by < v < by.

fo(u,v) = a+ (u—ag), fglu,v) =B+ (v—bo).

S is divided into two subareas S = 81| JS; where 81 = {fy(u,v) < fg(u, v)} and S; = {fu(u, v) = fg(u,v)}.
Subcase I: for (u,v) € &y, fo(u, v) < fg(u, v),

= max

(u,v)ES, {(ASO _f (U V)) }
— max { ( { u—folu,v),v—"rfo(u,v), 0y — fu(u,v), })+}
(u,v)ES, 90+(”_00)+(V—bo)—fa(u,v)

. —a+ag,v—a—(u—ag), 6 —a+v— by, B
= max min
(V€S 6 —a— (u—ao)

:mln(—a+ao,b1—0,90—0(+b1—b0,91—0()
=mi.l’](70{+00,90*(1+b1 *b0,91 *(X)

where the penultimate equality holds since the third equation is decreasing in terms of v and increasing in terms of v
and so the maximum value can be obtained by point the (ag, b1). For the last equality, by — «a is discarded because (17)
shows that by — a > by — a + 6y — by.

Subcase IlI: for (u,v) € Sy, fo(u,v) > fg(u,v), we can prove similarly as in S; that Ms, = min(bg — 8,60 — B + a1 —
ao, 61 — B) O
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