

S.S. Shukla, Akhilesh Yadav*

RADICAL TRANSVERSAL LIGHTLIKE SUBMANIFOLDS
OF INDEFINITE PARA-SASAKIAN MANIFOLDS

Abstract. In this paper, we study radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds giving some non-trivial examples of these submanifolds. Integrability conditions of distributions D and $\text{Rad}TM$ on radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds, have been obtained. We also study totally contact umbilical radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds.

1. Introduction

The theory of lightlike submanifolds of a semi-Riemannian manifold was introduced by Duggal and Bejancu [2]. A submanifold M of a semi-Riemannian manifold \bar{M} is said to be lightlike submanifold if the induced metric g on M is degenerate, i.e. there exists a non-zero $X \in \Gamma(TM)$ such that $g(X, Y) = 0, \forall Y \in \Gamma(TM)$. In 2003, Duggal and Jin [3] studied the geometry of totally umbilical lightlike submanifolds of a semi-Riemannian manifold. The notion of totally contact umbilical lightlike submanifolds of a semi-Riemannian manifold was considered by several geometers ([7], [8], [15]).

In 2006, Duggal and Sahin [5] studied invariant lightlike submanifolds of an indefinite Sasakian manifold. In 2009, Sahin [10] studied screen slant lightlike submanifolds. In 2010, Yildirim and Sahin [15] defined and studied radical transversal lightlike submanifolds of an indefinite Sasakian manifold. In [12], authors introduced the concept of an ϵ -para-Sasakian structure with some examples. The value of ϵ is not definite, it is either 1 or -1, according as the structure vector field V on \bar{M} is spacelike or timelike.

2010 *Mathematics Subject Classification*: 53C15, 53C40, 53C50.

Key words and phrases: semi-Riemannian manifold, degenerate metric, radical distribution, screen distribution, screen transversal vector bundle, lightlike transversal vector bundle, Gauss and Weingarten formulae.

*Corresponding author.

In this paper, we study radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold. The paper is arranged as follows. There are some basic results in section 2. In section 3, we study radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold, giving some examples. Section 4 is devoted to the study of totally contact umbilical radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold. In section 5, we study screen slant radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold and obtain integrability conditions of distributions D and $\text{Rad}TM$.

2. Preliminaries

A submanifold (M^m, g) immersed in a semi-Riemannian manifold (\bar{M}^{m+n}, \bar{g}) is called a lightlike submanifold [2] if the metric g induced from \bar{g} is degenerate and the radical distribution $\text{Rad}TM$ is of rank r , where $1 \leq r \leq m$. Let $S(TM)$ be a screen distribution which is a semi-Riemannian complementary distribution of $\text{Rad}TM$ in TM , that is

$$(2.1) \quad TM = \text{Rad}TM \oplus_{\text{orth}} S(TM).$$

Now consider a screen transversal vector bundle $S(TM^\perp)$, which is a semi-Riemannian complementary vector bundle of $\text{Rad}TM$ in TM^\perp . Since for any local basis $\{\xi_i\}$ of $\text{Rad}TM$, there exists a local null frame $\{N_i\}$ of sections with values in the orthogonal complement of $S(TM^\perp)$ in $[S(TM)]^\perp$ such that $\bar{g}(\xi_i, N_j) = \delta_{ij}$ and $\bar{g}(N_i, N_j) = 0$, it follows that there exists a lightlike transversal vector bundle $ltr(TM)$ locally spanned by $\{N_i\}$. Let $tr(TM)$ be complementary (but not orthogonal) vector bundle to TM in $T\bar{M}|_M$. Then

$$(2.2) \quad tr(TM) = ltr(TM) \oplus_{\text{orth}} S(TM^\perp),$$

$$(2.3) \quad T\bar{M}|_M = TM \oplus tr(TM),$$

$$(2.4) \quad T\bar{M}|_M = S(TM) \oplus_{\text{orth}} [\text{Rad}TM \oplus ltr(TM)] \oplus_{\text{orth}} S(TM).$$

Following are four cases of a lightlike submanifold $(M, g, S(TM), S(TM^\perp))$:

Case.1 r-lightlike if $r < \min(m, n)$,

Case.2 co-isotropic if $r = n < m$, $S(TM^\perp) = \{0\}$,

Case.3 isotropic if $r = m < n$, $S(TM) = \{0\}$,

Case.4 totally lightlike if $r = m = n$, $S(TM) = S(TM^\perp) = \{0\}$.

The Gauss and Weingarten formulae are given as

$$(2.5) \quad \bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \forall X, Y \in \Gamma(TM),$$

$$(2.6) \quad \bar{\nabla}_X V = -A_V X + \nabla_X^t V, \quad \forall V \in \Gamma(tr(TM)),$$

where $\{\nabla_X Y, A_V X\}$ and $\{h(X, Y), \nabla_X^t V\}$ belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$, respectively. ∇ and ∇^t are linear connections on M and on the vector bundle $tr(TM)$, respectively. The second fundamental form h is a symmetric $F(M)$ -bilinear form on $\Gamma(TM)$ with values in $\Gamma(tr(TM))$ and the shape operator A_V is a linear endomorphism of $\Gamma(TM)$.

From (2.5) and (2.6), we have

$$(2.7) \quad \bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \quad \forall X, Y \in \Gamma(TM),$$

$$(2.8) \quad \bar{\nabla}_X N = -A_N X + \nabla_X^l(N) + D^s(X, N), \quad \forall N \in \Gamma(ltr(TM)),$$

$$(2.9) \quad \bar{\nabla}_X W = -A_W X + \nabla_X^s(W) + D^l(X, W), \quad \forall W \in \Gamma(S(TM^\perp)),$$

where $h^l(X, Y) = L(h(X, Y))$, $h^s(X, Y) = S(h(X, Y))$, $D^l(X, V) = L(\nabla_X^t V)$, $D^s(X, V) = S(\nabla_X^t V)$. L and S are the projection morphisms of $tr(TM)$ on $ltr(TM)$ and $S(TM^\perp)$, respectively. ∇^l and ∇^s are linear connections on $ltr(TM)$ and $S(TM^\perp)$ called the lightlike connection and screen transversal connection on M , respectively.

Now for any vector field X tangent to M , we put

$$(2.10) \quad \phi X = PX + FX,$$

where PX and FX are tangential and transversal parts of ϕX , respectively.

By using (2.5), (2.7)–(2.9) and metric connection $\bar{\nabla}$, we obtain

$$(2.11) \quad \bar{g}(h^s(X, Y), W) + \bar{g}(Y, D^l(X, W)) = g(A_W X, Y),$$

$$(2.12) \quad \bar{g}(D^s(X, N), W) = \bar{g}(N, A_W X).$$

Denote the projection of TM on $S(TM)$ by \bar{P} . Then from the decomposition of the tangent bundle of a lightlike submanifold, we have

$$(2.13) \quad \nabla_X \bar{P}Y = \nabla_X^* \bar{P}Y + h^*(X, \bar{P}Y), \quad \forall X, Y \in \Gamma(TM),$$

$$(2.14) \quad \nabla_X \xi = -A_\xi^* X + \nabla_X^{*\perp} \xi, \quad \xi \in \Gamma(RadTM).$$

By using above equations, we obtain

$$(2.15) \quad \bar{g}(h^l(X, \bar{P}Y), \xi) = g(A_\xi^* X, \bar{P}Y),$$

$$(2.16) \quad \bar{g}(h^*(X, \bar{P}Y), N) = g(A_N X, \bar{P}Y),$$

$$(2.17) \quad \bar{g}(h^l(X, \xi), \xi) = 0, \quad A_\xi^* \xi = 0.$$

It is important to note that in general ∇ is not a metric connection. Since $\bar{\nabla}$ is metric connection, by using (2.7), we get

$$(2.18) \quad (\nabla_X g)(Y, Z) = \bar{g}(h^l(X, Y), Z) + \bar{g}(h^l(X, Z), Y).$$

A semi-Riemannian manifold (\bar{M}, \bar{g}) is called an ϵ -almost paracontact metric manifold [12] if there exists a $(1, 1)$ tensor field ϕ , a vector field V called

characteristic vector field and a 1-form η , satisfying

$$(2.19) \quad \phi^2 X = X - \eta(X)V, \quad \eta(V) = \epsilon, \quad \eta \circ \phi = 0, \quad \phi(V) = 0,$$

$$(2.20) \quad \bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \epsilon \eta(X)\eta(Y), \quad \forall X, Y \in \Gamma(T\bar{M}),$$

where $\epsilon = 1$ or -1 .

It follows that

$$(2.21) \quad \bar{g}(V, V) = \epsilon,$$

$$(2.22) \quad \bar{g}(X, V) = \eta(X),$$

$$(2.23) \quad \bar{g}(X, \phi Y) = \bar{g}(\phi X, Y), \quad \forall X, Y \in \Gamma(T\bar{M}).$$

Then (ϕ, V, η, \bar{g}) is called an ϵ -almost paracontact metric structure on \bar{M} .

An ϵ -almost paracontact metric structure (ϕ, V, η, \bar{g}) is called an indefinite para-Sasakian structure [12] if

$$(2.24) \quad (\bar{\nabla}_X \phi)Y = -\bar{g}(\phi X, \phi Y)V - \epsilon \eta(Y)\phi^2 X, \quad \forall X, Y \in \Gamma(T\bar{M}),$$

where $\bar{\nabla}$ is Levi-Civita connection with respect to \bar{g} .

A semi-Riemannian manifold endowed with an indefinite para-Sasakian structure is called an indefinite para-Sasakian manifold.

From (2.24), we get

$$(2.25) \quad (\bar{\nabla}_X V) = \phi X, \quad \forall X \in \Gamma(T\bar{M}).$$

Let $(\bar{M}, \bar{g}, \phi, V, \eta)$ be an ϵ -almost paracontact metric manifold. If $\epsilon = 1$, then \bar{M} is said to be a spacelike almost paracontact metric manifold and if $\epsilon = -1$, then \bar{M} is called a timelike almost paracontact metric manifold. In this paper we consider indefinite para-Sasakian manifolds with spacelike characteristic vector field V .

3. Radical transversal lightlike submanifolds

DEFINITION 3.1. Let $(M, g, S(TM), S(TM^\perp))$ be a lightlike submanifold, tangent to the structure vector field V , immersed in an indefinite para-Sasakian manifold (\bar{M}, \bar{g}) . We say that M is radical transversal lightlike submanifold of \bar{M} if the following conditions are satisfied:

$$(3.1) \quad \phi(RadTM) = ltr(TM),$$

$$(3.2) \quad \phi(D) = D,$$

where $S(TM) = D \perp \{V\}$ and D is complementary non-degenerate distribution to $\{V\}$ in $S(TM)$.

Let $(\mathbb{R}_q^{2m+1}, \bar{g}, \phi, \eta, V)$ denote the manifold \mathbb{R}_q^{2m+1} with its usual para-Sasakian structure given by

$$\begin{aligned}\eta &= \frac{1}{2} \left(dz - \sum_{i=1}^m y^i dx^i \right), \quad V = 2\partial z, \\ \bar{g} &= \eta \otimes \eta + \frac{1}{4} \left(- \sum_{i=1}^{\frac{q}{2}} dx^i \otimes dx^i + dy^i \otimes dy^i + \sum_{i=\frac{q}{2}+1}^m dx^i \otimes dx^i + dy^i \otimes dy^i \right), \\ \phi \left(\sum_{i=1}^m (X_i \partial x_i + Y_i \partial y_i) + Z \partial z \right) &= \sum_{i=1}^m (Y_i \partial x_i + X_i \partial y_i) + \sum_{i=1}^m Y_i y^i \partial z,\end{aligned}$$

where (x^i, y^i, z) are the cartesian coordinates on \mathbb{R}_q^{2m+1} .

EXAMPLE 1. Let $(\mathbb{R}_2^7, \bar{g}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where \bar{g} is of signature $(-, +, +, -, +, +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial y_1, \partial y_2, \partial y_3, \partial z\}$. Suppose M is a submanifold of \mathbb{R}_2^7 given by

$$-x^1 = y^2 = u_1, \quad x^2 = y^1 = u_2, \quad x^3 = u_3, \quad y^3 = u_4 \quad \text{and} \quad z = u_5.$$

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5\}$, where

$$\begin{aligned}Z_1 &= 2(-\partial x_1 + \partial y_2 - y^1 \partial z), \quad Z_2 = 2(\partial x_2 + \partial y_1 + y^2 \partial z), \\ Z_3 &= 2(\partial x_3 + y^3 \partial z), \quad Z_4 = 2\partial y_3 \quad \text{and} \quad Z_5 = V = 2\partial z.\end{aligned}$$

Hence $RadTM = span \{Z_1, Z_2\}$, $S(TM) = span \{Z_3, Z_4, V\}$ and $ltr(TM)$ is spanned by $N_1 = \partial x_1 + \partial y_2 + y^1 \partial z$, $N_2 = \partial x_2 - \partial y_1 + y^2 \partial z$.

It follows that $\phi Z_1 = 2N_2$, $\phi Z_2 = 2N_1$, $\phi Z_3 = Z_4$, $\phi Z_4 = Z_3$. Thus $\phi RadTM = ltr(TM)$ and $\phi D = D$. Hence M is a radical transversal 2-lightlike submanifold of \mathbb{R}_2^7 .

EXAMPLE 2. Let $(\mathbb{R}_2^9, \bar{g}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where \bar{g} is of signature $(-, +, +, +, -, +, +, +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial z\}$. Suppose M is a submanifold of \mathbb{R}_2^9 given by $x^1 = y^2 = u_1$, $-x^2 = y^1 = u_2$, $x^3 = y^4 = u_3$, $x^4 = y^3 = u_4$ and $z = u_5$.

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5\}$, where

$$\begin{aligned}Z_1 &= 2(\partial x_1 + \partial y_2 + y^1 \partial z), \quad Z_2 = 2(-\partial x_2 + \partial y_1 - y^2 \partial z) \\ Z_3 &= 2(\partial x_3 + \partial y_4 + y^3 \partial z), \quad Z_4 = 2(\partial x_4 + \partial y_3 + y^4 \partial z), \\ Z_5 &= V = 2\partial z.\end{aligned}$$

Hence $RadTM = span \{Z_1, Z_2\}$ and $S(TM) = span \{Z_3, Z_4, V\}$.

Now $ltr(TM)$ is spanned by $N_1 = \partial x_1 - \partial y_2 + y^1 \partial z$, $N_2 = \partial x_2 + \partial y_1 + y^2 \partial z$ and $S(TM^\perp)$ is spanned by $W_1 = 2(\partial x_3 - \partial y_4 + y^3 \partial z)$, $W_2 = 2(-\partial x_4 + \partial y_3 - y^4 \partial z)$.

It follows that $\phi Z_1 = 2N_2$, $\phi Z_2 = 2N_1$, $\phi Z_3 = Z_4$, $\phi Z_4 = Z_3$, $\phi W_1 = W_2$ and $\phi W_2 = W_1$. Thus $\phi \text{Rad}TM = \text{ltr}(TM)$, $\phi D = D$ and $\phi S(TM^\perp) = S(TM^\perp)$. Hence M is a radical transversal 2-lightlike submanifold of \mathbb{R}^9_2 .

THEOREM 3.1. *Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then the distribution $S(TM^\perp)$ is invariant with respect to ϕ , i.e. $\phi(S(TM^\perp)) \subseteq S(TM^\perp)$.*

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then from (2.23), we have

$$(3.3) \quad \bar{g}(\phi W, \xi) = \bar{g}(W, \phi \xi) = 0, \quad \forall W \in \Gamma(S(TM^\perp)) \text{ and } \forall \xi \in \Gamma(\text{Rad}TM),$$

$$(3.4) \quad \bar{g}(\phi W, N) = \bar{g}(W, \phi N) = 0, \quad \forall W \in \Gamma(S(TM^\perp)) \text{ and } \forall N \in \text{ltr}(TM).$$

From (3.3) and (3.4), we get

$$\phi(S(TM^\perp)) \cap \text{Rad}TM = \{0\} \quad \text{and} \quad \phi(S(TM^\perp)) \cap \text{ltr}(TM) = \{0\}.$$

From (3.2), we have

$$(3.5) \quad \bar{g}(\phi W, X) = \bar{g}(W, \phi X) = 0, \quad \forall X \in \Gamma(TM),$$

which shows that $\phi(S(TM^\perp)) \cap S(TM) = \{0\}$. Therefore the distribution $S(TM^\perp)$ is invariant with respect to ϕ . This completes the proof. ■

Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Let P_1 and P_2 be the projection morphisms on $\text{Rad}TM$ and D , respectively. Then, for $X \in \Gamma(TM)$, we have

$$(3.6) \quad X = P_1X + P_2X + \eta(X)V,$$

where $P_1X \in \Gamma(\text{Rad}TM)$ and $P_2X \in \Gamma(D)$.

Applying ϕ to (3.6), we obtain

$$(3.7) \quad \phi X = \phi P_1X + \phi P_2X,$$

where $\phi P_1X \in \Gamma(\text{ltr}(TM))$ and $\phi P_2X \in \Gamma(D)$.

From (2.24), we have

$$(3.8) \quad \bar{\nabla}_X \phi Y - \phi \bar{\nabla}_X Y = -g(\phi X, \phi Y)V - \eta(Y)\phi^2 X.$$

In view of (2.7), (2.8), (3.7) and (3.8), we obtain

$$(3.9) \quad \begin{aligned} & -g(\phi X, \phi Y)V - \eta(Y)\phi^2 X \\ & = \nabla_X \phi P_2Y + h^l(X, \phi P_2Y) + h^s(X, \phi P_2Y) \\ & \quad - A_{\phi P_1Y}X + \nabla_X^l(\phi P_1Y) + D^s(X, \phi P_1Y) \\ & \quad - \phi P_2(\nabla_X Y) - \phi P_1(\nabla_X Y) - \phi h^l(X, Y) - \phi h^s(X, Y). \end{aligned}$$

Now equating tangential, screen transversal and lightlike transversal components in both sides in equation (3.9) respectively, we obtain

$$(3.10) \quad g(\phi X, \phi Y) V + \eta(Y) \phi^2 X = \phi P_2(\nabla_X Y) + \phi h^l(X, Y) + A_{\phi P_1 Y} X - \nabla_X \phi P_2 Y,$$

$$(3.11) \quad h^l(X, \phi P_2 Y) + \nabla_X^l(\phi P_1 Y) + \phi P_1(\nabla_X Y) = 0,$$

$$(3.12) \quad h^s(X, \phi P_2 Y) + D^s(X, \phi P_1 Y) - \phi h^s(X, Y) = 0.$$

LEMMA 3.2. *Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then we have*

- (i) $g(\nabla_X Y, V) = \bar{g}(Y, \phi X), \forall X, Y \in \Gamma(TM) - \{V\},$
- (ii) $g([X, Y], V) = 0, \forall X, Y \in \Gamma(TM) - \{V\}.$

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then (2.7), we have

$$(3.13) \quad g(\nabla_X Y, V) = \bar{g}(\bar{\nabla}_X Y, V), \quad \forall X, Y \in \Gamma(TM) - \{V\}.$$

Since $\bar{\nabla}$ is a metric connection, from (3.13) we get

$$(3.14) \quad g(\nabla_X Y, V) = \nabla_X g(Y, V) - \bar{g}(Y, \bar{\nabla}_X V),$$

which implies

$$(3.15) \quad g(\nabla_X Y, V) = -\bar{g}(Y, \bar{\nabla}_X V), \quad \forall X, Y \in \Gamma(TM) - \{V\}.$$

From (2.25) and (3.15), we obtain

$$(3.16) \quad g(\nabla_X Y, V) = -\bar{g}(Y, \phi X), \quad \forall X, Y \in \Gamma(TM) - \{V\}.$$

On interchanging X and Y in (3.16), we get

$$(3.17) \quad g(\nabla_Y X, V) = -\bar{g}(X, \phi Y), \quad \forall X, Y \in \Gamma(TM) - \{V\}.$$

From (2.23), (3.16) and (3.17), we have

$$g([X, Y], V) = 0, \quad \forall X, Y \in \Gamma(TM) - \{V\}. \blacksquare$$

THEOREM 3.3. *Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then D is integrable if and only if $h^l(X, \phi Y) = h^l(Y, \phi X), \forall X, Y \in \Gamma(D)$.*

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . On interchanging the role of X and Y in equation (3.11), we obtain

$$(3.18) \quad h^l(Y, \phi P_2 X) + \nabla_Y^l(\phi P_1 X) + \phi P_1(\nabla_Y X) = 0, \quad \forall X, Y \in \Gamma(D).$$

Then from (3.11) and (3.18), we get

$$(3.19) \quad h^l(X, \phi Y) - h^l(Y, \phi X) = \phi P_1[X, Y], \quad \forall X, Y \in \Gamma(D).$$

Since D is integrable if and only if $[X, Y] \in \Gamma(D)$, $\forall X, Y \in \Gamma(D)$.

The proof follows from (3.19) and Lemma 3.2. ■

THEOREM 3.4. *Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then $\text{Rad}TM$ is integrable if and only if $A_{\phi X}Y = A_{\phi Y}X$, $\forall X, Y \in \Gamma(\text{Rad}TM)$.*

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then from (3.10), we have

$$(3.20) \quad A_{\phi Y}X + \phi P_2(\nabla_X Y) + \phi h^l(X, Y) = 0, \quad \forall X, Y \in \Gamma(\text{Rad}TM).$$

Interchanging the role of X and Y in (3.20), we obtain

$$(3.21) \quad A_{\phi X}Y + \phi P_2(\nabla_Y X) + \phi h^l(Y, X) = 0, \quad \forall X, Y \in \Gamma(\text{Rad}TM).$$

Now from (3.20) and (3.21), we get

$$\phi P_2(\nabla_X Y) - \phi P_2(\nabla_Y X) + \phi h^l(X, Y) - \phi h^l(Y, X) = A_{\phi X}Y - A_{\phi Y}X.$$

Since h^l is symmetric, from above equation, we obtain

$$(3.22) \quad \phi P_2[X, Y] = A_{\phi X}Y - A_{\phi Y}X, \quad \forall X, Y \in \Gamma(\text{Rad}TM).$$

Since $\text{Rad}(TM)$ is integrable if and only if $[X, Y] \in \Gamma(\text{Rad}TM)$, $\forall X, Y \in \Gamma(\text{Rad}TM)$.

The proof follows from (3.22) and Lemma 3.2. ■

THEOREM 3.5. *Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then $\text{Rad}TM \oplus \{V\}$ defines a totally geodesic foliation on M if and only if $\bar{g}(\phi Y, X)\eta(Z) = -\bar{g}(A_{\phi Y}X, \phi Z)$, $\forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}$ and $Z \in \Gamma(D)$.*

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . By definition of radical transversal lightlike submanifold, $\text{Rad}TM \oplus \{V\}$ defines a totally geodesic foliation if and only if $\bar{g}(\nabla_X Y, Z) = 0$, $\forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}$ and $Z \in \Gamma(S(TM))$.

Since $\bar{\nabla}$ is a metric connection, using (2.7), we have

$$(3.23) \quad \bar{g}(\nabla_X Y, Z) = X\bar{g}(Y, Z) - \bar{g}(Y, \bar{\nabla}_X Z) = -\bar{g}(Y, \bar{\nabla}_X Z),$$

$$\forall Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}.$$

Using (2.7), (2.20), (2.24) and (3.23), we get

$$(3.24) \quad \bar{g}(\nabla_X Y, Z) = -\bar{g}(\phi Y, X)\eta(Z) - \bar{g}(\phi Y, \nabla_X \phi Z),$$

$$\forall Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}.$$

From (2.13), (2.16) and (3.24), we have

$$(3.25) \quad \bar{g}(\nabla_X Y, Z) = -\bar{g}(\phi Y, X)\eta(Z) - \bar{g}(A_{\phi Y} X, \phi Z),$$

$$\forall Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(RadTM) \oplus \{V\}.$$

The proof follows from (3.25) and Lemma 3.2. ■

THEOREM 3.6. *Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then screen distribution defines a totally geodesic foliation if and only if $A_{\phi N}^* X$ has no components in D , $\forall N \in \Gamma(ltr(TM))$ and $\forall X \in \Gamma(S(TM))$.*

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . By definition of radical transversal lightlike submanifold, $S(TM)$ defines a totally geodesic foliation if and only if $\bar{g}(\nabla_X Y, N) = 0$, $\forall X, Y \in \Gamma(S(TM))$ and $N \in \Gamma(ltr(TM))$. From (2.7), we have

$$(3.26) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(\bar{\nabla}_X Y, N),$$

$$\forall X, Y \in \Gamma(S(TM)) \text{ and } N \in \Gamma(ltr(TM)).$$

From (2.20), (2.24) and (3.26), we get

$$(3.27) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(\bar{\nabla}_X \phi Y, \phi N),$$

$$\forall X, Y \in \Gamma(S(TM)) \text{ and } N \in \Gamma(ltr(TM)).$$

In view of equations (2.7), (2.15) and (3.27), we obtain

$$(3.28) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(A_{\phi N}^* X, \phi Y),$$

$$\forall X, Y \in \Gamma(S(TM)) \text{ and } N \in \Gamma(ltr(TM)).$$

The proof follows from (3.28) and Lemma 3.2. ■

4. Totally contact umbilical radical transversal lightlike submanifolds

DEFINITION 4.1. A lightlike submanifold M , tangent to the structure vector field V , of an indefinite para-Sasakian manifold \bar{M} is said to be totally contact umbilical radical transversal lightlike submanifold if the second fundamental form h of M satisfies:

$$(4.1) \quad h^l(X, Y) = [g(X, Y) - \eta(X)\eta(Y)]\alpha_L + \eta(X)h^l(Y, V) + \eta(Y)h^l(X, V),$$

$$\forall X, Y \in \Gamma(TM) \text{ and } \alpha_L \in \Gamma(ltr(TM)).$$

$$(4.2) \quad h^s(X, Y) = [g(X, Y) - \eta(X)\eta(Y)]\alpha_S + \eta(X)h^s(Y, V) + \eta(Y)h^s(X, V),$$

$$\forall X, Y \in \Gamma(TM) \text{ and } \alpha_S \in \Gamma(S(TM^\perp)).$$

THEOREM 4.1. *Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then distribution D is integrable.*

Proof. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then for any $X, Y \in \Gamma(D)$ and $N \in \Gamma(ltr(TM))$, we have

$$(4.3) \quad \bar{g}([X, Y], N) = \bar{g}(\nabla_X Y, N) - \bar{g}(\nabla_Y X, N).$$

Now from (2.7), (2.20) and (4.3), we have

$$(4.4) \quad \bar{g}([X, Y], N) = \bar{g}(h^l(X, \phi Y), \phi N) - \bar{g}(h^l(Y, \phi X), \phi N).$$

Replacing Y by ϕY in (4.1), we get

$$(4.5) \quad h^l(X, \phi Y) = [g(X, \phi Y)]\alpha_L + \eta(X)h^l(\phi Y, V), \quad \forall X, Y \in \Gamma(D).$$

Similarly, we have

$$(4.6) \quad h^l(Y, \phi X) = [g(Y, \phi X)]\alpha_L, \quad \forall X, Y \in \Gamma(D).$$

Now, from (4.4), (4.5) and (4.6), we get

$$(4.7) \quad \bar{g}([X, Y], N) = \bar{g}(g(X, \phi Y)\alpha_L, \phi N) - \bar{g}(g(Y, \phi X)\alpha_L, \phi N),$$

which implies

$$(4.8) \quad \bar{g}([X, Y], N) = g(Y, \phi X)(\bar{g}(\alpha_L, \phi N) - \bar{g}(\alpha_L, \phi N)) = 0, \\ \forall X, Y \in \Gamma(D) \text{ and } N \in \Gamma(ltr(TM)).$$

The proof follows from (4.8) and Lemma 3.2. ■

THEOREM 4.2. *Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then $\alpha_L = 0$ if and only if $h^*(X, \phi Y) = 0$, $\forall X, Y \in \Gamma(D)$.*

Proof. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then from (3.9), we have

$$(4.9) \quad -g(\phi X, \phi Y)V - \eta(Y)\phi^2 X = \nabla_X \phi Y + h^l(X, \phi Y) + h^s(X, \phi Y) \\ - \phi P_2(\nabla_X Y) - \phi P_1(\nabla_X Y) - \phi h^l(X, Y) \\ - \phi h^s(X, Y), \quad \forall X, Y \in \Gamma(D).$$

Now, from (4.9), we get

$$(4.10) \quad \bar{g}(\nabla_X \phi Y, \phi Z) - \bar{g}(\phi h^l(X, Y), \phi Z) = 0, \\ \forall X, Y \in \Gamma(D) \text{ and } \forall Z \in \Gamma(Rad(TM)).$$

From (2.13), (2.20) and (4.10), we have

$$(4.11) \quad \bar{g}(h^*(X, \phi Y), \phi Z) - \bar{g}(h^l(X, Y), Z) = 0, \\ \forall X, Y \in \Gamma(D) \text{ and } \forall Z \in \Gamma(\text{Rad}(TM)).$$

Now using (4.1) in (4.11), we get

$$(4.12) \quad \bar{g}(h^*(X, \phi Y), \phi Z) - \bar{g}(g(X, Y)\alpha_L, Z) = 0, \\ \forall X, Y \in \Gamma(D) \text{ and } \forall Z \in \Gamma(\text{Rad}(TM)).$$

This completes the proof. ■

THEOREM 4.3. *Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then the induced connection ∇ on M is a metric connection if and only if $A_{\phi Y}X = -\eta(X)Y$, for $X \in \Gamma(TM)$ and $Y \in \Gamma(\text{Rad}TM)$.*

Proof. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . It is known that the induced connection is metric connection if and only if $\nabla_X Y \in \Gamma(\text{Rad}TM)$, for $X \in \Gamma(TM)$ and $Y \in \Gamma(\text{Rad}TM)$.

From (3.9), we have

$$(4.13) \quad \phi P_2(\nabla_X Y) + \phi P_1(\nabla_X Y) + \phi h^l(X, Y) + \phi h^s(X, Y) = \nabla_X^l(\phi P_1 Y) \\ - A_{\phi P_1 Y}X + D^s(X, \phi P_1 Y), \quad \forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{Rad}TM).$$

Now, using (4.1) and (4.2) in (4.13), we obtain

$$(4.14) \quad \phi P_2(\nabla_X Y) + \phi P_1(\nabla_X Y) + \eta(X)\phi h^l(Y, V) + \eta(X)\phi h^s(Y, V) \\ = \nabla_X^l(\phi P_1 Y) - A_{\phi P_1 Y}X + D^s(X, \phi P_1 Y), \quad \forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{Rad}TM).$$

Taking tangential component of above equation, we get

$$(4.15) \quad \phi P_2(\nabla_X Y) + \eta(X)\phi h^l(Y, V) = -A_{\phi Y}X, \\ \forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{Rad}TM).$$

Also from (2.7) and (2.25), we have

$$(4.16) \quad \phi Y = h^l(Y, V), \quad \forall Y \in \Gamma(\text{Rad}TM).$$

Now, from (4.15) and (4.16), we get

$$(4.17) \quad \phi P_2(\nabla_X Y) = -\eta(X)Y - A_{\phi Y}X, \\ \forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{Rad}TM).$$

The proof follows from (4.17) and Lemma 3.2. ■

5. Screen slant radical transversal lightlike submanifolds

At first, we state the following Lemma for later use:

LEMMA 5.1. *Let M be a $2q$ -lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} , of index $2q$ such that $2q < \dim(M)$ with structure vector field tangent to M . Then the screen distribution $S(TM)$ of lightlike submanifold M is Riemannian.*

The proof of above Lemma follows as in Lemma 4.1 of [11], so we omit it.

DEFINITION 5.1. Let M be a $2q$ -lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} of index $2q$ such that $2q < \dim(M)$ with structure vector field tangent to M . Then we say that M is screen slant radical transversal lightlike submanifold of \bar{M} if following conditions are satisfied:

- (i) $\phi(RadTM) = ltr(TM)$,
- (ii) For each non-zero vector field X tangent to D at $x \in U \subset M$, the angle $\theta(X)$ between ϕX and the vector space D_x is constant, i.e. it is independent of the choice of $x \in U \subset M$ and $X \in D_x$, where D is complementary non-degenerate distribution to $\{V\}$ in $S(TM)$ such that $S(TM) = D \perp \{V\}$.

This constant angle $\theta(X)$ is called slant angle of distribution D . A screen slant lightlike submanifold is said to be proper if $D \neq \{0\}$ and $\theta \neq 0, \frac{\pi}{2}$.

From the above definition, we have the following decomposition

$$(5.1) \quad TM = RadTM \perp D \perp \{V\}.$$

THEOREM 5.2. *Let M be a screen slant radical transversal lightlike submanifold of \bar{M} . Then M is radical transversal lightlike submanifold (resp. transversal lightlike submanifold) if and only if $\theta = 0$ (resp. $\theta = \frac{\pi}{2}$).*

The proof of above theorem follows from definitions of radical transversal lightlike submanifolds and transversal lightlike submanifolds.

EXAMPLE 3. Let $(\mathbb{R}_2^9, \bar{g}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where \bar{g} is of signature $(-, +, +, +, -, +, +, +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial z\}$. Suppose M is a submanifold of \mathbb{R}_2^9 given by

$$\begin{aligned} x^1 &= y^2 = u_1, \quad x^2 = -y^1 = u_2, \quad x^3 = u_3 \cos \theta, \quad x^4 = -u_3 \sin \theta, \\ y^3 &= u_4 \cos \theta, \quad y^4 = u_4 \sin \theta, \quad z = u_5. \end{aligned}$$

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5\}$, where

$$\begin{aligned} Z_1 &= 2(\partial x_1 + \partial y_2 + y^1 \partial z), \\ Z_2 &= 2(\partial x_2 - \partial y_1 + y^2 \partial z), \\ Z_3 &= 2(\cos \theta \partial x_3 - \sin \theta \partial x_4 + y^3 \cos \theta \partial z - y^4 \sin \theta \partial z), \\ Z_4 &= 2(\cos \theta \partial y_3 + \sin \theta \partial y_4), \\ Z_5 &= V = 2\partial z. \end{aligned}$$

Hence $\text{Rad}TM = \text{span}\{Z_1, Z_2\}$ and $S(TM) = \text{span}\{Z_3, Z_4, V\}$.

Now $ltr(TM)$ is spanned by $N_1 = \partial x_1 - \partial y_2 + y^1 \partial z$, $N_2 = \partial x_2 + \partial y_1 + y^2 \partial z$ and $S(TM^\perp)$ is spanned by

$$\begin{aligned} W_1 &= 2(\sin \theta \partial x_3 + \cos \theta \partial x_4 + y^3 \sin \theta \partial z + y^4 \cos \theta \partial z), \\ W_2 &= 2(\sin \theta \partial y_3 - \cos \theta \partial y_4). \end{aligned}$$

It follows that $\phi Z_1 = N_2$, $\phi Z_2 = -N_1$, which implies that $\phi \text{Rad}TM = ltr(TM)$. On otherhand, we can see that $D = \text{span}\{Z_3, Z_4\}$ is a slant distribution with slant angle 2θ . Hence M is screen slant radical transversal 2-lightlike submanifold of \mathbb{R}_2^9 .

Now, we denote the projections on $\text{Rad}TM$ and D in TM by P_1 and P_2 respectively. Similarly, we denote the projections on $ltr(TM)$ and $S(TM^\perp)$ in $tr(TM)$ by Q_1 and Q_2 , respectively. Then, we get

$$(5.2) \quad X = P_1 X + P_2 X + \eta(X)V, \quad \forall X \in \Gamma(TM).$$

On applying ϕ to (5.2), we have

$$(5.3) \quad \phi X = \phi P_1 X + \phi P_2 X,$$

which gives

$$(5.4) \quad \phi X = \phi P_1 X + f P_2 X + F P_2 X, \quad \forall X \in \Gamma(TM),$$

where $f P_2 X$ (resp. $F P_2 X$) denotes the tangential (resp. transversal) component of $\phi P_2 X$. Thus we get $\phi P_1 X \in ltr(TM)$, $f P_2 X \in \Gamma(D)$ and $F P_2 X \in \Gamma(S(TM^\perp))$. Also, we have

$$(5.5) \quad W = Q_1 W + Q_2 W, \quad \forall W \in \Gamma(tr(TM)).$$

Applying ϕ to (5.5), we obtain

$$(5.6) \quad \phi W = \phi Q_1 W + \phi Q_2 W,$$

which gives

$$(5.7) \quad \phi W = \phi Q_1 W + B Q_2 W + C Q_2 W,$$

where $B Q_2 W$ (resp. $C Q_2 W$) denote the tangential (resp. transversal) component of $\phi Q_2 W$. Thus we get $\phi Q_1 W \in \text{Rad}TM$, $B Q_2 W \in \Gamma(D)$ and $C Q_2 W \in \Gamma(S(TM^\perp))$.

Now, by using (2.7), (2.8), (2.9), (2.24), (5.4) and (5.7) and equating tangential, lightlike transversal and screen transversal components, we obtain

$$(5.8) \quad -\bar{g}(\phi X, \phi Y)V - \eta(Y)\phi^2 X = \nabla_X f P_2 Y - A_{FP_2 Y} X - A_{\phi P_1 Y} X \\ - f P_2 \nabla_X Y + B h^s(X, Y) + \phi h^l(X, Y),$$

$$(5.9) \quad h^l(X, f P_2 Y) + D^l(X, F P_2 Y) + \nabla_X^l \phi P_1 Y = \phi P_1 \nabla_X Y,$$

$$(5.10) \quad D^s(X, \phi P_1 Y) + h^s(X, f P_2 Y) = C h^s(X, Y) - \nabla_X^s F P_2 Y + F P_2 \nabla_X Y.$$

THEOREM 5.3. *Let M be a $2q$ -lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} with structure vector field tangent to M such that $\phi RadTM = ltr(TM)$. Then M is screen slant radical transversal lightlike submanifold if and only if there exists a constant $\lambda \in [0, 1]$ such that $P^2 X = \lambda(X - \eta(X)V)$, $\forall X \in \Gamma(D)$.*

Proof. Let M be a $2q$ -lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} with structure vector field tangent to M such that $\phi RadTM = ltr(TM)$. Suppose there exists a constant λ , such that $P^2 X = \lambda(X - \eta(X)V) = \lambda\phi^2 X$, $\forall X \in \Gamma(D)$.

Now

$$\cos \theta(X) = \frac{g(\phi X, P X)}{|\phi X| |P X|} = \frac{g(X, \phi P X)}{|\phi X| |P X|} = \frac{g(X, P^2 X)}{|\phi X| |P X|} \\ = \lambda \frac{g(X, \phi^2 X)}{|\phi X| |P X|} = \lambda \frac{g(\phi X, \phi X)}{|\phi X| |P X|}.$$

From above equation, we get

$$(5.11) \quad \cos \theta(X) = \lambda \frac{|\phi X|}{|P X|}.$$

Also $|P X| = |\phi X| \cos \theta(X)$, which implies

$$(5.12) \quad \cos \theta(X) = \frac{|P X|}{|\phi X|}.$$

From (5.11) and (5.12), we get $\cos^2 \theta(X) = \lambda$ (constant).

Hence M is a screen slant radical transversal lightlike submanifold.

Conversely, suppose that M is a screen slant radical transversal lightlike submanifold. Then $\cos^2 \theta(X) = \lambda$, where λ is a constant. From (5.12), we have

$$(5.13) \quad \frac{|P X|^2}{|\phi X|^2} = \lambda.$$

Now $g(P X, P X) = \lambda g(\phi X, \phi X)$, which gives $g(X, P^2 X) = \lambda g(X, \phi^2 X)$. Thus $g(X, (P^2 - \lambda\phi^2)X) = 0$. Since X is non-null vector, we have

$(P^2 - \lambda\phi^2)X = 0$. Hence

$$P^2X = \lambda\phi^2X = \lambda(X - \eta(X)V), \quad \forall X \in \Gamma(D). \blacksquare$$

COROLLARY 5.1. *Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} with slant angle θ , then*

$$(5.14) \quad g(PX, PY) = \cos^2 \theta(g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D),$$

$$(5.15) \quad g(FX, FY) = \sin^2 \theta(g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D).$$

The proof of above corollary follows using the steps as in the proof of Corollary 3.2 of [10].

THEOREM 5.4. *Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} with structure vector field tangent to M . Then*

- (i) *the radical distribution $\text{Rad}TM$ is integrable if and only if $D^s(Y, \phi X) = D^s(X, \phi Y)$ and $A_{\phi X}Y = A_{\phi Y}X$, $\forall X, Y \in \Gamma(\text{Rad}TM)$,*
- (ii) *the distribution D is integrable if and only if $h^l(X, fY) + D^l(X, FY) = h^l(Y, fX) + D^l(Y, FX)$, $\forall X, Y \in \Gamma(D)$.*

Proof. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . From (5.10), we get

$$(5.16) \quad D^s(X, \phi Y) = Ch^s(X, Y) + FP_2\nabla_X Y, \quad \forall X, Y \in \Gamma(\text{Rad}TM).$$

Interchanging X and Y in (5.16), we get

$$(5.17) \quad D^s(Y, \phi X) = Ch^s(Y, X) + FP_2\nabla_Y X, \quad \forall X, Y \in \Gamma(\text{Rad}TM).$$

From (5.16) and (5.17), we get

$$(5.18) \quad D^s(X, \phi Y) - D^s(Y, \phi X) = FP_2(\nabla_X Y - \nabla_Y X) = FP_2[X, Y].$$

From (5.8), we have

$$(5.19) \quad A_{\phi Y}X + fP_2\nabla_X Y = Bh^s(X, Y) + \phi h^l(X, Y), \\ \forall X, Y \in \Gamma(\text{Rad}TM).$$

Interchanging X and Y in (5.19), we get

$$(5.20) \quad A_{\phi X}Y + fP_2\nabla_Y X = Bh^s(Y, X) + \phi h^l(Y, X), \\ \forall X, Y \in \Gamma(\text{Rad}TM).$$

From (5.19) and (5.20), we get

$$(5.21) \quad A_{\phi X}Y - A_{\phi Y}X = fP_2[X, Y], \quad \forall X, Y \in \Gamma(\text{Rad}TM).$$

The proof of (i) follows from (5.18) and (5.21).

From (5.9), we have

$$(5.22) \quad h^l(X, fY) + D^l(X, FY) = \phi P_1\nabla_X Y, \quad \forall X, Y \in \Gamma(D).$$

Interchanging X and Y in (5.20), we have

$$(5.23) \quad h^l(Y, fX) + D^l(Y, FX) = \phi P_1 \nabla_Y X, \quad \forall X, Y \in \Gamma(D).$$

From (5.22) and (5.23), we get

$$(5.24) \quad h^l(X, fY) - h^l(Y, fX) + D^l(X, FY) - D^l(Y, FX) = \phi P_1[X, Y], \\ \forall X, Y \in \Gamma(D).$$

Now the proof of (ii) follows from (5.24) and Lemma 3.2. ■

THEOREM 5.5. *Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} with structure vector field tangent to M . Then the screen distribution $S(TM)$ defines a totally geodesic foliation if and only if $\bar{g}(A_{\phi N}^* X, fY) = -\bar{g}(D^l(X, FY), \phi N)$, $\forall X, Y \in \Gamma(S(TM))$ and $N \in ltr(TM)$.*

Proof. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . By definition of radical transversal lightlike submanifold, $S(TM)$ defines a totally geodesic foliation if and only if $\bar{g}(\nabla_X Y, N) = 0$, $\forall X, Y \in \Gamma(S(TM))$ and $N \in \Gamma(ltr(TM))$. From (2.7), we have

$$(5.25) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(\bar{\nabla}_X Y, N), \quad \forall X, Y \in \Gamma(S(TM)) \text{ and } N \in ltr(TM).$$

From (2.20), (2.24) and (5.25), we obtain

$$(5.26) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(\bar{\nabla}_X \phi Y, \phi N), \\ \forall X, Y \in \Gamma(S(TM)) \text{ and } N \in ltr(TM).$$

In view of equations (5.4), (2.7), (2.9) and (5.26), we get

$$(5.27) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(h^l(X, fY) + D^l(X, FY), \phi N), \\ \forall X, Y \in \Gamma(S(TM)) \text{ and } N \in ltr(TM).$$

From (2.15) and (5.27), we have

$$(5.28) \quad \bar{g}(\nabla_X Y, N) = \bar{g}(A_{\phi N}^* X, fY) + \bar{g}(D^l(X, FY), \phi N), \\ \forall X, Y \in \Gamma(S(TM)) \text{ and } N \in ltr(TM).$$

The proof follows from (5.28) and Lemma 3.2. ■

THEOREM 5.6. *Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . Then $\text{Rad}TM \oplus \{V\}$ defines a totally geodesic foliation on M if and only if $A_{FZ} X = h^*(X, fZ) + \eta(Z)X$, $\forall X \in \Gamma(\text{Rad}TM) \oplus \{V\}$ and $Z \in \Gamma(D)$.*

Proof. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \bar{M} . By definition of radical transversal

lightlike submanifold, $\text{Rad}TM \oplus \{V\}$ defines a totally geodesic foliation if and only if $\bar{g}(\nabla_X Y, Z) = 0$, $\forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}$ and $Z \in \Gamma(S(TM))$.

Since $\bar{\nabla}$ is a metric connection, using (2.7), we have

$$(5.29) \quad \bar{g}(\nabla_X Y, Z) = -\bar{g}(Y, \bar{\nabla}_X Z), \quad Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}.$$

In view of equations (2.7), (2.20), (2.24) and (5.29), we obtain

$$(5.30) \quad \bar{g}(\nabla_X Y, Z) = -\bar{g}(\phi Y, X)\eta(Z) - \bar{g}(\phi Y, \nabla_X \phi Z), \\ Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}.$$

From (2.7), (2.9), (2.13), (5.4) and (5.26), we have

$$(5.31) \quad \bar{g}(\nabla_X Y, Z) = -\bar{g}(\phi Y, X)\eta(Z) - \bar{g}(\phi Y, h^*(X, fZ)) + \bar{g}(\phi Y, A_{FZ}X), \\ Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}.$$

$$(5.32) \quad \bar{g}(\nabla_X Y, Z) = \bar{g}(\phi Y, A_{FZ}X - h^*(X, fZ) - \eta(Z)X), \\ Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\}.$$

The proof follows from (5.32) and Lemma 3.2.

Acknowledgement: Akhilesh Yadav gratefully acknowledges the financial support provided by the Council of Scientific and Industrial Research (C.S.I.R.), India.

References

- [1] D. E. Blair, *Riemannian Geometry of Contact and Symplectic Manifolds*, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002.
- [2] K. L. Duggal, A. Bejancu, *Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications*, Vol. 364 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
- [3] K. L. Duggal, D. H. Jin, *Totally umbilical lightlike submanifolds*, Kodai Math. J. 26 (2003), 49–68.
- [4] K. L. Duggal, B. Sahin, *Differential Geometry of Lightlike Submanifolds*, Birkhauser Verlag AG, Basel, Boston, Berlin, 2010.
- [5] K. L. Duggal, B. Sahin, *Lightlike submanifolds of indefinite Sasakian manifolds*, Int. J. Math. Math. Sci., Article ID 57585, 2007.
- [6] D. L. Johnson, L. B. Whitt, *Totally geodesic foliations*, J. Differential Geom. 15 (1980), 225–235.
- [7] S. H. Kon, T. Loo, *Totally contact umbilical semi-invariant submanifolds of a Sasakian manifold*, SUT J. Math. 38 (2002), 75–82.
- [8] F. Massamba, *Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian manifolds*, Kodai Math. J. 31 (2008), 338–358.
- [9] B. O’Neill, *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1983.

- [10] B. Sahin, *Screen slant lightlike submanifolds*, Int. Electronic J. of Geometry 2 (2009), 41–54.
- [11] B. Sahin, C. Yildirim, *Slant lightlike submanifolds of indefinite Sasakian manifolds*, Faculty of Sci. and Math., Univ. of Nis, Serbia, 2 (2012), 71–81.
- [12] M. M. Tripathi, E. Kihc, Y. Perktas, S. Keles, *Indefinite almost paracontact metric manifolds*, Int. J. Math. Math. Sci., Article ID 846195, 2010.
- [13] Y. Wang, X. Liu, *Generalized transversal lightlike submanifolds of indefinite Sasakian manifolds*, Int. J. Math. Math. Sci., Article ID 361794, 2012.
- [14] K. Yano, M. Kon, *Structures on Manifolds*, Vol. 3, Series in Pure Mathematics, World Scientific, Singapore, 1984.
- [15] C. Yildirim, B. Sahin, *Transversal lightlike submanifolds of indefinite Sasakian manifolds*, Turkish J. Math. 34 (2010), 561–583.

S. S. Shukla, A. Yadav

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ALLAHABAD

ALLAHABAD-211002, INDIA

E-mail: ssshukla_au@rediffmail.com

akhilesh_mathau@rediffmail.com

Received April 29, 2013.

Communicated by S. Izumiya.