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NUMERICAL RADIUS INEQUALITIES
FOR FINITE SUMS OF OPERATORS

Abstract. In this paper, we obtain some sharp inequalities for numerical radius of
finite sums of operators. Moreover, we give some applications of our result in estimation
of spectral radius. We also compare our results with some known results.

1. Introduction
Let pH, x., .yq be a complex Hilbert space and BpHq denote the C˚ -

algebra of all bounded linear operators on H. The numerical radius of A P
BpHq is defined by

ωpAq “ sup t| xAx, xy | : x P H, }x} “ 1u .

It is well known that ωp.q defines a norm on BpHq. In fact, for each A P BpHq,
we have

1

2
}A} ≤ ωpAq ≤ }A}(1)

(see [5, Theorem 1.3-1]). Thus the usual operator norm and the numerical
radius are equivalent.

It is of interest to investigate interrelationship between numerical and
spectral radius of operators (see e.g. [5, 13, 11, 12, 16]). In Section 2, we
will show that if X,Y P BpHq, 0 ≤ α ≤ 1 and r ≥ 1, r1 ≥ 1,

|xXx, xy|r|xY x, xy|r
1

≤ 1
2p}α|X|

2r ` p1´ αq|X˚|2r ` α|Y |2r
1

` p1´ αq|Y ˚|2r
1

}q,

where x is a unit vector in H. We compare our result with the corresponding
inequality obtained in [10]. Our results enable us to obtain a sharp inequality
for spectral radius.
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In Section 3, we obtain an upper bound for numerical radius by means
of Cartesian decomposition. More precisely, we will prove that

ωr
´

n
ÿ

j“1

Aj

¯

≤ p2nqr´1
n
ÿ

j“1

›

›|Bj |
2r ` |Cj |

2r
›

›

1
2 ,

where Aj P BpHq and Aj “ Bj ` iCj , 1 ≤ j ≤ n. In some special cases, we
show that our result gives a sharper estimation for numerical radius than
the corresponding result obtained in [6].

2. Numerical radius for sums of operator
In order to obtain the main result of this section, we need the following

known results. The first, one due to McCarthy, is an operator variant of the
Hölder inequality (see [4, 15]).

Lemma 2.1. (Hölder–McCarthy inequality) Let A P BpHq be a positive
operator on H. Then the following inequalities hold:

xArx, xy ≥ ||x||2p1´rq xAx, xyr , for x P H if r ≥ 1.(2)

xArx, xy ≤ ||x||2p1´rq xAx, xyr , for x P H if 0 ă r ă 1.(3)

The next lemma is known as a generalized mixed Cauchy–Schwarz in-
equality.

Lemma 2.2. [9] (Cauchy–Schwarz inequality) Let A P BpHq and 0 ≤ α ≤ 1
then

(4) |xAx, yy|2 ≤
@

|A|2αx, x
D

x|A˚|2p1´αqy, yy px, y P Hq.
The following lemma is a consequence of the convexity of the function

fptq “ tr, r ≥ 1 (see [1, 2, 8, 14]).

Lemma 2.3. (Bohr’s inequality) Let ai be a positive real number, 1 ≤ i ≤ n.
Then for each r ≥ 1

(5)
´

n
ÿ

i“1

ai

¯r
≤ nr´1

n
ÿ

i“1

ari .

The following lemma is a consequence of the classical Jensen inequality
concerning the convexity or the concavity of certain power functions.

Lemma 2.4. [8] For a, b ≥ 0 and 0 ă α ă 1 and r ‰ 0,

pαar ` p1´ αqbrq
1
r ≤ pαas ` p1´ αqbsq

1
s , for r ≤ s,(6)

aαbp1´αq ≤ pαar ` p1´ αqbrq
1
r , for r ą 0,(7)

pas ` bsq
1
s ≤ par ` brq

1
r , for 0 ă r ≤ s,(8)

pabq
1
2 ≤ 1

2
pa` bq .(9)
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Now we are ready to state the main result of this section.

Theorem 2.5. Let X,Y P BpHq and r ≥ 1, r1 ≥ 1 and 0 ≤ α ≤ 1. Then
for each unit vector x in H,

(10) |xXx, xy|r|xY x, xy|r
1

≤ 1
2p}α|X|

2r ` p1´ αq|X˚|2r ` α|Y |2r
1

` p1´ αq|Y ˚|2r
1

}q.

Proof. For arbitrary unit vectors x in H, we have
ˇ

ˇxXx, xy
ˇ

ˇ

rˇ
ˇxY x, xy

ˇ

ˇ

r1

≤
`

x|X|2αx, xyx|X˚|2p1´αqx, xy
˘

r
2
`

x|Y |2αx, xyx|Y ˚|2p1´αqx, xy
˘

r1

2 by (4)

≤ 1
2

`

px|X|2αx, xyx|X˚|2p1´αqx, xyqr`px|Y |2αx, xyx|Y ˚|2p1´αqx, xyqr
1˘

by (9)

≤ 1
2

`

x|X|2αrx, xyx|X˚|2p1´αqrx, xy`x|Y |2αr
1

x, xyx|Y ˚|2p1´αqr
1

x, xy
˘

by (2)

≤ 1
2

`

x|X|2rx, xyαx|X˚|2rx, xyp1´αq`x|Y |2r
1

x, xyαx|Y ˚|2r
1

x, xyp1´αq
˘

by (3)

≤ 1
2

`

xpα|X|2r`p1´αq|X˚|2rqx, xy`xpα|Y |2r
1

`p1´αq|Y ˚|2r
1

qx, xy
˘

by (7)

≤ 1
2

`›

›α|X|2r`p1´αq|X˚|2r`α|Y |2r
1

`p1´αq|Y ˚|2r
1›
›

˘

.

The above theorem enables us to obtain a sharp estimation for spectral
radius of some operators:

Corollary 2.6. Let A P BpHq and rpAq denote the spectral radius of A.
Then

rpAq ≤ 1
4
?
2

›

›

›
|A2|2 ` |pA˚q2|2

›

›

›

1
4 ≤ }A}.

Proof. Put α “ 1
2 , X “ Y “ A2 and r “ r1 “ 1 in Theorem (2.5), to obtain

ωpA2q ≤
?
2

2

›

›

›
|A2|2 ` |pA˚q2|2

›

›

›

1
2
.

It follows that

r2pAq “ rpA2q ≤ ωpA2q ≤
?
2

2

›

›

›
|A2|2 ` |pA˚q2|2

›

›

›

1
2
.

Therefore

rpAq ≤ 1
4
?
2

›

›

›
|A2|2 ` |pA˚q2|2

›

›

›

1
4 ≤ }A}.(11)

Corollary 2.7. Let A,B P BpHq. Then

ωpAB `BAq ≤
?
2

2

›

›

›
|AB `BA|2 ` |A˚B˚ `B˚A˚|2

›

›

›

1
2
.(12)

Proof. Put X “ Y “ AB `BA, α “ 1
2 and r “ r1 “ 1 in Theorem 2.5.
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Remark 2.8. In [11, Theorem 1] Kittaneh proved that for each A1, A2,
B1, B2 P BpHq,

rpA1B1 `A2B2q

≤ 1

2

´

}B1A1} ` }B2A2} `
2

b

p}B1A1} ´ }B2A2}q
2
` 4 }B1A2} }B2A1}

¯

.

In particular, when A1 “ B2 “ A and A2 “ B1 “ B, it follows that

(13) rpAB`BAq ≤ 1

2

´

}AB}`}BA}`
2

b

p}AB} ´ }BA}q2 ` 4 }A2} }B2}

¯

(see [11, Corollary 2]). If A and B are normal operators in BpHq, we have
}AB} “ }BA} and }A2} “ }A}2. Hence

rpAB `BAq ≤ 1

2

´

}AB} ` }BA} `
2

b

p}AB} ´ }BA}q2 ` 4 }A2} }B2}

¯

“ }AB} ` }A}}B}.

On the other hand, we have
?
2

2

›

›

›
|AB `BA|2 ` |A˚B˚ `B˚A˚|2

›

›

›

1
2

≤
?
2

2

´

}|AB `BA|2} ` }|A˚B˚ `B˚A˚|2}
¯

1
2

“

?
2

2

`

}AB `BA}2 ` }A˚B˚ `B˚A˚}2
˘

1
2

“
`

}AB `BA}2
˘

1
2 “ }AB `BA}.

Hence, in this case, by Corollary 2.7

rpAB `BAq ≤ ωpAB `BAq

≤
?
2

2

›

›

›
|AB `BA|2 ` |A˚B˚ `B˚A˚|2

›

›

›

1
2

≤ }AB `BA} ≤ }AB} ` }A}}B}

“
1

2

´

}AB} ` }BA} `
2

b

p}AB} ´ }BA}q2 ` 4 }A2} }B2}

¯

.

Therefore Corollary 2.7 gives a sharper inequity than (13) in this case.

Remark 2.9. Kittaneh in [10] proved that

(14) ωpAB `BAq ≤ 1

2
}AA˚ `A˚A`BB˚ `B˚B} pA,B P BpHqq.

Let A,B be normal operators then
1

2
}AA˚ `A˚A`BB˚ `B˚B} “ }AA˚ `BB˚}.



Numerical radius inequalities 967

On the other hand, according to the above remark
?
2

2

›

›|AB `BA|2 ` |A˚B˚ `B˚A˚|2
›

›

1
2

≤ }AB `BA} “ }A˚B˚ `B˚A˚} ≤ }A˚B˚} ` }B˚A˚}

≤ 1

2

`

}AA˚ `B˚B} ` }BB˚ `A˚A}
˘

r1,Corollary4.3s

“ }AA˚ `BB˚}.

Therefore, Corollary 2.7 is sharper than (14) in this case.

Corollary 2.10. Let A,B P BpHq and r ≥ 1 then

ωrpB˚Aq ≤
?
2

2

›

›|B˚A|2r ` |A˚B|2r
›

›

1
2 .(15)

Proof. Put X “ Y “ B˚A, r “ r1 and α “ 1
2 in Theorem 2.5.

Remark 2.11. Dragomir has shown that in [3], for A,B P BpHq and r ≥ 1

ωrpB˚Aq ≤ 1

2

›

›pB˚Bqr ` pA˚Aqr
›

›.(16)

Let A,B ≥ 0 and AB “ BA. Then

ωrpB˚Aq ≤ 1

2

›

›pB˚Bqr ` pA˚Aqr
›

› “
1

2

›

›B2r `A2r
›

›.

By Corollary 2.10, we have

ωrpB˚Aq ≤
?
2

2

›

›|B˚A|2r ` |A˚B|2r
›

›

1
2 “

›

›|AB|r
›

›.

On the other hand

0 ≤ pABqr ≤ 1

2
pB2r `A2rq.

Hence, in this case, Corollary 2.10 gives a sharper inequality than (16).

3. Numerical radius and Cartesian decomposition
The main aim of this section is to obtain an upper bound for numerical

radius by means of the Cartesian decomposition of operators.

Theorem 3.1. Let Aj P BpHq have the Cartesian decomposition Aj “
Bj ` iCj for j “ 1, ¨ ¨ ¨ , n and r ≥ 1. Then

(17) ωr
´

n
ÿ

j“1

Aj

¯

≤ p
?
2 nqr´1

n
ÿ

j“1

›

›|Bj |
2r ` |Cj |

2r
›

›

1
2 .
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Proof. For any unit vector x P H, we have

ˇ

ˇ

ˇ

A

n
ÿ

j“1

Ajx, x
Eˇ

ˇ

ˇ

r
≤

´

n
ÿ

j“1

´

xBjx, xy
2
` xCjx, xy

2
¯

1
2
¯r

≤
´

n
ÿ

j“1

`@

|Bj |
2x, x

D

`
@

|Cj |
2x, x

D˘
1
2

¯r
by Lemma 2.2 for α “ 1

≤ nr´1
n
ÿ

j“1

´

@

|Bj |
2x, x

D

`
@

|Cj |
2x, x

D

¯
r
2 by Lemma 2.3

≤ p
?
2 nqr´1

n
ÿ

j“1

´

@

|Bj |
2x, x

Dr
`
@

|Cj |
2x, x

Dr
¯

1
2 by Lemma 2.3

≤ p
?
2 nqr´1

n
ÿ

j“1

´

@

|Bj |
2rx, x

D

`
@

|Cj |
2rx, x

D

¯
1
2

by Lemma 2.1.

Therefore

ωr
´

n
ÿ

j“1

Aj

¯

“ sup
!ˇ

ˇ

ˇ

A

n
ÿ

j“1

Ajx, x
Eˇ

ˇ

ˇ

r
: x P H, }x} “ 1

)

≤ p
?
2 nqr´1

n
ÿ

j“1

›

›|Bj |
2r ` |Cj |

2r
›

›

1
2 .

In particular, when n “ 1, we get to the following result.

Corollary 3.2. Let A P BpHq have the Cartesian decomposition A “

B ` iC. Then

ωrpAq ≤ 2
r´1
2

›

›|B|2r ` |C|2r
›

›

1
2 r ≥ 1.(18)

In [6], the authors proved that

ωrpAq ≤ }|B|r ` |C|r} 0 ≤ r ≤ 2.(19)

Therefore, if 1 ≤ r ≤ 2 and |C|r|B|r “ |B|r|C|r, then

p|B|r ` |C|rq2 “ B2r ` C2r ` |B|r|C|r ` |C|r|B|r ≥ B2r ` C2r ≥ 0.

So that in this case, inequality (18) is sharper than (19).

Theorem 3.3. Let Aj P BpHq have the Cartesian decomposition Aj “
Bj ` iCj for j “ 1, . . . , n and r ≥ 1. Then

ωr
´

n
ÿ

j“1

Aj

¯

≤ nr´12
r
2
´1

n
ÿ

j“1

›

›

›
|Bj ` Cj |

2r
` |Bj ´ Cj |

2r
›

›

›

1
2
.
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Proof. For every unit vector x in H, we have
ˇ

ˇ

ˇ

A

n
ÿ

j“1

Ajx, x
Eˇ

ˇ

ˇ

r
≤

´

n
ÿ

j“1

pxBjx, xy
2
` xCjx, xy

2
q
1
2

¯r

≤

˜

n
ÿ

j“1

´1

2

´

xpBj ` Cjqx, xy
2
` xpBj ´ Cjqx, xy

2
¯¯

1
2

¸r

≤ nr´12
´r
2

n
ÿ

j“1

´

xpBj ` Cjqx, xy
2
` xpBj ´ Cjqx, xy

2
¯

r
2 by Lemma 2.3

≤ nr´12
´r
2

n
ÿ

j“1

´

@

|Bj ` Cj |
2x, x

D

`
@

|Bj ´ Cj |
2x, x

D

¯
r
2 by Lemma 2.2

≤ nr´12
r
2
´1

n
ÿ

j“1

´

@

|Bj ` Cj |
2x, x

Dr
`
@

|Bj ´ Cj |
2x, x

Dr
¯

1
2 by Lemma 2.3

≤ nr´12
r
2
´1

n
ÿ

j“1

´

@

|Bj ` Cj |
2rx, x

D

`
@

|Bj ´ Cj |
2rx, x

D

¯
1
2 by Lemma 2.1.

If follows from the above inequality that

ωr
´

n
ÿ

j“1

Aj

¯

≤ nr´12
r
2
´1

n
ÿ

j“1

›

›

›
|Bj ` Cj |

2r
` |Bj ´ Cj |

2r
›

›

›

1
2
.

In particular for n “ 1, we have the following result.
Corollary 3.4. Let A “ B` iC be the Cartesian decomposition of A and
r ≥ 1. Then

ωrpAq ≤ 2
r
2
´1

›

›pB ` Cq2r ` pB ´ Cq2r
›

›

1
2 .(20)

Remark 3.5. Kittaneh has shown in [6] that

ωrpAq ≤ 1

2
}|B ` C|r ` |B ´ C|r} for r ≥ 2.(21)

Note that the inequality (20) holds for each r ≥ 1, while (21) gives an upper
bound for ωrpAq only when r ≥ 2.
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