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Bounds on Capital Requirements For Bivariate Risk
with Given Marginals and Partial Information on the
Dependence

Abstract
Nelsen et al. [20] find bounds for bivariate distribution func-
tions when there are constraints on the values of its quar-
tiles. Tankov [25] generalizes this work by giving explicit ex-
pressions for the best upper and lower bounds for a bivari-
ate copula when its values on a compact subset of [0, 1]2
are known. He shows that they are quasi-copulas and not
necessarily copulas. Tankov [25] and Bernard et al. [3] both
give sufficient conditions for these bounds to be copulas. In
this note we give weaker sufficient conditions to ensure that
both bounds are simultaneously copulas. Furthermore, we
develop a novel application to quantitative risk management
by computing bounds on a bivariate risk measure. This can
be useful in optimal portfolio selection, in reinsurance, in pric-
ing bivariate derivatives or in determining capital requirements
when only partial information on dependence is available.
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The goal of this paper is to generalize the Fréchet-Hoeffding bounds when additional information on the dependenceis available. Earlier work on this topic dates back to Rachev and Rüschendorf [21] who derive bounds on copulas whenthere are inequality constraints. Nelsen et al. [19] find best possible bounds on the bivariate distribution function ofcontinuous variables with given marginals and given measure of association such as Kendall’s tau or Spearman’s rho.Nelsen [18] derives best possible bounds when the copula is known at a specific point. Our objective in this paper isto extend this literature to the case when the copula is known in more than one point and to show how these boundscan be useful in quantifying dependence misspecification. Assuming that marginals are given and that the dependenceis unspecified, or partly unspecified, bounds on copulas can be indeed used to quantify this type of model risk.To do so, we make use of the recent work of Tankov [25] who generalize Nelsen [18]’s result by giving explicit expressionsfor the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0, 1]2 are known (seealso Sadooghi-Alvandi et al. [23]). Tankov shows that they are quasi-copulas and not necessarily copulas. In this paper,we focus on deriving bounds on copulas that are also copulas. The first section focuses on finding simple conditionsto ensure that Tankov’s bounds are copulas. When the bounds are not copulas, it is possible to approximate them bya copula. The second section illustrates a method to find the best copula for the uniform norm that approximates the
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bounds. For example, these bounds can be used to find the worst dependence and the best dependence to maximize orminimize a risk measure, which respects concordance order. This is directly useful to quantify model risk as we illustratein the paper by finding bounds on capital requirements or on insurance premiums when the dependence is partiallyknown.We work on bounds for two-dimensional copulas. One reason is that bounds on two-dimensional copulas can easily betransfered on bounds on risk measures (as long as they are consistent with concordance order). In higher dimensions,it is not clear how this property can be extended. In particular the recent work of Embrechts, Puccetti and Rüschendorf[10] and Bernard, Jiang and Wang [4] show that the dependence structure of the minimum and maximum convex orderbounds are “marginal” dependent1 and thus cannot be obtained from bounds on copulas only. Although the problem ofmodel risk and dependence misspecification is also relevant in higher dimensions, alternative methods are needed and itis outside the scope of this paper. In addition, obtaining expressions for bounds on copulas in a multidimensional settingis challenging without any constraints on the dependence as there are almost no results on the lower Fréchet-Hoeffdingbound for multidimensional copulas with n > 3. Our focus in this paper is on two-dimensional copulas. Bounds oncopulas in two dimensions are extremely useful to solve portfolio selection problems, as it appears clearly in Bernardet al. [1, 2] where the key element is the dependence between a portfolio and a market index. When there are noconstraints, it is shown that optimal portfolios (respectively worst portfolios) are generally comonotonic with the marketportfolio (respectively anti-monotonic). However when investors have state-dependent preferences and look for optimalportfolios that verify additional constraints then the problem of solving the optimal portfolio amounts to solving an upperand lower bound on copulas with constraints. The optimal portfolio can be constructed if and only if the bound oncopulas is a copula (and not only a quasi copula) and corresponds thus to a feasible dependence structure.Recall that Q : [0, 1]2 → [0, 1] is a quasi-copula if it satisfies the following three properties. (1) For all u ∈[0, 1], Q(0, u) = Q(u, 0) = 0, and Q(1, u) = Q(u, 1) = u (boundary conditions). (2) Q is non-decreasing in eachargument. (3) For all u1, v1, u2, v2 ∈ [0, 1], |Q(u2, v2) − Q(u1, v1)| 6 |u2 − u1| + |v2 − v1| (Lipschitz property). If, inaddition, Q is 2−increasing2 then it is a copula. More details on quasi-copulas can be found for example in Genest etal. [12]. Let S denote a compact subset of the unit square [0, 1]2. Tankov [25] shows that AS,Q and BS,Q defined by
AS,Q(u, v ) = min{u, v, min(a,b)∈S{Q(a, b) + (u − a)+ + (v − b)+}} , (1)
BS,Q(u, v ) = max{0, u+ v − 1, max(a,b)∈S{Q(a, b)− (a − u)+ − (b − v )+}} ,

where (u, v ) ∈ [0, 1]2, are the best possible upper (resp. lower) bounds for the set of all quasi-copulas Q′ such that
Q′(a, b) = Q(a, b) for all (a, b) ∈ S (see Tankov [25], Theorem 1). When S is the empty set, BS,Q(u, v ) := max(0, u+v−1)and AS,Q(u, v ) := min(u, v ) are the Fréchet-Hoeffding bounds.Tankov [25] proves that a sufficient condition for AS,Q (resp. BS,Q) to be a copula is to suppose that S is non-increasing(resp. non-decreasing). Bernard et al. [3] extend this result and show that when Q is a copula, AS,Q (resp. BS,Q) is acopula when S is a compact set satisfying some additional conditions, precisely some “monotonicity” and “connectivity”conditions3. For instance, when S is a rectangle then both AS,Q and BS,Q are copulas.Our first contribution is to derive weaker and simpler conditions than Tankov [25] and Bernard, Jiang and Vanduffel [3]to ensure that AS,Q and BS,Q are both copulas. This is particularly important as it is then possible to construct explicitlythe dependence that maximizes, respectively minimizes a given bivariate risk measure. As discussed above, it allows for
1 When changing the marginal distribution, the worst possible dependence may be obtained for different copulas.2 Q is 2-increasing if VQ(R ) = Q(u2, v2)+Q(u1, v1)−Q(u1, v2)−Q(u2, v1) > 0 for every rectangle R = [u1, u2]× [v1, v2] ⊆[0, 1]2.3 The precise result is given as follows. Denote by S1 the set obtained by the first variable projection of the compact set S
and S2 as the second variable projection. Define the two following functions γ1 from S1 to S2 as γ1(u) = min {v|(u, v ) ∈ S}
and γ2 from S1 to S2 as γ2(u) = max {v|(u, v ) ∈ S} . For a copula Q and a compact set S ⊆ [0, 1]2 with both γ1 and
γ2 non-decreasing functions, and satisfying the following property ∀ (u, v0) , (u, v1) ∈ S, (u, v0+v12 )

∈ S, then BS,Q is a
copula. A similar result is available for AS,Q .
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instance to extend earlier works on optimal portfolio selection by Bernard, Boyle and Vanduffel [1] and Bernard andVanduffel [5].Our second contribution is to derive a novel application to quantitative risk management and financial engineering. Theidea builds on the observation that the dependence between two companies and two variables is often state-dependent.There is empirical evidence that regimes exist in the financial market and that the dependence structure depends on theregime. For example, Stoeber and Czado [24] find that regime switches are present in the dependence structure of variousdata sets and show that regime switching models can describe accurately inhomogeneity during times of crisis. Observealso that many sectors and companies appear to be independent unless systemic events happen (causing common shocksin the market). In practice, the dependence may not be known in all regimes. For example the dependence in the financialmarket can easily be observed in normal conditions but the lack of data makes it difficult to estimate it during extremeconditions. Our results can be applied to compute bounds on a bivariate risk measure when such partial information onthe dependence is known. This turns out to be useful in pricing reinsurance claims in a multivariate setting, in pricingbivariate derivatives or in determining capital requirements. We are also able to exhibit explicitly the “worst” (resp. the“best”) copula which makes the underlying risk the largest (resp. the smallest).Our last contribution is to study what happens when at least one of the two bounds is not a copula. We illustrate ourapproach when there are exactly two constraints on the copula. Nelsen [18] derives best possible bounds when thereis one constraint but the problem is more difficult when there is more than one constraint as either the lower bound orthe upper bound may not be a copula. We derive explicit expressions for the smallest copula above the lower boundand the largest copula below the upper bound for the infinite norm when there are exactly two constraints. This can beuseful to approximate the lower or upper bound when they are not sharp (that is when they could not be attained bycopulas). Although the work is done with two constraints a similar technique can be applied when there are more thantwo constraints on the copula.Section 1 gives a sufficient simple condition to ensure that both AS,Q and BS,Q are copulas. We propose an applicationto computing bounds on capital requirements and illustrate our findings with some numerical examples in Section 2.Section 3 focuses on the case when there are exactly two constraints on the copula and gives explicit expressions forthe smallest copula above the lower bound and the largest copula below the upper bound for the infinite norm.
1. Sufficient Conditions for Both Lower and Upper Bounds to be CopulasThis section is an extension of Theorem 1 of Tankov [25] and Sadooghi-Alvandi et al. [23]. To prove our results, we usethe following well-known lemma. Its proof is omitted as it is proved in Lemma 3.1 of Durante and Jarworski [8] or Lemma1 of Bernard, Jiang and Vanduffel [3].
Lemma 1.
Assume f : [0, 1]2 7→ R is 2-increasing, non-decreasing in each argument and satisfies the Lipschitz property. Define
the function g : [0, 1]2 7→ R as g(u, v ) = max{f (u, v ), W (u, v )}, where W (u, v ) = max{u+ v −1, 0} is the anti-monotonic
copula. Then g is also 2-increasing, non-decreasing in each argument and satisfies the Lipschitz property.

Theorem 2.
If S is a compact set satisfying the following property:

∀(a0, b0) ∈ S, ∀(a1, b1) ∈ S, (a0, b1) ∈ S, (a1, b0) ∈ S. (2)
Furthermore, suppose Q is a quasi-copula such that ∀(a0, b0), (a1, b1) ∈ S with a0 < a1, b0 < b1, we have

Q(a1, b1) +Q(a0, b0)−Q(a0, b1)−Q(a1, b0) > 0, (3)
then AS,Q and BS,Q are copulas. Note that condition (3) is automatically satisfied when Q is a copula.

Proof. The proof of Theorem 2 is inspired from Bernard, Jiang and Vanduffel [3]. It is sufficient to prove that BS,Qis a copula as the proof for AS,Q follows immediately. Since Tankov [25] already proved that BS,Q is a quasi-copula, all
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that remains is to establish that it is also 2-increasing. Define fS,Q as
fS,Q(u, v ) = max(a,b)∈S

{
Q(a, b)− (a − u)+ − (b − v )+} . (4)

Consider any rectangular area R = [u1, u2]× [v1, v2] ⊂ [0, 1]2. To establish the 2-increasing property of BS,Q , it first mustbe shown that fS,Q is 2-increasing, that is VfS,Q ([u1, u2]× [v1, v2]) > 0. By the compactness of S, there exist (u∗1, v∗2 ) ∈ Sand (u∗2, v∗1 ) ∈ S, such that {
fS,Q (u1, v2) = Q (u∗1, v∗2 )− (u∗1 − u1)+ − (v∗2 − v2)+ ,
fS,Q (u2, v1) = Q (u∗2, v∗1 )− (u∗2 − u2)+ − (v∗1 − v1)+ . (5)

For convenience, two cases are considered depending on whether {(u∗1, v∗2 ) , (u∗2, v∗1 )} forms a non-decreasing set or adecreasing set.Case 1: (u∗1, v∗2 ) and (u∗2, v∗1 ) form a non-decreasing set. From the definition (4) of fS,Q , it is clear that{
fS,Q (u1, v1) > Q (u∗2, v∗1 )− (u∗2 − u1)+ − (v∗1 − v1)+ ,
fS,Q (u2, v2) > Q (u∗1, v∗2 )− (u∗1 − u2)+ − (v∗2 − v2)+ . (6)

Using (5) and (6), the volume of the rectangle [u1, u2]× [v1, v2] can be bounded below as follows:
fS,Q (u2, v2)− fS,Q (u1, v2)− fS,Q (u2, v1) + fS,Q (u1, v1)
>
[
Q (u∗1, v∗2 )− (u∗1 − u2)+ − (v∗2 − v2)+]− [Q (u∗1, v∗2 )− (u∗1 − u1)+ − (v∗2 − v2)+]
−
[
Q (u∗2, v∗1 )− (u∗2 − u2)+ − (v∗1 − v1)+] + [Q (u∗2, v∗1 )− (u∗2 − u1)+ − (v∗1 − v1)+]= [(u∗1 − u1)+ − (u∗1 − u2)+]− [(u∗2 − u1)+ − (u∗2 − u2)+] . (7)

It is clear that if u∗1 > u∗2, then VfS,Q ([u1, u2] × [v1, v2]) > 0 using (7). On the other hand, consider when u∗1 < u∗2; theprocess is similar. Indeed, realize that the following inequalities also hold:{
fS,Q (u1, v1) > Q (u∗1, v∗2 )− (u∗1 − u1)+ − (v∗2 − v1)+ ,
fS,Q (u2, v2) > Q (u∗2, v∗1 )− (u∗2 − u2)+ − (v∗1 − v2)+ ,

and therefore using (5), it follows that,
fS,Q (u2, v2)− fS,Q (u1, v2)− fS,Q (u2, v1) + fS,Q (u1, v1)
>
[(v∗2 − v2)+ − (v∗2 − v1)+]− [(v∗1 − v2)+ − (v∗1 − v1)+] > 0,

which follows from the fact that v∗2 6 v∗1 , since (u∗1, v∗2 ) and (u∗2, v∗1 ) form a non-decreasing set, and we have assumed that
u∗1 < u∗2.Case 2: Assume that (u∗1, v∗2 ) and (u∗2, v∗1 ) form a decreasing set. It is also known that (u∗1, v∗1 ) ∈ S and (u∗2, v∗2 ) ∈ S.From the definition (4) of fS,Q , bound fS,Q (u1, v1) and fS,Q (u2, v2) from below:{

fS,Q (u1, v1) > Q (u∗1, v∗1 )− (u∗1 − u1)+ − (v∗1 − v1)+ ,
fS,Q (u2, v2) > Q (u∗2, v∗2 )− (u∗2 − u2)+ − (v∗2 − v2)+ .

Writing down the volume of fS,Q and using the aforementioned lower bounds on fS,Q (u1, v1) and fS,Q (u2, v2) it followsthat the volume of the rectangle [u1, u2]× [v1, v2] is non-negative.
fS,Q (u2, v2)− fS,Q (u1, v2)− fS,Q (u2, v1) + fS,Q (u1, v1)
>
[
Q (u∗2, v∗2 )− (u∗2 − u2)+ − (v∗2 − v2)+]− [Q (u∗1, v∗2 )− (u∗1 − u1)+ − (v∗2 − v2)+]
−
[
Q (u∗2, v∗1 )− (u∗2 − u2)+ − (v∗1 − v1)+] + [Q (u∗1, v∗1 )− (u∗1 − u1)+ − (v∗1 − v1)+]= Q (u∗2, v∗2 )−Q (u∗1, v∗2 )−Q (u∗2, v∗1 ) +Q (u∗1, v∗1 ) > 0,
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where the last inequality follows from the fact that Q is 2-increasing over S and {(u∗1, v∗2 ), (u∗2, v∗1 )} is a decreasing set.This completes the proof of Case 2.Combining Case 1 and Case 2, it follows that fS,Q is 2-increasing. Since fS,Q is Lipschitz, non-decreasing in eachargument, and 2-increasing, Lemma 1 implies that the quasi-copula BS,Q is 2-increasing in (u, v ) and therefore, bydefinition, a copula4.As in the proof of Theorem 1 from Tankov(2011), note that
AS,Q(u, v ) = u − BS,Q(u, 1− v ) = BS,Q(u, v ) (8)

where S is defined as S = {(a, b)|(a, 1− b) ∈ S} and Q(u, v ) = u − Q(u, 1− v ).It is clear that S satisfies condition (2) in Theorem 1 as S satisfies (2). In addition, Q is a quasi-copula which satisfiescondition (3), since for ∀(a0, b0), (a1, b1) ∈ S with a0 < a1, b0 < b1,
Q(a1, b1) +Q(a0, b0)−Q(a0, b1)−Q(a1, b0)= a1 −Q(a1, 1− b1) + a0 −Q(a0, 1− b0)− (a0 −Q(a0, 1− b1))− (a1 −Q(a1, 1− b0))= Q(a0, 1− b1) +Q(a1, 1− b0)−Q(a0, 1− b0)−Q(a1, 1− b1) > 0,

Using the proof that BS,Q is a copula, it follows directly that BS,Q is also a copula. Thus BS,Q is a copula and hence
AS,Q is a copula.
Theorem 2 gives alternative conditions than Tankov [25] and Bernard, Jiang and Vanduffel [3]. For example it can beapplied with the compact S which consists of 4 points: S = {(a0, b0), (a1, b0), (a0, b1), (a1, b1)} for some 0 6 a0 < a1 6 1and 0 6 b0 < b1 6 1. This compact set does not satisfy the monotonicity property needed in Tankov [25] and does notsatisfy the connectivity property of Bernard et al. [3]. However as soon as Q satisfies condition (3) (which is automaticallysatisfied when Q is a copula), both AS,Q and BS,Q are copulas. Note that it is also possible to construct a compact, e.g.
S1 := {y = 2x, x ∈ [ 14 13 ]}, that satisfies conditions in Bernard, Jiang and Vanduffel [3] for BS1,Q to be a copula but not(2) in Theorem 2. Note however that the condition for AS1,Q to be a copula is not satisfied as S1 is an increasing setand thus the two bounds are not simultaneously copulas.There are many other sets satisfying the assumptions of Theorem 2 including for example two vertical areas {x ∈[ 14 , 13 ], x ∈ [ 23 , 34 ], y ∈ [0, 1]} (or more vertical areas), similarly a set of horizontal areas or unions of horizontal andvertical areas satisfy (2).Note that when S is a rectangle that intersects the boundaries of [0, 1]2 then (3) is automatically satisfied in view ofSection 4 in Genest et al. [12].
2. Application to Quantitative Risk ManagementWe here describe potential applications of Theorem 2 in quantifying uncertainty on dependence (which is a type ofmodel risk when marginals can be well estimated but when the dependence may be misspecified). See Embrechts etal. [10] for a discussion of quantifying model risk by computing bounds on Value-at-Risk when marginals are given anddependence is totally unspecified. The goal of this section is to illustrate a methodology to assess model risk and toillustrate the potential use of bounds on copulas.Consider a bivariate risk (X, Y ). We assume that one has an accurate assessment of the marginal distributions of X and
Y but only partial information on the dependence. Here are some potential applications.For example, consider an insurance company with two lines of business: life insurance and non-life insurance. Let usdenote the respective aggregate losses of each business line as X and Y . We assume that the risk of the company canbe assessed as E [h(X, Y )] where h is some bivariate risk measure. For example h(X, Y ) = (max(X, Y ) − K )+ for some
K > 0, or h(X, Y ) := (X + Y −K )+. These risk measures are particularly relevant to a reinsurer. The first risk measure
4 Note that Theorem 7.1 of Durante et al. [9] can also be invoked here to conclude that BS,Q is a copula.

41



Carole Bernard, Yuntao Liu, Niall MacGillivray, Jinyuan Zhang

is indeed the pure premium (expected value) for a stop-loss policy written on the maximum loss of this company. Thesecond risk measure is the pure premium for a stop-loss on the aggregate risk of the company.In addition, we assume that the copula between X and Y is state-dependent, that is, it may change when marketconditions change. Specifically, we assume that both risks are observed for many years in “normal” conditions and thatvery few observations are available during market crashes and catastrophes (tail dependence is hard to observe). Wethus suppose that the dependence observed in the data is essentially well suited for X and Y each belonging to the90% confidence intervals X ∈ [a0, a1] and Y ∈ [b0, b1] and that the copula is unspecified outside of the 90% confidenceintervals as there is not enough data.Another example is to study a bivariate derivative linked to two stocks or two sectors. The respective losses of the twounderlying stocks (or sector indices) may look independent most of the time. However when the market is stressed,both companies (or sectors) can be hit by common shocks, so that the two companies become dependent. Such systemicelements are not observed in normal conditions. Pricing this bivariate derivative by ignoring this possible change ofdependence in extreme scenarios would potentially underestimate or overestimate its price.It may also be useful to specify the dependence in the tails only. For example, one may choose to not specify thedependence in the middle of the distribution and constrain it to being comonotonic or antimonotonic when one knowsthat the two companies will be hit the same way when the market is in extreme conditions (in extremely good and inextremely bad scenarios). This is also referred as systemic risk factors. The set of constraints on the dependence thenconsists of four rectangles corresponding to the four corners of the unit square. Our numerical example illustrates thesedifferent situations.
2.1. SettingWe propose to model the problem as follows. The first case that we consider is S = [a0, a1]× [b0, b1]. Assume that thedependence between the risks X and Y is known on S and modeled by a copula Q over the region S = [a0, a1]× [b0, b1](Figure 1, Case 1). Similarly we define S as the union of the four corners as can be seen from Case 2 in Figure 1.

∀x ∈ [a0, a1], ∀y ∈ [b0, b1], P(X 6 x, Y 6 y) = Q(FX (x), FY (y)). (9)
In practice, Q could be obtained from fitting from market data, where there is sufficient data available for a good fit ofa copula.

Case 1 Case 2
Fig 1. Partition of the unit square. In each case, the darker areas denote the compact where the copula is known and equal to Q as formulated

in (9).
We are now solving for the minimum and maximum copulas so that we could use these results to find bounds on pricesor capital requirements. Consider the bivariate risk measure E [h(X, Y )] where h(X, Y ) = (max(X, Y )−K )+ and assumethe marginals of X and Y are known. For instance we assume that both risks X and Y are lognormally distributed so
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that FX (x) = Φ{ ln(x)−µx
σx } and FY (y) = Φ{ ln(y)−µy

σy }.
P(X 6 x, Y 6 y) = C (FX (x), FY (y)) = Q

(Φ{ln(x)− µx
σx

}
,Φ{ln(y)− µy

σy

})
for all (x, y) ∈ S and where C is the copula for (X, Y ) and C = Q on S. To illustrate the study we consider Q(u, v ) = uv(independent risk), Q(u, v ) = min(u, v ) (comonotonic risks) and Q(u, v ) = max(u+ v − 1, 0) (anti monotonic risks) in theexample but our analysis holds for more general choice of Q.
2.2. Theoretical DevelopmentsLet us define π(C ) = E[h(X, Y )] where C is the copula for (X, Y ) and observe that

π(C ) = ∫ ∞0
∫ ∞

0 h(x, y)dC (FX (x), FY (y)). (10)
Tchen [26] showed that for every 2-increasing function h such that (10) exists, the mapping C 7→ π(C ) is non-decreasingwith respect to the concordance order of copulas (for example for h(X, Y ) = (X + Y − K )+). Similar properties can beproved for 2-decreasing functions. For example, since h(X, Y ) = (max(X, Y )− K )+ is 2-decreasing, and AS,Q , BS,Q and
C are quasi-copulas such that for all (u, v ) ∈ [0, 1]2, BS,Q(u, v ) 6 C (u, v ) 6 AS,Q(u, v ), we have

πA := π(AS,Q) 6 π(C ) 6 πB := π(BS,Q).
As S is a compact set and Q is a copula, it satisfies all of the properties from Theorem 2, then AS,Q(u, v ) and BS,Q(u, v )are copulas. Since both AS,Q and BS,Q are copulas, the bounds πB and πA are attained and correspond to a possibledependence between X and Y .For the purposes of this example, it is more convenient to express (10) as follows:

π(C ) = ∫ 1
0
∫ 1

0 h(F−1
X (u), F−1

Y (v ))dC (u, v ). (11)
Similarly as in Nelsen [18], page 38, the double-integral πA (resp. πB) can be rewritten as integrals over the support of
AS,Q (resp. BS,Q). Let us give some explanations to compute πA. It is clear that AS,Q is equal to Q on S but is singulareverywhere else.In what follows, we assume Q(u, v ) = uv and S = [a0, a1] × [b0, b1]. The support of AS,Q is displayed in the firstcolumn of Figure 2. To obtain Figure 2, we simulate 10,000 couples (U,V ) from the copula AS,Q when Q(u, v ) = uvand S = [a0, a1] × [b0, b1]. The simulation procedure follows from a general method explained for instance in Maiand Sherer [16]. In our special case, we first compute AS,Q(u, v ) using (1) for all (u, v ) ∈ [0, 1]2, and then calculate
Au := v 7→ ∂

∂u (AS,Q(u, v )). Recall that it is a conditional cdf (P(V 6 v|U = u)), and we then compute its pseudo inverse
A−1
u similarly defined as the inverse of a cdf. We obtain

A−1
u (w) =



u if 0 6 u 6 a0b0
u
a0 if a0b0 < u 6 a0b1

u+ b1 − a0b1 if a0b1 < u 6 a0
k(u,w) if a0 < u 6 a1

u − a1 + a1b0 if a1 < u 6 a1 + b0 − a1b0
u−a11−a1 if a1 + b0 − a1b0 < u 6 a1 + b1 − a1b1
u if a1 + b1 − a1b1 < u 6 1

where k(u,w) := b0u1w<b0 + w1b0<w<b1 + (b1 + (1− b1)u)1w>b1 . The algorithm to simulate (U,V ) consists of the twofollowing steps. First we simulate two independent variables (U,W ) from the uniform distribution U(0, 1). Second, wecompute V = A−1
U (W ). We then repeat these two steps 10, 000 times and display the couples (U,V ) in Figure 2.
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Fig 2. Case 1 for S in Figure 1. Supports of AS,Q (top graphs) and BS,Q (bottom graphs) when Q(u, v ) = uv , Q(u, v ) = min(u, v ) or Q(u, v ) =max(u+ v − 1) and the copula is constrained on a rectangle a0 = 0.3, b0 = 0.3, a1 = 0.7, b1 = 0.7.

Let ΓJ denote the support of AS,Q over a particular subset J ⊂ [0, 1]2. Over region H = {u 6 a0, v 6 b0} (see Figure 1,Case 1 for a graphical illustration), the support of AS,Q is given by
ΓH := {(u, v ) ∈ H |u = v : u 6 Q(a0, b0), v 6 Q(a0, b0)}

Similarly on region A = {u > a1, v > b1},
ΓA := {(u, v ) ∈ A |u = v : u > a1 + b1 −Q(a1, b1), v > a1 + b1 −Q(a1, b1)}

A similar analysis over each region yields the following supports: ΓG := {(u, v ) ∈ G | v = Q(u, b0)}; ΓD := {(u, v ) ∈
D | v = u − a1 + Q(a1, b0)}; ΓC := {(u, v ) ∈ C | v − Q(a1, v ) = u − a1}; ΓF := {(u, v ) ∈ F | Q(a0, v ) = u}; ΓE :=
{(u, v ) ∈ E | v = u+ b1 −Q(a0, b1)}; and ΓB := {(u, v ) ∈ B | v = u − Q(u, b1) + b1}.Denote by Γ = ⋃i∈I Γi where I = {A, B, C,D, E, F,G,H} and simplify the double integral πA by splitting the compu-tation into nine parts. The only region we have ignored so far is S, where the support of AS,Q is equal to the supportof the non-degenerate quasi-copula Q restricted to S as AS,Q = Q. For example when Q(u, v ) = uv then ΓS = S. Thedouble integral πA can be reduced to single integrals over A,B, C,D, E, F,G,H and a double integral over S. Thecalculations are straightforward (see Appendix A for more details). Similar calculations can be done with other choicesof Q(u, v ) and to obtain πB .
2.3. Numerical AnalysisAssume µx = µy = µ = 2, a1 = b1, a0 = b0, that σx = σy = σ = 1 and that K = 5. We assume that qα and
q1−α correspond respectively to the quantile at the level α and 1 − α where α takes different values. Note that
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Fig 3. Case 2 for S in Figure 1. Supports of AS,Q (top graphs) and BS,Q (bottom graphs) when Q(u, v ) = uv , Q(u, v ) = min(u, v ) or Q(u, v ) =max(u+ v − 1) and the copula is constrained in the 4 corners of the unit square where a0 = 0.3, b0 = 0.3, a1 = 0.7, b1 = 0.7.

Table 1. Numerical example a0 = b0 = α and a1 = b1 = 1− α. We compute πA and πB which are the respective upper and lower bounds of
E [h(X, Y )] when C (u, v ) = uv , C (u, v ) = min(u, v ) and C (u, v ) = max(0, u + v − 1) for the extreme cases α = 0 and α = 1/2. All numbers
are obtained with a standard deviation smaller than 0.01.

Q(u, v ) uv min(u, v ) max(0, u+ v − 1)Case 1 Case 2 Case 1 Case 2 Case 1 Case 2
α = 0 πB = 13.7

πA = 13.7 πB = 15.5
πA = 7.9 πB = 7.9

πA = 7.9 πB = 15.5
πA = 7.9 πB = 15.5

πA = 15.5 πB = 15.5
πA = 7.9

α = 12 πB = 14.9
πA = 9.10 πB = 13.7

πA = 13.7 πB = 13.1
πA = 7.9 πB = 7.9

πA = 7.9 πB = 15.5
πA = 15.49 πB = 15.5

πA = 15.5

a0 = FX (qα ) = α and a1 = FX (q1−α ) = 1−α . Similarly b0 = α and b1 = 1−α . Figure 4 and Table 1 show the impacton the quantity π(C ) of the model risk on the copula.Note that in Case 1, when α = 0 and in Case 2, when α = 1/2 the copula is fully fixed and πA = πB . In Case 1, when α =1/2, the copula is fixed at one point and we find back the results of Nelsen [18], page 71, section 3.2, Figure 3.10 on boundson copulas when there is a constraint at one point. When α = 1/2 and Q(u, v ) = max(0, u+v −1), then the constraint onthe copula becomes C (1/2, 1/2) = 0. Obviously B(u, v ) = max(0, u+v−1) and A(u, v ) = min(u, v, (u−1/2)++(v−1/2)+).This implies that A(u, v ) = B(u, v ) for all (u, v ) ∈ {[0, 1/2] × [0, 1/2]} ∪ {[1/2, 1] × [1/2, 1]}. The constraint at 1 pointis already quite constrictive, and it turns out that there is almostno difference between πA and πB for a constraint of 1point only and thus for all α ∈ [0, 1/2]. Finally for Case 2, when α = 0, the problem seems to be constrained in the 4corners, but the constraints are automatically satisfied and thus we find back the Fréchet bounds.The limit cases obtained in Table 1 appear now clearly on the graph 4 obtained by Monte Carlo simulations representing
πA and πB in Case 1 and Case 2 for the 3 types of constraints considered above.
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Fig 4. πA and πB with respect to α when the information on the copula is only known over the square [α, 1 − α ]2. On each graph, we show the

upper bound and the lower bound for the comonotonic, antimonotonic and independence copula.

3. Compact set S with 2 pointsIn this last section we assume that there are exactly two constraints on the copula. Nelsen [18] derives best possiblebounds when there is one constraint but the problem is more difficult when there is more than one constraint as eitherthe lower bound or the upper bound may not be a copula. Thus the bounds are not sharp. The purpose of this section isto illustrate how to construct the best bounds in the sense of the infinite norm in the case when there are two constraints.Sadooghi-Alvandi et al. [23] also solve this problem but assume that the two constraints are either non-decreasing ornon-increasing and thus are special cases of Tankov [25] main result.5 Hereafter, we derive explicit expressions for thesmallest copula above the lower bound and the largest copula below the upper bound for the infinite norm. To do so, westart with a lemma. Note that although the derivations are done with two constraints, similar derivations can be donewith a given number of constraints but this will lead to tedious calculations.
Lemma 3.
The infimum of functions with the 1-Lipschitz property also is 1-Lipschitz property.

We omit the proof of this lemma as it follows from the general fact that the aggregation of Lipschitz functions preservesthe Lipschitz property of kernel aggregation functions (in particular max and min) are used, see for instance Grabish etal. [13] and Kolesárová et al. [15].
Theorem 4.
Let S = {(a0, b0), (a1, b1)} be an increasing set (a0 < a1, b0 < b1) and Q be a quasi-copula, such that Q(a0, b0) =
5 Precisely, Tankov [25] proves that if S is increasing, then BS,Q is a copula and if S is decreasing, then AS,Q is a copula.
Thus, in Theorem 2.1 of Sadooghi-Alvandi et al. [23], S is increasing, Cn is obviously not empty. Similarly, when S is
decreasing which is indicated in Theorem 2.4 of Sadooghi-Alvandi et al. [23], Cn is also not empty. Theorem 2.2 and 2.3
of Sadooghi-Alvandi et al. [23] assume that S is increasing or decreasing thus the same conclusion as in Tankov [25] is
obtained. Although it seems at first that the result of Sadooghi-Alvandi et al. [23] is a special case of Tankov [25], the
proofs are different.
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θ0, Q(a1, b1) = θ1. Let
C = { C copula | C (a0, b0) = θ0, C (a1, b1) = θ1} (12)(i) ∃ C ∗ ∈ C such that

||AS,Q − C ∗||∞ = inf
C∈C
||AS,Q − C||∞ (13)

(ii) C ∗ satisfies C ∗(a0, b1) = α∗ and C ∗(a1, b0) = β∗, where α∗ solves the following equality

min(a0 − α, θ0 − α + b1 − b0, θ1 − α) = min(b0 + α − γ, θ0 + α − γ + a1 − a0, θ1 + α − γ),
where γ = min {θ0 + θ1,min(a0, b1) + min(a1, b0)} and β∗ = γ − α∗.

Proof. Tankov [25] shows that if {(a0, b0), (a1, b1)} is an increasing set then BS,Q is a copula; hence, C definedby (12) is non-empty. To establish the existence of C ∗, we establish that C is closed and that g : C → R, where
g(C ) = ||AS,Q − C||∞ is continuous.To prove that C is closed, consider a sequence {Dn} in C converging uniformly to D∗. Since each Dn is a copula, anduniform convergence preserves the properties of copulas, D∗ is a copula. Moreover, for constant θ0 and θ1 such that
Dn(a0, b0) = θ0 and Dn(a1, b1) = θ1,

lim
n→∞

Dn(a0, b0) = D∗(a0, b0) = θ0 and lim
n→∞

Dn(a1, b1) = D∗(a1, b1) = θ1.
Therefore, D∗ ∈ C and hence C is closed. To prove the continuity of g, consider C1 ∈ C and C2 ∈ C

|g(C1)− g(C2)| = ∣∣||AS,Q − C1||∞ − ||AS,Q − C2||∞∣∣ 6 ||C1 − C2||∞,
where the inequality follows from the triangle inequality. Thus g is 1-Lipschitz and therefore continuous.As C is closed and g(C ) = ||AS,Q − C||∞ is continuous, the infimum in (13) is a minimum. Let us denote this minimumby C ∗. Define α∗ := C ∗(a0, b1), β∗ := C ∗(a1, b0) and S̃ by

S̃ = {(a0, b0), (a0, b1), (a1, b0), (a1, b1)} .
Since C ∗ is a copula, and S̃ satisfies condition (2). Using the result of Theorem 2, AS̃,C∗ is a copula Q̃ such that
Q̃(a0, b0) = θ0, Q̃(a0, b1) = α∗, Q̃(a1, b0) = β∗, and Q̃(a1, b1) = θ1. We have that C ∗ 6 AS̃,C∗ by definition of AS̃,C∗ asan upper bound on a set of copulas with constraints on S̃. We also have AS̃,C∗ 6 AS,C∗ = AS,Q because C ∗ = Q on Sand S ⊂ S̃. Moreover ||AS,Q − C ∗||∞ 6 ||AS,Q − AS̃,C∗ ||∞ because of the optimality of C ∗ in (13). Thus C ∗ = AS̃,C∗ .Let us now solve for α∗ and β∗. To do so, we can simplify the initial problem by the following parametric optimizationover all α and β such that C ∗ is a copula

||AS,Q − AS̃,C∗ ||∞ = inf
α,β
||AS,Q − AS̃,Q̃ ||∞ (14)

where Q̃ is defined previously with Q̃(a0, b1) = α , Q̃(a1, b0) = β, Q̃(a0, b0) = θ0 and Q̃(a1, b1) = θ1.Notice that AS̃,Q̃(u, v ) = min(fα (u, v ), fβ (u, v ), AS,Q(u, v )), where fα (u, v ) = α + (u − a0)+ + (v − b1)+ and fβ (u, v ) =
β + (u − a1)+ + (v − b0)+. For convenience, the optimality can be written as follows:

min
α,β
||AS,Q − AS̃,Q̃ ||∞ = min

α,β

{ max(u,v )∈[0,1]2
{
AS,Q(u, v )− min (fα (u, v ), fβ (u, v ), AS,Q(u, v ))}} (15)

For later reference, recall some key properties of copulas:
θ0 6 α, β 6 θ1, α + β 6 θ0 + θ1, (16)max(u+ v − 1, 0) 6 Q(u, v ) 6 min(u, v ), (17)
Q(u2, v2)−Q(u1, v1) 6 (u2 − u1) + (v2 − v1). (18)
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For the purpose of this proof, it is more convenient to consider nine different cases, by dividing the domain [0, 1]× [0, 1]into nine areas as in Figure 1.
||AS,Q − AS̃,Q̃ ||∞ = max(u,v )∈[0,1]2

∣∣∣AS,Q(u, v )− AS̃,Q̃(u, v )∣∣∣ = max {MA,MB,MC ,MD ,ME ,MF ,MG ,MH ,MS}

where MI = max(u,v )∈I ∣∣∣AS,Q(u, v )− AS̃,Q̃(u, v )∣∣∣ . To solve for α∗ and β∗, we need to solve (15). To do so, we consider abreakdown to compute MI . Calculations are not difficult although a bit tedious. Details are given in Appendix B.
MA = 0, MH = 0
MB = min{a0 − α, θ0 − α + b1 − b0, θ1 − α},
MC = min{b0 − β, θ0 − β + a1 − a0, θ1 − β},
MD = min {b0 − β, θ0 − β + a1 − a0, θ1 − β} ,
ME = min{a0 − α, θ0 − α + b1 − b0, θ1 − α},
MF = min{a0 − α, θ0 − α + b1 − b0, θ1 − α},
MG = min{b0 − β, θ0 + (a1 − a0)− β, θ1 − β}.

Nothing can be concluded immediately in Section S in Figure 1 (a0 6 u 6 a1 and b0 6 v 6 b1) since it cannot bedistinguished which is larger: fα (u, v ) = α + (u − a0) or fβ (u, v ) = β + (v − b0). However, consider two separate caseswhere a line α + (u − a0) = β + (v − b0) divides area S into two subareas:
S = S1⋃S2

where S1 = {fα (u, v ) 6 fβ (u, v )} and S2 = {fα (u, v ) > fβ (u, v )}.
MS1 = min(−α + a0, θ0 − α + b1 − b0, θ1 − α)
MS2 = min(b0 − β, θ0 − β + a1 − a0, θ1 − β)

Define η(α) and φ(β) as follows
η(α) = max(MB,ME ,MF ,MS2 ) = min(−α + a0, θ0 − α + b1 − b0, θ1 − α),
φ(β) = max(MC ,MD ,MG ,MS1 ) = min(b0 − β, θ0 − β + a1 − a0, θ1 − β).

Notice that (15) is decreasing in terms of α and β. In order to minimize the function, the constraints in (16) need toshow that α + β = θ0 + θ1. However, it cannot be neglected that α + β 6 min(a0, b1) + min(a1, b0). So
α + β = min {θ0 + θ1,min(a0, b1) + min(a1, b0)}

Let γ = min {θ0 + θ1,min(a0, b1) + min(a1, b0)}, which is known from the assumptions of the theorem; then β can berewritten as γ − α and φ(β) as
φ(α) = min(b0 + α − γ, θ0 + α − γ + a1 − a0, θ1 + α − γ)

It remains to minimize over α and β
max(u,v )∈S

{max (AS,Q − min(fα (u, v ), fβ (u, v )), 0)} = max(η(α), φ(α))
over [0, 1]× [0, 1] to find a value for α∗. It can be seen that η(α) is decreasing in terms of α , while φ(α) is increasing interms of α . Moreover, if α∗ is constrained to minα {max(η(α), φ(α))}, α∗ is obtained by setting η(α) = φ(α). Otherwise,the optimality would be violated since there would exist some α such that α > α∗ (α < α∗) where max(η(α), φ(α)) =
φ(α) > φ(α∗) (max(η(α), φ(α)) = η(α) > η(α∗)).Therefore, α∗ is the solution to the function η(α) = φ(α) and β∗ = γ − α∗. To conclude, AS̃,Q̃ is a copula in the set Cand C ∗ = AS̃,Q̃ for the parameters α∗ and β∗.
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Example 5.Let S = {(1/3, 1/3), (5/6, 5/6)} and suppose Q is the independence copula (i.e. Q(u, v ) = uv ) then Q(1/3, 1/3) = 1/9and Q(5/6, 5/6) = 25/36. Define S̃ = {(1/3, 1/3), (5/6, 5/6), (1/3, 5/6), (5/6, 1/3)}. From Theorem 2, α∗ is obtained bysolving η(α) = φ(α) that is min(−α + 1/3, 1/9 − α + 1/2, 25/36 − α) = min(1/3 − β, 1/9 − β + 1/2, 5/6 − β). We thenobtain 1/3− α = 1/3− β, equivalently α = β. Recall that
β = min {17/18,min(1/3, 5/6) + min(5/6, 1/3)} − α = 2/3− α.

Finally we obtain that
α∗ = β∗ = 1/3.

Similar analysis can be done for the lower bound for a decreasing set.
This approach can be useful to approximate the lower or upper bound when they are not sharp (that is when they couldnot be attained by copulas). Although the work is done with two constraints a similar technique can be applied whenthere are more than two constraints on the copula. In this case, the derivations become very tedious and a numericalsearch may be more efficient.Theorem 4 has direct applications in optimal portfolio selection. To be able to implement the optimal strategy, one needsa bound that is attainable by a copula (and not only a quasi copula). This was already used in Bernard, Boyle andVanduffel [1], Bernard and Vanduffel [5] and in Bernard, Chen and Vandufel [2]. Let us give an example of application ofTheorem 4 which extends the probability constraint considered in Boyle and Tian [6].
Example 6.In Example 3 of Bernard, Boyle and Vanduffel [1], they consider a Black Scholes market and assume that an investorwants to achieve the same distribution F as an investment in the risky asset ST but is subject to additional constraints6.

P(ST < 95, YT > 100) = 0.2 and P(ST < 80, YT > 100) = 0.05. (19)
It turns out that the optimal portfolio is obtained when the copula between ST and YT is maximum. In their paper,they are able to solve explicitly for the optimum as the constraints on the copula amount to constraint in a compact setconsisting of two points S := {(a0, b0) := (FST (95), FYT (100)), (a1, b1) := (FST (80), FYT (100))}. This compact satisfiesfor example the conditions of Theorem 2 and thus the maximum bound on the set of constrained copulas on S is acopula and thus can lead to an explicit optimal strategy. In the case when the constraints (19) are on an increasingset, a0 < a1, b0 < b1 the exact optimal strategy cannot be constructed and Theorem 4 allows to construct the bestapproximate strategy.
AcknowledgementsC. Bernard acknowledges support from NSERC, from the Alexander von Humboldt Research Foundation and from theSociety of Actuaries Centers of Actuarial Excellence Research Grant. Y. Liu and N. MacGillivray both acknowledge theresearch award associated with the President’s Scholarship of Distinction from the University of Waterloo. J. Zhangwas an exchange student from the Chinese University of Hong Kong at the time the research was conducted. We thankSteven Vanduffel for suggestions on an earlier draft as well as the editor Giovanni Puccetti and two anonymous referees.
6 We note that the feasibility of a particular constraint depends on the marginal distributions of ST and YT . This has
been verified in our setting.
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Appendix A: CALCULATIONS NEEDED FOR SIMPLIFYING πAFor i ∈ I , the support of the copula on Γi can be described by a set of points (u, vi(u)) where vi is going to be specifiedbelow. Aggregating the analysis together,
πA = PS +∑

i∈I

Pi,

where PS := ∫ a1
a0
∫ b1
b0 h(F−1

X (u), F−1
Y (v ))dQ(u, v ), and Pi := ∫Γi h(u, vi(u))du. Precisely,

PH = ∫ Q(a0,b0)0 h(F−1
X (u), F−1

Y (u))du
PF = ∫ Q(a0 ,b1)

Q(a0,b0) h (F−1
X (u), F−1

Y
(
φ−1
F (u)))du

PE = ∫ a0
Q(a0,b1) h(F−1

X (u), F−1
Y (u+ b1 −Q(a0, b1)))du

PG = b0 ∫ a1
a0 h(F−1

X (u), F−1
Y (Q(u, b0)))du

PB = (1− b1) ∫ a1
a0 h(F−1

X (u), F−1
Y (u − Q(u, b1) + b1))du

PD = ∫ a1+b0−Q(a1 ,b0)
a1 h(F−1

X (u), F−1
Y (Q(a1, b0) + u − a1))du

PC = ∫ a1+b1−Q(a1 ,b1)
a1+b0−Q(a1,b0) h (F−1

X (u), F−1
Y
(
φ−1
C (u − a1)))du

PA = ∫ 1
a1+b1−Q(a1,b1) h(F−1

X (u), F−1
Y (u))du

where φF (v ) = Q(a0, v ) and φC (v ) = v − Q(a1, v ).
1. Example of Bounds on a Bivariate Risk MeasureAssume that Q(u, v ) = uv and that h(u, v ) = (max(u, v )−K )+ and let us compute the upper and lower bounds for π(C ).The support of the copula AS,Q can be simplified. We find that

ΓA := {(u, v ) ∈ A |u = v : u > a1 + b1 − a1b1, v > a1 + b1 − a1b1 } ,
ΓH := {(u, v ) ∈ H |u = v : u 6 a0b0, v 6 a0b0 }, ΓG := {(u, v ) ∈ G|v = b0u}, ΓD := {(u, v ) ∈ D|v = u + a1(1 − b0)},ΓQ := {(u, v ) ∈ Q|v = u−a11−a1 }, ΓF := {(u, v ) ∈ F|v = u

a0 }, ΓE := {(u, v ) ∈ E|v = u + b1(1 − a0)}, and ΓB := {(u, v ) ∈
B|v = u(1− b1) + b1}. The expression for πA then writes as

πA =PS + a0b0∫
0
h(F−1

X (u), F−1
Y (u))du+ a0b1∫

a0b0
h(F−1

X (u), F−1
Y ( ua0 ))du

+ a0∫
a0b1

h(F−1
X (u), F−1

Y (u+ b1(1− a0)))du+ b0
a1∫

a0
h
(
F−1
X (u), F−1

Y (b0u))du
+ (1− b1) a1∫

a0
h
(
F−1
X (u), F−1

Y (u(1− b1) + b1))du+ a1+b1(1−a1)∫
a1+b0(1−a1)

h
(
F−1
X (u), F−1

Y

(
u − a11− a1

))
du

+ a1+b0(1−a1)∫
a1

h
(
F−1
X (u), F−1

Y (a1(b0 − 1) + u))du+ 1∫
a1+b1(1−a1)

h
(
F−1
X (u), F−1

Y (u))du.
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On computing the double integral over the region S, the expression can be rewritten strictly in terms of du and dv ,since Q is the independence copula.
PS = ∫ a1

a0
∫ b1
b0
(max(µx + σxΦ−1(u), µy + σyΦ−1(v ))− K)+ dudv.

Appendix B: AUXILIARY CALCULATIONS TO PROVE THEOREM 4
Section A in Figure 1: u > a1 and v > b1.

fα (u, v ) = α + (u − a0) + (v − b1) > θ1 + (u − a1) + (v − b1) > AS,Q(u, v )
fβ (u, v ) = β + (u − a1) + (v − b0) > θ1 + (u − a1) + (v − b1) > AS,Q(u, v )

where the first inequality in each expression follows from the Lipschitz property of Q(u, v ). Thus AS,Q = AS̃,Q̃ and
MA = 0.
Section B in Figure 1: a0 6 u 6 a1 and v > b1.

fα (u, v ) = α + (u − a0) + (v − b1)
fβ (u, v ) = β + (v − b0) > θ1 + (v − b1) > AS,Q(u, v )

which implies that
MB = max(u,v )∈B

{max (AS,Q(u, v )− fα (u, v ), 0) }
= max(u,v )∈B

{(min{ u − fα (u, v ), θ0 + (u − a0) + (v − b0)− fα (u, v ),
v − fα (u, v ), θ1 + (v − b1)− fα (u, v ),

})+}
= max(u,v )∈B

{(min(−α + a0 − v + b1, θ0 − α + b1 − b0, θ1 − α − u+ a0))+}
= min{−α + a0, θ0 − α + b1 − b0, θ1 − α}

where in the third equality, v − fα (u, v ) is discarded because (17) implies Q(a1, b1) = θ1 6 min(a1, b1) 6 b1 so that
v > v + θ1−b1 = θ1 + (v −b1). Notice that the third equation is decreasing in terms of u and v , so the maximum valuecan be obtained by the point (a0, b1); this yields the fourth equality.
Section C in Figure 1: u > a1 and b0 6 v 6 b1.

fα (u, v ) = α + (u − a0) > θ1 + (u − a1) > AS,Q(u, v )
fβ (u, v ) = β + (u − a1) + (v − b0)

which implies that MC = max(u,v )∈C {(AS,Q(u, v )− fβ (u, v ))+}

MC = max(u,v )∈C
{(min{ u − fβ (u, v ), θ0 + (u − a0) + (v − b0)− fβ (u, v ),

v − fβ (u, v ), θ1 + (u − a1)− fβ (u, v )
})+}

= max(u,v )∈C
{(min(−β + b0 − (u − a1), θ0 − β + a1 − a0, θ1 − β − (v − b0)))+}

= min{−β + b0, θ0 − β + a1 − a0, θ1 − β}
where in the third equality, u − fβ (u, v ) is discarded because (17) shows that u > u+ θ1 − a1 = θ1 + (u − a1). Noticethat the third equation is decreasing in terms of u and v , so the maximum value can be obtained by (a1, b0).
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Similarly as in the Sections A, B and C considered above, we find the following results in the remaining sections D, E,F, G and H from Figure 1.
Section S in Figure 1: a0 6 u 6 a1 and b0 6 v 6 b1.

fα (u, v ) = α + (u − a0), fβ (u, v ) = β + (v − b0).
S is divided into two subareas S = S1⋃S2 where S1 = {fα (u, v ) 6 fβ (u, v )} and S2 = {fα (u, v ) > fβ (u, v )}.
Subcase I: for (u, v ) ∈ S1, fα (u, v ) 6 fβ (u, v ),

MS1 = max(u,v )∈S1
{(
AS,Q − fα (u, v ))+}

= max(u,v )∈S1
{(min{ u − fα (u, v ), v − fα (u, v ), θ1 − fα (u, v ),

θ0 + (u − a0) + (v − b0)− fα (u, v )
})+}

= max(u,v )∈S1
{(min{ −α + a0, v − α − (u − a0), θ0 − α + v − b0,

θ1 − α − (u − a0)
})+}

= min(−α + a0, b1 − α, θ0 − α + b1 − b0, θ1 − α)= min(−α + a0, θ0 − α + b1 − b0, θ1 − α)
where the penultimate equality holds since the third equation is decreasing in terms of u and increasing in terms of vand so the maximum value can be obtained by point the (a0, b1). For the last equality, b1−α is discarded because (17)shows that b1 − α > b1 − α + θ0 − b0.
Subcase II: for (u, v ) ∈ S2, fα (u, v ) > fβ (u, v ), we can prove similarly as in S1 that MS2 = min(b0 − β, θ0 − β + a1 −
a0, θ1 − β) �
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