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ON THE NEMYTSKII OPERATOR IN THE SPACE OF
FUNCTIONS OF BOUNDED pp, 2, αq-VARIATION WITH

RESPECT TO THE WEIGHT FUNCTION

Abstract. In this paper, we consider the Nemytskii operator
`

Hf
˘

ptq “ hpt, fptqq,
generated by a given function h. It is shown that if H is globally Lipschitzian and maps
the space of functions of bounded pp, 2, αq-variation (with respect to a weight function α)
into the space of functions of bounded pq, 2, αq-variation (with respect to α) 1 ă q ă p,
then H is of the form

`

Hf
˘

ptq “ Aptqfptq `Bptq. On the other hand, if 1 ă p ă q then H
is constant. It generalize several earlier results of this type due to Matkowski–Merentes
and Merentes. Also, we will prove that if a uniformly continuous Nemytskii operator maps
a space of bounded variation with weight function in the sense of Merentes into another
space of the same type, its generator function is an affine function.

1. Introduction
Let I, J Ă R be intervals. By JI , we denote the set of all functions

f : I Ñ J . For a given function h : I ˆ J Ñ R, the mapping H : JI Ñ RI
defined by

pHfqptq :“ hpt, fptqq, f P JI , t P I,

is called a superposition operator (sometimes also composition operator, sub-
stitution operator, or Nemytskii operator) generated by h. The superposition
operators play an important role in the theory of differential equations, in-
tegral equations and functional equations. In 1982, J. Matkowski showed
(cf. [9]) that a composition operator mapping the function space LippI,Rq
pI “ r0, 1sq into itself is Lipschitzian with respect to the Lipschitzian norm
if and only if its generator h has the form

(1) hpt, yq “ Aptqy `Bptq, t P I, y P R,
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for some A,B P LippI,Rq. This result was extended to a lot of spaces by
J. Matkowski and others.

In [12], N. Merentes and K. Nikodem showed that Nemystkii operator H,
generated by a set-valued function h, mapping the space of functions of
bounded p-variation p1 ă p ă 8q into the space of set-valued functions of
bounded p-variation and globally Lipschitzian, has to be of the form (1),
where Aptq is a linear continuous set-valued function and B is a set-valued
function of bounded p-variation. In 2000, V. V. Chistyakov in [4] proved
that Lipschtzian Nemystkii operators H, which map between spaces of real
valued functions of bounded generalized variation of Riesz–Orlicz type in-
cluding weight, are of the form (1), where A and B are functions of bounded
generalized variation of Riesz–Orlicz type including weight.

The aim of this paper is to prove an analogous result in the case when
the Nemytskii operator H maps the space of set-valued functions of bounded
p-variation in the sense of Riesz with respect to the weight α into the space of
set-valued functions of bounded q-variation in the sense of Riesz with respect
to the weight α, where 1 ă q ≤ p ă 8 and H is globally Lipschitzian. The
particular case p “ q has been already considered by authors in [10, 12, 13, 19,
20], but the present case of possibly different spaces requires a different proof
technique and this extension may turn out to be useful in some applications.

In the present paper, we will extend the concept of bounded pp, 2q-
variation, 1 ă p ă `8, and will prove a characterization of the class
AC2

p ra, bs in terms of this concept. AC2
p,αra, bs is the class of functions

f : ra, bs Ñ R, for which f 1 is absolutely continuous on ra, bs and f2 P
Lp,αra, bs. Moreover, the pp, 2, αq-variation of a function f on ra, bs is given
by }f2}pLp,αra,bs, that is

V 2
p,αpf, ra, bsq “

›

›f2
›

›

p

Lp,αra,bs
.

So, the obtained characterization can be considered as a "natural" gen-
eralization of that the given by [17] for the class ACp,αra, bs. This results
will provide us with an alternative characterization for the Sobolev space
W 2
p,αra, bs.

2. Preliminary results
The section is devoted to present some auxiliary facts, which will be used

later on.
Let

`

X, } ¨ }
˘

be a normed space and p ≥ 1 be a fixed number. Given
α : ra, bs Ñ R, a fixed continuous strictly increasing function called a weight,
f : ra, bs Ñ X and a partition π : a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b of the interval
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ra, bs, we define:

σp,αpf ;πq :“
n
ÿ

i“1

}fptiq ´ fpti´1q}
p

|αptiq ´ αpti´1q|p´1
.

The number:
Vp,αpf, ra, bsq :“ sup

π
σp,αpf, πq,

where the supremum is taken over all partitions π of ra, bs, is called the
p-variation in the sense of Riesz of the function f with respect to the weight
function α (cf. [4]). A function f is said to be of bounded p-variation if
Vp,αpf, ra, bsq ă `8. Denote by RVp,αpra, bs;Xq, the space of all functions
f : ra, bs Ñ X of bounded p-variation in the sense of Riesz with respect to
the weight function α equipped with the norm

}f}p :“ }fpaq} `
`

Vp,αpf, ra, bsq
˘1{p

.

F. Riesz [17] introduced the so-called Riesz class Apra, bs p1 ă p ă `8q
in the following way:

Lemma 2.1. [17] A real function f defined on the interval ra, bs belongs to
the class Apra, bs p1 ă p ă `8q if and only if Vppfq ă `8 and f 1 P Lpra, bs.
Moreover:

Vppfq “ }f
1}
p
Lpra,bs

.

A. M. Russell and R. Castillo (cf. [18, 1]) generalized the definition
introduced by De la Vallée Poussin [15] in the following way. Let α : ra, bs Ñ
R be a continuous and strictly monotonic weight function, and let π denote
a partition of the interval ra, bs of the form

(2) π : a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b.

For a function f : ra, bs Ñ R put

σ2αpf ;πq :“
n´1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

fpti`1q ´ fptiq

αpti`1q ´ αptiq
´
fptiq ´ fpti´1q

αptiq ´ αpti´1q

ˇ

ˇ

ˇ

ˇ

ˇ

and
V 2
α pfq :“ sup

π
σ2αpf ;πq,

where the supremum is taken over all partitions π of the form (2).
The number V 2

α pfq is called De la Vallée Poussin second variation of the
function f on ra, bs with respect to the weight function α.

If V 2
α pfq ă `8, the function f is said to be of p2, αq-bounded variation.

The set of all these functions will be denoted by BC2
αra, bs. The class

BC2
αra, bs is a Banach space equipped with the norm

}f}BC2
αra,bs

“ |fpaq| ` |f 1αpaq| ` V
2
α pfq.
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With the implementation of the weight function (α P Rra,bs) in the defi-
nition given by De la Vallée Poussin for functions of bounded variation [15],
we considerably generalize the results on [6, 11, 14].

Definition 2.2. Let α : ra, bs Ñ R be a continuous and strictly monotonic
function. A function f : ra, bs Ñ R is called α-Lipschitz if there is M ą 0
such that

|fpxq ´ fpyq| ≤M |αpxq ´ αpyq| px, y P ra, bs, x ‰ yq.

By α-Lipra, bs, we will denote the space of functions which are α-Lipschitz.
If f P α-Lipra, bs, we define

Lipαpfq “ inftM ą 0 : |fpxq ´ fpyq| ≤M |αpxq ´ αpyq|, x ‰ y P ra, bsu

and α-Lipra, bs equipped with the norm

}f}α-Lipra,bs “ |fpaq| ` Lipαpfq

is a Banach space.

Definition 2.3. [18, Definition 4] Let α : ra, bs Ñ R be a continuous and
strictly monotonic function. A function f : ra, bs Ñ R is called α-convex if
for every x, y P ra, bs such that a ≤ x ă z ă y ≤ b, it satisfies

fpyq ≤ αpyq ´ αpxq

αpzq ´ αpxq
fpzq `

αpzq ´ αpyq

αpzq ´ αpxq
fpxq.

Lemma 2.4. [18, Theorem 1.1] If V 2
α pfq ă `8, then there exists a non-

negative constant M such that

|fpxq ´ fpyq| ≤M |αpxq ´ αpyq|; px, y P ra, bs, x ‰ yq

and the function f can be expressed as a difference of two α-convex functions.

Theorem 2.5. [18, Lemma 1.6] Let f : ra, bs Ñ R be an α-convex function
and a ≤ x ă y ă z ≤ b. Then

fαrx, ys ≤ fαrx, zs ≤ fαry, zs,

where fαrx, ys “
fpyq ´ fpxq

αpyq ´ αpxq
.

The α-convexity of f implies the function

fρα :
 

ra, bsztα, ρu
(

Ñ R; fραptq “ fαrt, ρs “
fptq ´ fpρq

αptq ´ αpρq
,

t, ρ P ra, bs, t ‰ ρ,

increases with respect to t and ρ. It follows that there exist the lateral limits
of function f t0α , for every t0 in ra, bs:

(3) fραpρ
`q “ lim

tÑρ`
fραptq “ lim

tÑρ`
fαrt, ρs “ lim

tÑρ`

fptq ´ fpρq

αptq ´ αpρq
“ f 1α`pρq,
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and

(4) fραpρ
´q “ lim

tÑρ´
fραptq “ lim

tÑρ´
fαrt, ρs “ lim

tÑρ´

fptq ´ fpρq

αptq ´ αpρq
“ f 1α´pρq.

Moreover
f 1α`paq ≤ fαrx, ys ≤ f 1α´pbq.

Definition 2.6. Let
`

ra, bs,
ř

, µα
˘

be a measure space equipped with the
Lebesgue–Stieltjes measure. A measurable function f : ra, bs Ñ R is said to
be in Lp,αra, bs for 1 ≤ p ă `8 if

ż b

a
|f |pdα ă `8.

Moreover, let α be a function strictly increasing and continuous in ra, bs.
A set E Ă ra, bs of α-measure pµαq zero is a set of values x P ra, bs, which
can be covered by a finite number or by a denumerable sequence of intervals
whose total length (i.e. the sum of the individual lengths respect to α) is
arbitrarily small (cf. [16], §25).

Definition 2.7. [2, 3] A function f : ra, bs Ñ R is said to be absolutely
continuous with respect to α if for every ε ą 0, there exists some δ ą 0 such
that if

 

paj , bjq
(n

j“1
is a class of disjoint open subintervals of ra, bs then

n
ÿ

j“1

|αpbjq ´ αpajq|
p ≤ δ implies

n
ÿ

j“1

|fpbjq ´ fpajq|
p ≤ ε.

Thus, the collection α-ACpra, bs of all α-absolutely continuous functions
on ra, bs is a function space and an algebra of functions.

3. Some results
In this section, we introduce the extension of the notion of Riesz pp, 2, αq-

variation and we give a result similar to Lemma 2.1, for the class α-AC2
p ra, bs

p1 ă p ă 8q in terms of this concept. α-AC2
p ra, bs is the class of functions

f : ra, bs Ñ R, for which f 1 is absolutely continuous on ra, bs with respect to a
function α strictly increasing, and f2 P Lp,αra, bs. Also the pp, α, 2q-variation
of a function f on ra, bs is given by }f2}pLp,αra,bs, that is

V 2
pp,αqpf ; ra, bsq “ }f2}pLp,αra,bs.

Let f : ra, bs Ñ R and 1 ă p ă `8. For a given partition π of the form
a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b, let

σ2pp,αqpf ;πq :“
n´1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

fpti`1q ´ fptiq

αpti`1q ´ αptiq
´
fptiq ´ fpti´1q

αptiq ´ αpti´1q

ˇ

ˇ

ˇ

ˇ

ˇ

p
1

ˇ

ˇαpti`1q ´ αpti´1q
ˇ

ˇ

p´1
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and
V 2
pp,αqpf ; ra, bsq :“ sup

π
σ2pp,αqpf ;πq,

where the supremum is taken over all partitions π of the interval ra, bs, is
called the pp, 2, αq-variation of the function f on ra, bs with respect the weight
function α. If V 2

pp,αqpf ; ra, bsq ă `8, the function is said to have bounded
(or finite) Merentes pp, 2, αq-variation and the set BV 2

pp,αqra, bs shall denote
the Banach space of all functions f for which the norm

›

›f
›

›

pp,2,αq
:“ |fpaq| ` |f 1paq| `

”

V 2
pp,αqpf ; ra, bsq

ı1{p

is finite.
Importantly, this variation, which is a combination of the notions of

bounded variation in the sense of Riesz and bounded variation in the sense
of De la Vallée Poussin, was introduced by Merentes [14] in 1992. We in-
clude a weight function α P r0,`8qr0,`8q, which is strictly increasing in the
definition to prove some analogous results to those obtained in [11, 14].

The motivation for our work is due to the results of N. Merentes [14],
J. Matkowski and N. Merentes [11], T. Kostrzewski [6, 7] and V. V. Chistya-
kov [4].

Lemma 3.1. If there is p P p1,`8q such that V 2
pp,αqpf ; ra, bsq ă `8 then f

has second variation and

V 2
α pf ; ra, bsq ≤

”

V 2
pp,αqpf ; ra, bsq

ı
1
p
|αpbq ´ αpaq|

1´ 1
p .

Proof. Let π : a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b be a partition of ra, bs. Then by
Hölder’s inequality, we obtain

n´1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

fpti`1q ´ fptiq

αpti`1q ´ αptiq
´
fptiq ´ fpti´1q

αptiq ´ αpti´1q

ˇ

ˇ

ˇ

ˇ

ˇ

|αpti`1q ´ αpti´1q|
1´ 1

p

|αpti`1q ´ αpti´1q|
1´ 1

p

≤

«

n´1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

fpti`1q ´ fptiq

αpti`1q ´ αptiq
´
fptiq ´ fpti´1q

αptiq ´ αpti´1q

ˇ

ˇ

ˇ

ˇ

ˇ

p
1

|αpti`1q ´ αpti´1q|p´1

ff
1
p

ˆ

«

n´1
ÿ

i“1

|αpti`1q ´ αpti´1q|

ff1´ 1
p

.

Thus

V 2
α pf ; ra, bsq ≤

”

V 2
pp,αqpf ; ra, bsq

ı
1
p
|αpbq ´ αpaq|

1´ 1
p .

By Lemmas 2.1, 2.4, and 3.1, we have
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Corollary 3.2. }f}BC2
αra,bs

≤
›

›f
›

›

pp,2,αq
, f P BV 2

pp,αqpra, bsq and

BV 2
pp,αqpra, bsq ↪Ñ BC2

αra, bs ↪Ñ α-Lipra, bs.

Corollary 3.3. If V 2
pp,αqpf ; ra, bsq ă `8 p1 ă p ă `8q, then f is α-

absolutely continuous on ra, bs and f can be expressed as a difference of two
α-convex functions.

Lemma 3.4. If a ă c ă b then

V 2
pp,αqpf ; ra, bsq ≥ V 2

pp,αqpf ; ra, csq ` V 2
pp,αqpf ; rc, bsq.

Proof. This follows readily from definition of V 2
pp,αqpf ; ra, bsq.

Lemma 3.5. If V 2
pp,αqpf ; ra, bsq ă `8 p1 ă p ă `8q, then there exists the

derivative f 1αpρq for all ρ P pa, bq.

Proof. By Corollary 3.3 and the consequences of Theorem 2.5, we obtain
the existence of a right hand derivative f 1α`pρq (see (3)) for all ρ P ra, bq and
the left hand derivative f 1α´pρq (see (4)) for all ρ P pa, bs. Suppose that there
exists ρ P pa, bq such that

δρ :“
ˇ

ˇf 1α`pρq ´ f
1
α´pρq

ˇ

ˇ ą 0.

By the definition of pp, 2, αq-variation, we have

V 2
pp,αqpf ; ra, bsq ≥ lim

hÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

fpρ` hq ´ fpρq

αpρ` hq ´ αpρq
´
fpρq ´ fpρ´ hq

αpρq ´ αpρ´ hq

ˇ

ˇ

ˇ

ˇ

ˇ

p
1

2p|∆α|p´1

“
|δρ|

p

2p´1
¨ lim
hÑ0

1

|∆α|p´1
“ `8,

where ∆α “ αpρ`hq´αpρ´hq. Consequently, the function f has a derivative
f 1αpρq for all ρ P pa, bq.

Remark 3.6. We follow the same notation presented by De la Vallée Pois-
son and we put BV 2

p,αra, bs “ RVp,αra, bs.

Lemma 3.7. If V 2
pp,αqpf ; ra, bsq ă `8 p1 ă p ă `8q then f 1αPBV 2

pp,αqra, bs.
Moreover

Vp,αpf
1
α; ra, bsq ≤ V 2

pp,αqpf ; ra, bsq.

Thus, f 1α P α-ACpra, bs and f2α P Lp,αra, bs, i.e., f P α-AC2
p ra, bs.

Proof. Let π : a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b be a partition of ra, bs. Let h ą 0
be such that

0 ă h ≤ min

#

αptiq ´ αpti´1q

2

+n

i“1

.
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We have
n´1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

fptiq ´ fpti ´ hq

αptiq ´ αpti ´ hq
´
fpti ` hq ´ fptiq

αpti ` hq ´ αptiq

ˇ

ˇ

ˇ

ˇ

ˇ

p
1

|αptiq ´ αpti´1q|p´1

≤ V 2
pp,αqpf ; ra, bsq.

Hence, letting hÑ 0, and by Lemma 3.5, we obtain
n´1
ÿ

i“1

|f 1αpti`1q ´ f
1
αptiq|

p

|αpti`1q ´ αptiq|p´1
≤ V 2

pp,αqpf ; ra, bsq.

Now, by Lemma 2.1, we have f 1α P RVp,αra, bs and thus,

Vp,αpf
1
α; ra, bsq “ }f2}pLp,αra,bs ≤ V

2
pp,αqpf ; ra, bsq.

Corollary 3.8. If f P BV 2
pp,αqra, bs then f

1
α P α-ACpra, bs. Moreover

›

›f2α
›

›

p

Lp,αra,bs
≤ V 2

pp,αqpfq.

Corollary 3.9. If f 1α is α-absolutely continuous on ra, bs, f 1αPα-ACpra, bs,
p1 ă p ă `8q then f P BV 2

pp,αqra, bs. Moreover

V 2
pp,αqpf ; ra, bsq ≤

›

›f2α
›

›

p

Lp,αra,bs
.

Proof. Let π : a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b be a partition of ra, bs. Since we
may assume that f 1α is continuous on ra, bs, we have

ˇ

ˇ

ˇ

ˇ

ˇ

fpti`1q ´ fptiq

αpti`1q ´ αptiq
´
fptiq ´ fpti´1q

αptiq ´ αpti´1q

ˇ

ˇ

ˇ

ˇ

ˇ

p

“
ˇ

ˇf 1αpρ
`
i q ´ f

1
αpρ

´
i q
ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż ρ`
i

ρ´
i

f2αpτqdpτq

ˇ

ˇ

ˇ

ˇ

ˇ

p

≤
ż ti

ti´1

ˇ

ˇf2αpτqdτ
ˇ

ˇ

p
¨
ˇ

ˇαptiq ´ αpti´1q
ˇ

ˇ

p´1
,

where ρ`i and ρ´i are points in the intervals pti, ti`1q and pti´1, tiq, respec-
tively.

Thus

V 2
pp,αqpf ; ra, bsq :“ sup

π
σ2pp,αqpf ; ra, bsq ≤

›

›f2α
›

›

p

Lp,α
.

By Lemma 3.7 and Corollary 3.9, we obtain the main results:

Theorem 3.10. A real function f defined on the interval ra, bs belongs to
the class α-AC2

p ra, bs, 1 ă p ă `8, if and only if f P BV 2
pp,αqra, bs. Moreover

V 2
pp,αqpf ; ra, bsq “

›

›f2α
›

›

p

Lp,αra,bs
“

ż b

a

ˇ

ˇ

ˇ
f2αpξq

ˇ

ˇ

ˇ

p
dαpξq.

Analogously, we shall obtain the following embedding

BV 2
pp,αqra, bs ↪Ñ RVp,αra, bs, p1 ă p ă `8 and α P Cra, bs increassingq
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i.e., there exists a constant M ą 0 such that

(5) }f}p ≤M}f}pp,2,αq, pf P BV 2
pp,αqra, bsq.

4. Main results
In this section, we shall present a characterization of functions

h : ra, bs ˆ RÑ R, for which the Nemytskii operator H “ Hh, generated by
h, maps the space BV 2

pp,αqra, bs into BV
2
pq,αqra, bs, where 1 ă q ă p, and is

globally Lipschitzian. On the other hand, if 1 ă p ă q then the Nemytskii
operator H is constant. We present the first theorem:

Theorem 4.1. Let 1 ă q ă p and α P AC2
p ra, bs. Then the Nemytskii oper-

ator H generated by a function h : ra, bsˆRÑ R maps the space BV 2
pp,αqra, bs

into space BV 2
pq,αqra, bs and if it is globally Lipschitzian, i.e., there exists a

constant M ą 0 such that
›

›

›
Hf1 ´Hf2

›

›

›

pq,2,αq
≤M}f1 ´ f2}pp,2,αq, f1, f2 P BV

2
pp,αqra, bs

if and only if

hpt, xq “ Aptqx`Bptq, t P ra, bs, x P R,

where A,B P BV 2
pq,αqra, bs.

Proof. Since H : BV 2
pp,αqra, bs Ñ BV 2

pq,αqra, bs is globally Lipschitzian and
the embedding (5) holds, there exist constants M ą 0 and N ą 0 such that

›

›

›
Hf1 ´Hf2

›

›

›

q
≤ N

›

›

›
Hf1 ´Hf2

›

›

›

pq,2,αq
≤M}f1 ´ f2}pp,2,αq,

where f1, f2 P BV 2
pp,αqra, bs.

Fix t, t1 P ra, bs, t ă t1; let y1, y2, y11, y12 P R and define two polynomial
functions ui : ra, bs Ñ R i “ 1, 2 by

uipsq :“
y1i ´ yi

αpt1q´αptq

„

pαpsq´αpaqq2`

ˆ

1´
pαpt1q ´ αpaqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

pαpsq ´ αpaqq ´ pαptq ´ αpaqq2 ´

ˆ

1´
pαpt1q ´ αpaqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

pαptq ´ αpaqq



` yi, s P ra, bs.

Also, ui satisfies the following conditions uiptq “ yi, uipt1q “ y1i, for i “ 1, 2.
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Moreover

puipsqq
1 “

py1i ´ yiq

αpt1q ´ αptq

ˆ

”

2pαpsq ´ αpaqq `

ˆ

1´
pαpt1q ´ αptqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

α1psq

and

puipsqq
2 “

y1i ´ yi
αpt1q ´ αptq

„

2pα1psqq2 ` pαpsq ´ αpaqqα2psq

`

ˆ

1´
pαpt1q ´ αptqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

α2psq



for every s P ra, bs, i “ 1, 2. So puiq1 P α-AC2
p,αra, bs and verifies

ż b

a

ˇ

ˇ

ˇ

ˇ

y1i ´ yi
αpt1q ´ αptq

„

2pα1psqq2 ` pαpsq ´ αpaqqα2psq

`

ˆ

1´
pαpt1q ´ αptqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

α2psq

ˇ

ˇ

ˇ

ˇ

p

dαpsq ă `8, i “ 1, 2

by applying Hölder and Minkowski’s inequalities.
Then the functions ui P BV 2

pp,αqra, bs, i “ 1, 2 (see Thm. 3.10) and

pu1 ´ u2qpaq “ y1 ´ y2 ´
y11 ´ y1 ´ y

1
2 ` y2

αpt1q ´ αptq
pαptq ´ αpaqq

„

pαptq

´ αpaqq `

ˆ

1´
pαpt1q ´ αptqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

and

pu1´u2q
1paq “

y11´ |!y1´y
1
2`y2

αpt1q ´ αptq

ˆ

1´
pαpt1q ´ αptqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

α1paq.

Also

pu1 ´ u2q
1psq “

y11 ´ y1 ´ y
1
2 ` y2

αpt1q ´ αptq

„

2pαpsq ´ αpaqq

`

ˆ

1´
pαpt1q ´ αpaqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

α1psq, s P ra, bs,

}pu1 ´ u2q
1}8 ≤ L1

ˇ

ˇ

ˇ
y11 ´ y1 ´ y

1
2 ` y2

ˇ

ˇ

ˇ
; L1 “ 2|αpbq ´ αpaq|}α1}8,

and
}pu1 ´ u2q

2}q8 ≤ L
q
2|y

1
1 ´ y1 ´ y

1
2 ` y2|

q;

where L2 “ pαpbq ´ αpaqq
“

2}α1}8 ` |1 ` αpbq ´ αpaq|}α2}8
‰

. So, Hu1 and
Hu2 are in BVpp,αqra, bs Ă α-Lipra, bs. Moreover
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pHuiqptq “ hpt, uiptqq “ hpt, yiq, i “ 1, 2

and
pHuiqpt

1q “ hpt1, uipt
1qq “ hpt1, y1iq, i “ 1, 2,

which we may rewrite in the form

pHu1 ´Hu2qpt
1q ´ pHu1 ´Hu2qptq

αpt1q ´ αptq
≤ K}Hu1 ´Hu2}α´Lpra,bs

≤ KL}u1 ´ u2}BCp,αra,bs.

Substituting, we have

|hpt1, y11q ´ hpt
1, y12q ´ hpt, y1q ` hpt, y2q|

q

|αpt1q ´ αptq|q´1

≤ KL
„ˇ

ˇ

ˇ

ˇ

y1 ´ y2 ´
y11 ´ y1 ´ y

1
2 ` y2

αpt1q ´ αptq
pαptq ´ αpaqq

ˆ

pαptq ´ αpaqq

`

ˆ

1´
pαpt1q ´ αpaqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙˙ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

y11 ´ y
1
2 ´ y1 ` y2

αpt1q ´ αptq

ˆ

1´
pαpt1q ´ αpaqq2 ´ pαptq ´ αpaqq2

αpt1q ´ αptq

˙

α1paq

ˇ

ˇ

ˇ

ˇ

` L2

ˇ

ˇy11 ´ y
1
2 ´ y1 ` y2

ˇ

ˇ



,

multiplying the inequality by |αpt1q ´ αptq| and applying the triangular in-
equality, we get
ˇ

ˇhpt1, y11q ´ hpt
1, y12q ´ hpt, y1q ` hpt, y2q

ˇ

ˇ

q

≤ KL
”

|y1 ´ y2|
q|αpt1q ´ αptq|q´1 ` `1|y

1
1 ´ y

1
2 ´ y1 ` y2|

q|αptq ´ αpaq|q

` `2|y
1
1 ´ y

1
2 ´ y1 ` y2|

q|αpbq ´ αpaq|q ` Lp2|y
1
1 ´ y

1
2 ´ y1 ` y2|

q
ı

,

for every fixed y P R, the constant function u0ptq “ y, t P ra, bs belongs to
BV 2

pp,αqra, bs, and from hypothesis Hu0ptq “ hpt, u0ptqq “ hpt, yq belongs to
BV 2

pp,αqra, bs. Consequently, hp¨, yq is continuous on ra, bs. Therefore, letting
t1 Ñ t in the above inequality and considering the continuity of the α, we
obtain

(6)
ˇ

ˇhpt1, y11q ´ hpt
1, y12q ´ hpt, y1q ` hpt, y2q

ˇ

ˇ ≤ 4N |y11 ´ y
1
2 ´ y1 ` y2|,

for all t P ra, bs and y1, y2, y11, y12 P R.
Let us fix t P ra, bs and define the function Pt : R Ñ R by Ptpyq :“

hpt, yq ´ hpt, 0q.
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Setting y1 “ v ` w, y2 “ v, y11 “ w and y12 “ 0 in the inequality (6), we
get

hpt, v ` wq “ hpt, vq ` hpt, wq ` hpt, 0q

rewritten in terms of Pt, results Ptpv`wq “ Ptpvq`Ptpwq v, w P R. Setting
y11 “ y12 “ 0 in the inequality (6), we obtain

|Ptpy1q ´ Ptpy2q| ≤ 4N |y1 ´ y2|, y1, y2 P R.

Thus, the function Pt is additive and continuous on R, consequently is
linear on R and there exists a function A : ra, bs Ñ R such that Ptpyq “ Aptqy,
y P R. Defined the function B : ra, bs Ñ R by Bptq “ hpt, 0q, t P ra, bs, it
follows from the definition of Pt that

hpt, yq “ Aptqy `Bptq, t P ra, bs, y P R.

Since the composition operator H maps the space BV 2
pp,αqra, bs into

BV 2
pq,αqra, bs, the function Bp¨q “ hp¨, 0q belongs to BV 2

pq,αqra, bs, and the
function Ap¨q “ hp¨, 1q ´ hp¨, 0q also belongs to BV 2

pq,αqra, bs. Thus the func-
tion h has the following form

hpt, yq “ Aptqy `Bptq, t P ra, bs, y P R,

where A,B P BV 2
pq,αqra, bs.

Reciprocally, if we suppose that the function h is additive; i.e., hpt, yq “
Aptqy `Bptq, where A,B P BV 2

pq,αqra, bs is an algebra, we get

}Hf1 ´Hf2}pp,2,αq ≤ }A}pq,2,αq}f1 ´ f2}pq,2,αq f1, f2 P BV 2
pq,αqra, bs.

Therefore, the composition operator H generated by the function h maps
the space BV 2

pp,αqra, bs into BV 2
pq,αqra, bs and satisfies the global Lipschitz

condition.

5. Uniformly continuous composition operator
Now we shall weaken the hypothesis of Theorem 4.1 and we get a propo-

sition that holds only the necessary condition for the Composition Operator.
For this we need to recall some definitions and results that we will use for
this purpose.

We shall say

ppfq :“ ppf ; ra, bsq “ inf
!

ε ą 0 : V 2
pp,αqpf{εq ≤ 1

)

; f P BV 2
pp,αqra, bs,

so
}f}pp,2,αq :“ |fpaq| ` |f 1paq| ` rppfqs1{p.
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Lemma 5.1. Let f P BV 2
pp,αqra, bs and 1 ă p ă `8. We have:

(1) if ppfq ą 0, then V 2
pp,αqpf{ppfqq ≤ 1;

(2) if ρ ą 0, then V 2
pp,αqpf{ρq ≤ 1 iff ppfq ≤ ρ;

(3) if ρ ą 0 and V 2
pp,αqpf{ρq ≤ 1, then ppfq “ ρ.

Proof. (1) The definition of ppfq implies V 2
pp,αq ≤ 1 for all ρ ą pppq. Choose

a sequence ρn ą ppfq, n P N, which converges to ppfq as n Ñ `8. Then
f{ρn Ñ f{ppfq uniformly on ra, bs. So that

V 2
pp,αq

`

f{ppfq
˘

≤ lim inf
nÑ`8

V 2
pp,αq

`

f{ρn
˘

≤ 1.

It follows that ppfq P tρ ą 0 : V 2
pp,αqpf{ppfqq ≤ 1u and

ppfq “ tρ ą 0 : V 2
pp,αqpf{ppfqq ≤ 1u.

(2) If V 2
pp,αqpf{ppfqq ≤ 1, the definition of ppfq implies ppfq ≤ ρ. If

ppfq “ ρ then V 2
pp,αqpf{ppfqq ≤ 1 by (1). Let us show that

(7) if ppfq ă 1 then V 2
pp,αqpf{ρq ă 1.

If ppfq “ 0, then f is a constant mapping and V 2
pp,αqpf{ρq “ 0, so assume

that ppfq ą 0. From the convexity of V 2
pp,αqpfq and item above, we have:

V 2
pp,αqpf{ρq ≤ ppfq{ρ V 2

pp,αqpf{ppfqq ≤ ppfq{ρ ă 1.

(3) Let V 2
pp,αq

´

f{ρ
¯

“ 1. By (2), if ppfq ą ρ then V 2
pp,αq

`

f
˘

ą 1, which
is impossible. Taking into account (7), we conclude that ppfq “ ρ.

Our second main result reads as follows:

Theorem 5.2. Let 1 ă q ă p ă `8 and h : ra, bs ˆ RÑ R. If a composi-
tion operator H, maps the space BV 2

pp,αqra, bs into BV
2
pq,αqra, bs generated by

h, is uniformly continuous, i.e.,
›

›Hf1 ´Hf2
›

›

q,α
≤ ωp

›

›f1 ´ f2
›

›

p,α
, f1, f2 P BV

2
pp,αqra, bs,

where ω : R` Ñ R` is the modulus continuity of H. Then

hpt, xq “ Aptqx`Bptq, t P ra, bs, x P R,
where A,B P BV 2

pq,αqra, bs.

Proof. For every x P R, the constant function uptq “ x, t P ra, bs belongs to
BV 2

pp,αqra, bs. Since the Nemytskii operator H maps the space BV 2
pp,αqra, bs

into BV 2
pq,αqra, bs, it follows that the function t ÞÑ hpt, uptqq “ hpt, xq belongs

to BV 2
pp,αqra, bs.
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The uniform continuity ofH onBVpp,αqra, bs and the embedding (5) imply

(8)
›

›Hf1 ´Hf2
›

›

q
≤ N

›

›Hf1 ´Hf2
›

›

q,α
≤ ωp

›

›f1 ´ f2
›

›

p,α
q,

where f1, f2 P BV 2
pp,αqra, bs and ω : R` Ñ R` is the modulus continuity of H,

i.e.

ωpβq :“ sup
 

}Hpf1q ´Hpf2q}q,α : }f1 ´ f2}p,α ≤ β; f1, f2 P BV
2
pp,αqra, bs

(

,

for β ą 0. From the definition of the norm } ¨ }p,α, we obtain

(9) p
`

Hpf1q ´Hpf2q
˘

≤ }Hpf1q ´Hpf2q}q,α,

for f1, f2 P BV 2
pp,αqra, bs. Hence, in view of Lemma 5.1 and (9), if p

`

Hpf1q´

Hpf2q
˘

≤ ω
`

}f1 ´ f2}p,α
˘

then

V 2
pp,αq

˜

Hpf1q ´Hpf2q

ω
`

}f1 ´ f2}p,α
˘

¸

≤ 1.

Fix t, t P ra, bs, t ă t; let y1, y2, y1, y2 P R and define two polynomial
functions ui : ra, bs Ñ R, i “ 1, 2 by

fipsq :“
yi ´ yi

αptq ´ αptq

„

pαpsq´αpaqq2`

ˆ

1´
pαptq ´ αpaqq2 ´ pαptq ´ αpaqq2

αptq ´ αptq

˙

pαpsq ´ αpaqq ´ pαptq ´ αpaqq2 ´

ˆ

1´
pαptq ´ αpaqq2 ´ pαptq ´ αpaqq2

αptq ´ αptq

˙

pαptq ´ αpaqq



` yi, s P ra, bs.

The inequality (8) for the above functions gives
›

›Hf1 ´Hf2
›

›

q
≤M

`

|y1 ´ y2|
q `

`

2q|y1 ´ y2 ´ y1 ` y2|
q
˘˘

where M “ KL.
Since fi satisfies the following conditions fiptq “ yi, fiptq “ yi, for i “ 1, 2;

then by definition of the norm } ¨ }p,α, we get
ˆ

ˇ

ˇhpt, f1ptqq ´ hpt, f2ptqq ´ hpt, f1ptqq ` hpt, f2ptqq
ˇ

ˇ

q

|
`

ωp}f1 ´ f2}qqqαptq ´ αptq|q´1

˙

≤ 2q´1M qp|y1 ´ y2|
q ` 2q|y1 ´ y2 ´ y1 ` y2|

qq

or equivalently
ˇ

ˇhpt, f1ptqq ´ hpt, f2ptqq ´ hpt, f1ptqq ` hpt, f2ptqq
ˇ

ˇ

q

≤ pωp}f1 ´ f2}qqq2q´1M q
`

|y1 ´ y2|
q ` 2q|y1 ´ y2 ´ y1 ` y2|

q
˘

|αptq ´ αptq|q.
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Passing to the limits on both sides of this inequality as αptq Õ αptq, we
get

(10)
ˇ

ˇhpt, f1ptqq ´ hpt, f2ptqq ´ hpt, f1ptqq ` hpt, f2ptqq
ˇ

ˇ ≤ 0.

Let us fix t P ra, bs and define the function Pt : R Ñ R by the following
formula

(11) Ptpsq :“ hpt, sq ´ hpt, 0q, s P R.
Setting

y1 “ w ` z, y2 “ w, y1 “ z, y2 “ 0

in the inequality (10), we have

(12) hpt, zq ´ hpt, 0q ´ hpt, w ` zq ` hpt, wq “ 0.

By using (11), we can write (12) in terms of the function Pt:

Ptpw ` zq “ Ptpwq ` Ptpzq, w, z P R.
Thus, for each t P ra, bs, the function Ptp¨q “ hpt, ¨q satisfies the Cauchy func-
tional equation in R. Modifying a little the standard argument (cf. Kuczma
[8]), we conclude that, for each t P ra, bs, there exist Aptq, Bptq P BC2

pq,αqra, bs

such that
hpt, sq “ Aptqs`Bptq.

The uniform continuity of operator H : BV 2
pp,αqra, bs Ñ BV 2

pq,αqra, bs implies
the continuity of the additive function Aptq. This completes the proof.
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