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NUMERICAL RADIUS INEQUALITIES
FOR FINITE SUMS OF OPERATORS

Abstract. In this paper, we obtain some sharp inequalities for numerical radius of
finite sums of operators. Moreover, we give some applications of our result in estimation
of spectral radius. We also compare our results with some known results.

1. Introduction
Let (#,{.,.)) be a complex Hilbert space and B(#) denote the C* -

algebra of all bounded linear operators on . The numerical radius of A €
B(H) is defined by

w(A) =sup{|{Ax,z)|:x e H,|z| = 1}.
It is well known that w(.) defines a norm on B(#). In fact, for each A € B(H),
we have

(1) Sl < w(4) < 4]

(see |5, Theorem 1.3-1]). Thus the usual operator norm and the numerical
radius are equivalent.

It is of interest to investigate interrelationship between numerical and
spectral radius of operators (see e.g. [5, 13, 11, 12, 16]). In Section 2, we
will show that if X, Y e B(H),0<a<landr>1,7">1,

(X, )| (Y, z)|"
< 3l X[+ (1= @)X + alY P + (1= )|y,

where x is a unit vector in H. We compare our result with the corresponding
inequality obtained in [10]. Our results enable us to obtain a sharp inequality
for spectral radius.
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In Section 3, we obtain an upper bound for numerical radius by means
of Cartesian decomposition. More precisely, we will prove that

w%;Aagwwlgﬂ@W+@Wi,
J= J=

where A; € B(H) and A; = Bj +iCj, 1 < j < n. In some special cases, we
show that our result gives a sharper estimation for numerical radius than
the corresponding result obtained in [6].

2. Numerical radius for sums of operator
In order to obtain the main result of this section, we need the following

known results. The first, one due to McCarthy, is an operator variant of the
Hoélder inequality (see [4, 15]).

LEMMA 2.1. (Holder-McCarthy inequality) Let A € B(H) be a positive
operator on H. Then the following inequalities hold:
2)  (Arz,ay > [P Az x), for xeHoif r> 1
(3) ATz, z) < ||| Az, z)", forxeH if 0<r<1.

The next lemma is known as a generalized mixed Cauchy—Schwarz in-
equality.
LEMMA 2.2. 9] (Cauchy—Schwarz inequality) Let A€ B(H) and0 < a <1
then
(4) Az, ? < (AP 2,2y (A* Py y) (z,y € H).

The following lemma is a consequence of the convexity of the function
flt)=1t",r>1 (see |1, 2, 8, 14]).

LEMMA 2.3. (Bohr’s inequality) Let a; be a positive real number, 1 < i < n.
Then for each r > 1

(5) (ng§M1§%-

The following lemma is a consequence of the classical Jensen inequality
concerning the convexity or the concavity of certain power functions.

LEMMA 2.4. [§] Fora,b>0and0<a <1 and r #0,

(6) (aa” + (1 — oz)br)% < (aa®+ (1 — a)b“(”)i , for r <s,
(7) a®b1= < (aa” + (1 —a)b ) for r >0,
(8) (@ +b%)s < (a" +0")r, forO<r<s,

9) (ab)? < é(a +b).
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Now we are ready to state the main result of this section.

THEOREM 2.5. Let X, Y e B(H) andr > 1,7 >1 and 0 < o < 1. Then
for each unit vector x in H,

(10)  [(Xa,2)["[(Ya,z)["
< 5[l X P+ (1= )| X*7 + alY P + (1= a)|Y*]).
Proof. For arbitrary unit vectors x in ‘H, we have

‘<X:):,x>‘r‘<Y:U,:r>‘r/

< (X PPoa, oy XU, fv>)%(<|Y|2afc7$><|Y*|2(1_a)x7fc>)%/ by (4)

< (X P, o) X* PO, ) + (V[ w><!Y*I2“‘“)w z))") by (9)
< S (UXPa, 2y X* PO g, w4 (Y P, o)V P07z, 1)) by (2)
< L(UXPra, ) X* P, ) Y P, 2y VP, a1 7) by (3)
< 3@ X P+ (=) | X* )z, 2)y+{ (Y P +(1=a)[Y*[* )z, 2)) by (7)
< (|l X[+ (1—a) | X +a|Y [+ (1—a)[Y**]). =

The above theorem enables us to obtain a sharp estimation for spectral
radius of some operators:

COROLLARY 2.6. Let A € B(H) and r(A) denote the spectral radius of A.
Then

2

sl jaee] < a.

Proof. Put a = %, X =Y = A% and r = 7/ = 1 in Theorem (2.5), to obtain

\F"A22+| A*)22
It follows that
?”Q(A)ZT(A2)§ \/7”1422 A*)22
Therefore
(11) f"|A2 2 a2 <Al -
COROLLARY 2.7. Let A,B € B(H). Then
(12)  w(AB+ BA) H|AB + BAP + |A*B* + B*A*|?

Proof. Put X =Y = AB+ BA, a = 5 and r = 7’ = 1 in Theorem 2.5. u
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REMARK 2.8. In [11, Theorem 1] Kittaneh proved that for each Aj, As,
Bl, BQ € B(H),

’I”(AlB1 + AQBQ)

1
< S (IBiA + 1 Bods] + 3/ (1B A~ |BaAs])? + 41 Ao] | o).

In particular, when A7 = By = A and Ay = By = B, it follows that

1
(18) r(AB+BA) < L (|AB]| +|BA|+ 3/ (1AB| — |BAIY +4] 42| |52])
(see [11, Corollary 2]). If A and B are normal operators in B(#), we have
[AB| = |BA| and |42 = | AJ. Hence

r(AB + BA)

IN

1

5 (14B] + | BA + 3/ (|AB] — | BAY)® + 4] 42] | B2])
|AB] + | A]|B].-

On the other hand, we have

1
2

2

{)\AB + BAP + |A*B* + B*A*?
< ﬁ(
- 2
_ V2
S22

1
= (|AB + BA|*)? = |AB + BA|.
Hence, in this case, by Corollary 2.7
r(AB + BA) < w(AB + BA)

1
IIAB + BAP| + || A*B* + B*A*[|)*

(JAB + BA|? + |A*B* + B*A*|?)

1
2

< ‘meB + BAP + |A*B* + B*A*|?
< |AB + BA| < [AB]| + [A]|B]

1 2
= - (IABI + |BA + {/(1AB] ~ |BAD? + 4]42] | B2] ).
Therefore Corollary 2.7 gives a sharper inequity than (13) in this case.
REMARK 2.9. Kittaneh in [10] proved that

(14)  w(AB+ BA) < %HAA* L A*A+ BB*+ B*B| (A,B e B(H).
Let A, B be normal operators then

1
5HAA* + A*A+ BB* + B*B| = |AA* + BB*|.
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On the other hand, according to the above remark
?HAB + BA]? + |A*B* + B*A*2|2
< |AB + BA| = |A*B* + B*A*| < | A*B¥| + | B*A*|
< %(HAA* 1+ B*B| + |BB* + A*A|) [1, Corollary4.3]
= ||[AA* + BB*|.
Therefore, Corollary 2.7 is sharper than (14) in this case.
COROLLARY 2.10. Let A,B € B(H) and r > 1 then

(15) w"(B*A) < H|B AP+ |A*B|2’"||

Proof. Put X =Y = B*A,r =7" and a = 5 in Theorem 2.5. =

REMARK 2.11. Dragomir has shown that in [3], for A, B € B(H) and r > 1
(16) w'(B*A) < H(B* )"+ (A*A)".
Let A,B >0 and AB = BA. Then
W (BRA) < J|(B*BY + (A AY| = 2| B + 4|
By Corollary 2.10, we have
o (B0 4) < L2 mapr + |aoBp = Ay

On the other hand
1
0<(AB)" < 5(32’" + A%,

Hence, in this case, Corollary 2.10 gives a sharper inequality than (16).

3. Numerical radius and Cartesian decomposition

The main aim of this section is to obtain an upper bound for numerical
radius by means of the Cartesian decomposition of operators.

THEOREM 3.1. Let A; € B(H) have the Cartesian decomposition A; =
B; +iCj forj=1,--- ,n andr > 1. Then

(17) (D A;) < ( 2nr12mgﬁnucwu

j=1 7j=1
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Proof. For any unit vector x € H, we have

’<jZ:ij,x>‘r < (i (<Bjac, ) + <Cjw,m>2> ;)T

7=1
<(

J

({|BjPz, z) + <]Cj|2x,a:>)% )T by Lemma 2.2 for o = 1
-1

< I, Z (<|BJ|233,$> + <|Cj|2$,$>)§ by Lemma 2.3
j=1
1
<<|Bj|2l',1'>r + <|Cj|2$,l‘>r>2 by Lemma 2.3

(V2 n) ! i
j=1
(\/5 n)r_l Zn: (<\Bj]2’"x,x> + <’Cj’2r$a$>)% by Lemma 2.1.
Therefore "
wr(:l Aj) = sup{Kji:1 Ajzn,x>’T cx e H, ||zl = 1}
<(V2n)! Zn: 1B + 1G] 2. =
j=1

In particular, when n = 1, we get to the following result.

COROLLARY 3.2. Let A € B(H) have the Cartesian decomposition A
B +1iC. Then

(18) W(A) <2F B+ |OPFF r> 1
In [6], the authors proved that
(19) WA < |IBIF+ICI] 0<r<2.
Therefore, if 1 <7 <2 and |C|"|B|" = |B|"|C|", then
(|BI" + |C|")* = B* + C* +|B|"|C|" + |C|"|B|" > B* + C*" > 0.
So that in this case, inequality (18) is sharper than (19).

THEOREM 3.3. Let A; € B(H) have the Cartesian decomposition A;
Bj +iCj forj=1,...,n andr > 1. Then

1
2

n n
W (3 45) <125 Y 1By + G 4 B — Gy
Jj=1 j=1
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Proof. For every unit vector x in H, we have

(St )] < (DB + €}
j=1 J=1

< (Z (5 (¢B; + Ci)a.2)? +((B; = G )5)T
j=1

N =

(N1

<12 Y (B + ) ey’ + (B = C)w)’ )T by Lemma 2.3

S’I’LT_12_TZ(<|B +C|£L‘SU>+<|B C’ij>>§ by Lemma 2.2

N|=

=1
< nr—12% Z <<|B —I-C |21, $> _|_<|B C’ | €T g;> ) by Lemma 2.3

<nr12371 2 <<|B +Cj|* z,2) + {|B; — Cj|*"x, x>> by Lemma 2.1.
j=1

If follows from the above inequality that

(ZA) < n'195- 1ZH|B + O+ By — Oy

1
2

In partlcular forn =1, we have the following result.

COROLLARY 3.4. Let A = B+1iC be the Cartesian decomposition of A and
r>1. Then

r 1
(20) w'(A) <227 |[(B+C)Y + (B—-C)™|?
REMARK 3.5. Kittaneh has shown in [6] that
1
(21) w'(A4) < 5|\|B+C!’"+]B—C\TH for r > 2.

Note that the inequality (20) holds for each r > 1, while (21) gives an upper
bound for w"(A) only when r > 2.
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useful comments.
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