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ON THE NEMYTSKII OPERATOR IN THE SPACE OF
FUNCTIONS OF BOUNDED (p,2,a)-VARIATION WITH
RESPECT TO THE WEIGHT FUNCTION

Abstract. In this paper, we consider the Nemytskii operator (Hf) (t) = h(t, f(t)),
generated by a given function h. It is shown that if H is globally Lipschitzian and maps
the space of functions of bounded (p, 2, a)-variation (with respect to a weight function «)
into the space of functions of bounded (g, 2, a)-variation (with respect to a) 1 < ¢ < p,
then H is of the form (H f)(t) = A(t)f(t) + B(t). On the other hand, if 1 < p < g then H
is constant. It generalize several earlier results of this type due to Matkowski—-Merentes
and Merentes. Also, we will prove that if a uniformly continuous Nemytskii operator maps
a space of bounded variation with weight function in the sense of Merentes into another
space of the same type, its generator function is an affine function.

1. Introduction

Let I,J < R be intervals. By J!, we denote the set of all functions
f: 1 — J. For a given function h : I x J — R, the mapping H : J! — R/
defined by

(Hf)(t):=h(t, f(t)), fed, tel,

is called a superposition operator (sometimes also composition operator, sub-
stitution operator, or Nemytskii operator) generated by h. The superposition
operators play an important role in the theory of differential equations, in-
tegral equations and functional equations. In 1982, J. Matkowski showed
(cf. 9]) that a composition operator mapping the function space Lip(I,R)
(I =[0,1]) into itself is Lipschitzian with respect to the Lipschitzian norm
if and only if its generator h has the form

(1) h(t,y) = A(t)y + B(t), tel, yeR,
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for some A, B € Lip(I,R). This result was extended to a lot of spaces by
J. Matkowski and others.

In [12], N. Merentes and K. Nikodem showed that Nemystkii operator H,
generated by a set-valued function h, mapping the space of functions of
bounded p-variation (1 < p < o0) into the space of set-valued functions of
bounded p-variation and globally Lipschitzian, has to be of the form (1),
where A(t) is a linear continuous set-valued function and B is a set-valued
function of bounded p-variation. In 2000, V. V. Chistyakov in [4] proved
that Lipschtzian Nemystkii operators H, which map between spaces of real
valued functions of bounded generalized variation of Riesz—Orlicz type in-
cluding weight, are of the form (1), where A and B are functions of bounded
generalized variation of Riesz—Orlicz type including weight.

The aim of this paper is to prove an analogous result in the case when
the Nemytskii operator H maps the space of set-valued functions of bounded
p-variation in the sense of Riesz with respect to the weight « into the space of
set-valued functions of bounded g-variation in the sense of Riesz with respect
to the weight o, where 1 < ¢ < p < o0 and H is globally Lipschitzian. The
particular case p = ¢ has been already considered by authors in [10, 12, 13, 19,
20], but the present case of possibly different spaces requires a different proof
technique and this extension may turn out to be useful in some applications.

In the present paper, we will extend the concept of bounded (p,2)-
variation, 1 < p < 400, and will prove a characterization of the class
ACI% [a,b] in terms of this concept. AC;ﬂa[a, b] is the class of functions
f :[a,b] — R, for which f’ is absolutely continuous on [a,b] and f” €
Ly ola,b]. Moreover, the (p,2, a)-variation of a function f on [a,b] is given
by Hf”Hp , that is

Voa(Fla:0) =[£I, oy

So, the obtained characterization can be considered as a "natural" gen-
eralization of that the given by [17] for the class ACj o[a,b]. This results
will provide us with an alternative characterization for the Sobolev space
Wﬁa[a, b].

2. Preliminary results

The section is devoted to present some auxiliary facts, which will be used
later on.

Let (X, ] -|) be a normed space and p > 1 be a fixed number. Given

a: [a,b] — R, a fixed continuous strictly increasing function called a weight,
f :]a,b] - X and a partition 7 : a =ty < t; <--- < t, = b of the interval
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[a,b], we define:

N )~ )]
Tpalfim): Z la(t;) — alti_1)|P~1

The number:

Vp,a(fv [a7 b]) = Sl7lrp Up,a(fa 7['),

where the supremum is taken over all partitions 7 of [a,b], is called the
p-variation in the sense of Riesz of the function f with respect to the weight
function « (cf. [4]). A function f is said to be of bounded p-variation if
Vp.a(f,[a,b]) < +o0. Denote by RV, +([a,b]; X), the space of all functions
f i [a,b] > X of bounded p-variation in the sense of Riesz with respect to
the weight function « equipped with the norm

1
17y = 1@+ (Vpa(f, [, 01) 7
F. Riesz [17] introduced the so-called Riesz class Ay[a,b] (1 <p < +00)
in the following way:

LEMMA 2.1. [17] A real function f defined on the interval [a,b] belongs to
the class Apla,b] (1 < p < +o) if and only if V,(f) < +o0 and f' € Ly|a,b].
Moreover:

Volf) = 1710 o

A. M. Russell and R. Castillo (cf. [18, 1]) generalized the definition
introduced by De la Vallée Poussin [15] in the following way. Let « : [a, b] —
R be a continuous and strictly monotonic weight function, and let 7 denote
a partition of the interval [a,b] of the form
(2) Tra=ty<t;<---<t,=b

For a function f : [a,b] — R put

| fien) = f() f(t) = f(tio)
2(f:m) = -
i~ o) —ate)  ali) ety

g

and

VI(f) = Sgpai(f;ﬂ),

where the supremum is taken over all partitions 7 of the form (2).

The number V2(f) is called De la Vallée Poussin second variation of the
function f on [a,b] with respect to the weight function a.

If V2(f) < 400, the function f is said to be of (2, a)-bounded variation.

The set of all these functions will be denoted by BC2[a,b]. The class
BC?2[a,b] is a Banach space equipped with the norm

| flBczian = [F(@)] + | fala)] + VZ(f).
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With the implementation of the weight function (o € RI*?) in the defi-
nition given by De la Vallée Poussin for functions of bounded variation [15],
we considerably generalize the results on [6, 11, 14].

DEFINITION 2.2. Let « : [a,b] — R be a continuous and strictly monotonic
function. A function f : [a,b] — R is called a-Lipschitz if there is M > 0
such that
[f(z) = f)| < Mla(z) —a(y)| (z,y € [a,b], z #y).

By a-Lipla, b], we will denote the space of functions which are a-Lipschitz.

If f € a-Lip|a,b], we define
Lipa(f) = inf{M > 0: |f(z) — f(y)| < M|a(z) — a(y)], z # y € [a, b]}

and a-Lip[a, b] equipped with the norm

| flla-Liplap) = |f(@)| + Lipa(f)
is a Banach space.
DEFINITION 2.3. [18, Definition 4| Let « : [a,b] — R be a continuous and
strictly monotonic function. A function f : [a,b] — R is called a-convex if
for every z,y € [a,b] such that a <z < z < y < b, it satisfies

oly) —olz) , | alz) ~oly)

fly) < —————f(2) + 7]“@)-

a(z) — a(z) a(z) — a(z)
LEMMA 2.4. [18, Theorem 1.1] If V2(f) < +o0, then there exists a non-
negative constant M such that

[f(z) = f(y)l < Mla(z) —a(y)l;  (z,y€[a,b], z#y)

and the function f can be expressed as a difference of two a-convex functions.

THEOREM 2.5. [18, Lemma 1.6] Let f : [a,b] — R be an a-convex function
anda <z <y<z<b. Then

falz,y] < falz, 2] < faly, 2],

_fy) - f(=)
where fo|z,y] = aly) —o(@)’
The a-convexity of f implies the function
: : _ _f#®) = f(p)
12 {lo Mo}y = B f200) = fultr) = =208,

t,p € la,b], t #p,

increases with respect to t and p. It follows that there exist the lateral limits
of function flo, for every t¢ in [a, b]:

(3) L") = lim fE(0) = lim_ fult,p] = lim I — £p)

2t o) —a(p) o)
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and

o . L TO=f)
(4)  fh(p )—tlir;g f@) = Jim falt, p] = Jim o) —alp) fo(p).
Moreover

forla) < folz,y] < fo- (D).

DEFINITION 2.6. Let ([a, b], >, ,u,a) be a measure space equipped with the
Lebesgue-Stieltjes measure. A measurable function f : [a,b] — R is said to
be in Ly 4[a,b] for 1 < p < +o0 if

b
Jyf\pda —

Moreover, let o be a function strictly increasing and continuous in [a, b].
A set E < [a,b] of a-measure (p,) zero is a set of values x € [a,b], which
can be covered by a finite number or by a denumerable sequence of intervals
whose total length (i.e. the sum of the individual lengths respect to «) is
arbitrarily small (cf. [16], §25).

DEFINITION 2.7. [2, 3] A function f : [a,b] — R is said to be absolutely
continuous with respect to « if for every € > 0, there exists some § > 0 such
that if {(aj, bj)}?:l is a class of disjoint open subintervals of [a, b] then

i — af(a;)P < 0 implies Z |f(bj) — f(a;)|P <e.

j=1
Thus, the collection a-AC)[a, b] of all a-absolutely continuous functions
on [a,b] is a function space and an algebra of functions.

3. Some results

In this section, we introduce the extension of the notion of Riesz (p, 2, a)-
variation and we give a result similar to Lemma 2.1, for the class a—ACz [a,b]
(1 < p < o) in terms of this concept. a-AC?[a,b] is the class of functions
f :[a,b] — R, for which f” is absolutely continuous on [a, b] with respect to a
function « strictly increasing, and f” € Lp,a[a, b]. Also the (p, o, 2)-variation
of a function f on [a,b] is given by Hf”Hp op) that is

V(i,a)(f [ ]) Hf”HLpa a,b]”

Let f:[a,b] — R and 1 < p < +00. For a given partition 7 of the form
a=ty<ti<---<tp=>,let

2 z+1 (tz‘) f(ti) = f(ti-1) 1

— a(tiv1) —a(t)  at) —a(ti-1) |a(tiv1) — Oé(tifl)‘pil

U(pa (f;m)
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and
‘/(?J,Oé) (f? [a’7 b]) = S:-lrp J(2p7a) (f7 7T)7

where the supremum is taken over all partitions 7 of the interval [a,b], is
called the (p, 2, a)-variation of the function f on [a, b] with respect the weight

function a. If Vé o(fila;b]) < 400, the function is said to have bounded

(or finite) Merentes (p, 2, «)-variation and the set BV@ o) [a, b] shall denote
the Banach space of all functions f for which the norm

£l o = 1F@]+ 17 @] + [V (7iLat)]

is finite.

Importantly, this variation, which is a combination of the notions of
bounded variation in the sense of Riesz and bounded variation in the sense
of De la Vallée Poussin, was introduced by Merentes [14] in 1992. We in-
clude a weight function a € [0, +00)[%*+®) which is strictly increasing in the
definition to prove some analogous results to those obtained in [11, 14].

The motivation for our work is due to the results of N. Merentes [14],
J. Matkowski and N. Merentes [11], T. Kostrzewski [6, 7] and V. V. Chistya-
kov [4].

LEMMA 3.1. If there is p € (1, +0) such that Vé C!)(f; [a,b]) < 400 then f

has second variation and
1
- 1

VE(f3[a,8]) < [VE o (3 [0, 0D)] 1) — ala) 7.

Proof. Let m:a =ty <t; <--- <t, = b be a partition of [a,b]. Then by
Holder’s inequality, we obtain

Q
—
~

N
+
—
~—
|
L
—~
~
S
~—
L
—~
~
<
~—
|
Q
—~
~
i
—
~—

p ) -
la(tive) — ati—1) Pt

n—1 1_%
X [ Z la(tiv1) — O‘(ti—l)’] :
i=1

Thus

3 =

V0D £ |V i1 D[ l®) — a5 o

By Lemmas 2.1, 2.4, and 3.1, we have
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COROLLARY 3.2. ||f|pc2ap < HfH(p’M), feBV?

(p’a)([a, b]) and

BV(?W)([CL, b]) < BC2[a,b] — a-Lip[a,b].
CoroLLARY 3.3. If V? \(fila,b]) < +o0 (1 < p < +0), then f is a-
absolutely continuous on [a,b] and f can be expressed as a difference of two
a-convex functions.

LEMMA 3.4. Ifa<c<b then
‘/(?37(1) (f7 [(I, b]) > ‘/(i,oé) (f» [a> C]) + Vv(?;,a) (fa [Cv b])
Proof. This follows readily from definition of Vé a)( fila,b]). =

LEMMA 3.5. If Vé o (5 [a,b]) < +0 (1 < p < 4m0), then there exists the

derivative f!(p) for all p € (a,b).

Proof. By Corollary 3.3 and the consequences of Theorem 2.5, we obtain
the existence of a right hand derivative f/ , (p) (see (3)) for all p € [a,b) and
the left hand derivative f _(p) (see (4)) for all p € (a,b]. Suppose that there
exists p € (a, b) such that

5y = 10 (p) = F1 ()] > 0.
By the definition of (p, 2, «)-variation, we have
p
: h)—flp)  flp)—flp—h) 1
2 (fi[a,b]) > lim | LT —

Vo3l 8D 2 i [ = ap) ~ alo) — alp— )| FIBap
_ 16,7
= o1 350 [Aafp!

= 400,
where Aa = a(p+h)—a(p—h). Consequently, the function f has a derivative
fL(p) for all p e (a,b). m

REMARK 3.6. We follow the same notation presented by De la Vallée Pois-
son and we put BV;2 [a,b] = RV q[a,b].

LEMMA 3.7. If Vé’a)(f; [a,b]) < +0 (1 <p < +o©) then f&eBVéﬁa)[a, b].
Moreover
Voa(fai [a;b]) < V3 o (f3[a,b]).
Thus, f, € a-ACyla,b] and f} € Lysla,b], i.e., f € a-AC[a,b].
Proof. Let m: a =1ty <ty <--- <t, =0b be a partition of [a,b]. Let h > 0

be such that .
0 < h < min {<t>—<t>}

2
i=1



940 W. Aziz

We have
P

"21 ft) = flti—h)  f(ti+h) = f(t:) 1
alty) —a(ti—h) ot +h) —alty)| |a(t;) — a(ti—)P!

< Vi (f: [a,b]).
Hence, letting h — 0, and by Lemma 3.5, we obtain

Z | £ (tiv1) ()ﬁi_‘i < V(?;,a)(f; [a,b]).

ativ1) —aft

Now, by Lemma 2.1, we have f), € RV, q[a,b] and thus,
Voal T2 0,0 = 1912 oy < Vg (F[a,00). m
COROLLARY 3.8. If f € BV )[a b] then fl € a-ACy[a,b]. Moreover

Hf”HLM o] S Vi ().

COROLLARY 3.9. If f/, is a-absolutely continuous on [a,b], flea-ACy[a,b],
(1 <p<+ow0) then f € BVp a)[a b]. Moreover

Vip (i la:8D) < |37, oy

Proof. Let m: a =ty <t <--- <t, = b be a partition of [a,b]. Since we
may assume that f/ is continuous on [a b], we have

fltiv) = f(t)  f(t) — f(tie D[
altiv) —a(ts)  a(ti) — (tz 1)

= L) = falo)I

i

— | frmde)| < (r)dr|” - |at:) — alti) P
pz tz 1
where p;r and p; are points in the intervals (¢;,t;4+1) and (t;—1,t;), respec-
tively.
Thus

2 .
V(p,a) (fa [a, b]) = Sup O'(p a) (f ”f//”Lp )
By Lemma 3.7 and Corollary 3.9, we obtain the main results:

THEOREM 3.10. A real function f defined on the interval [a,b] belongs to
the class oa—AC'g [a,b], 1 <p < 40, if and only if f € BV& o) [a,b]. Moreover

b
P
Voo U3 L8 = |27, oy = | i) @)
Analogously, we shall obtain the following embedding
Bv(i,a) [a,b] = RV, q[a,b], (1 <p <+ and a € C|a,b] increassing)
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i.e., there exists a constant M > 0 such that

(5) 1£lp < Mflpom, (f € BVjqla,bl).

4. Main results

In this section, we shall present a characterization of functions
h:[a,b] x R — R, for which the Nemytskii operator H = H},, generated by
h, maps the space Bv(fw) [a,b] into BV(?La) [a,b], where 1 < ¢ < p, and is
globally Lipschitzian. On the other hand, if 1 < p < g then the Nemytskii
operator H is constant. We present the first theorem:

THEOREM 4.1. Letl <g<panda e AC’g [a,b]. Then the Nemytskii oper-
ator H generated by a function h : [a,b] xR — R maps the space BV(;OC) [a, b]
mto space BV(Qq’Oé) [a,b] and if it is globally Lipschitzian, i.e., there exists a
constant M > 0 such that

HHfl - Hf2

wam S MU= Ploz),  fiof2 € BV ola.)

if and only if
h(t,z) = A(t)z + B(t), te[a,b], zeR,

where A, B € BV(?] o) [a,b].

Proof. Since H : BV& o) [a,b] — BV(?I o) [a,b] is globally Lipschitzian and
the embedding (5) holds, there exist constants M > 0 and N > 0 such that

HHfl - Hf2”q < NHHfl - HfZH( : <M|f1 - falp2,a)

q,2,c

where f1, fo € BV(?) o) [a,b].

Fix t,t' € [a,b], t < t'; let y1,y2,9],y5 € R and define two polynomial
functions wu; : [a,b] > R i =1,2 by

u(s) 1= B2 (a(o)-at@)+ (1-

(#)=a () = a()
) — (o) — ety — (1 @)~ al@)? (@) ~ a(a))?
(@ls) = aa) - (a(0) - a(@)* - (1 SO )

Also, u; satisfies the following conditions u;(t) = v;, w;(t') =y}, for i = 1,2.
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Moreover

U‘S”Zﬁ ()2 + (a(s) — ala))d (s
() = = 209 + (a9 - al@)a”(e
a(t) — at)? = (a(t) — ala))?
(1 =00 0o

a(t’) — alt)

7y;_yz O/S 2 als) —oala O//S
= 2 9)? + () - e’

for every s € [a,b], i = 1,2. So (u;)' € a-AC? [a,b] and verifies
J*b
() )~ () — al@)? .

( a(t) ~ afl) )

by applying Holder and Minkowski’s inequalities.
Then the functions u; € BV wla:b], i =1,2 (see Thm. 3.10) and

P
da(s) <+, i =1,2

(ur —u2)(a) = y1 — ya2 — % ;(g,l) i Bk’ (a(t) — afa)) [(a(t)

— a(t)
(alt) = a(®)? — (a(t) — a(a))?
‘“w”+<l‘ ot') — o) )]
and
V() = = yatee (0 (o) = a(®)? = (a(t) —a(@)*
(w12 @) = =20 — (@) ( o) — alt) ) (a)
Also
—u) (s 23/'1 Y1 -y Y2 als) — ala
(1 = ) () = P22 () ~ a(a)
) —a@? =@ =a@)®\] 1 et
*(1 o) — alt) )} () seled)
s = w2) oo < Lafoh =91 —vh +12)p L1 = 2la(b) - ala)l || o,
and
| (ur = u2)"l4% < Lilyy — y1 — v + 2|

where Ly = (a(b) — a(a))[2]a/]|w + 1 + a(b) a(a)||e”]w]. So, Huy and
Hug are in BV, oy[a,b]  a-Lip|a, b]. Moreover
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(Hu;)(t) = h(t,ui(t)) = h(t,y:), ©=1,2
and
(Hu;)(t') = h(t', wi(t)) = h(t',9;), i=1,2,
which we may rewrite in the form
(Hu1 — HUQ)(t/) — (HU1 — HUQ)(t)
a(t') — a(t)

< K||Huy — Huz|lo—1,[a]
< KL|uy — u2| gy, afap)-
Substituting, we have

[h(t, y1) = h(t', y5) = h(t, y1) + At y2)|?
(t) — a(t)]!

Yi— Yy —Yhty
SKL&MW S = oD %Moam»Qmoam»
(o) — a(@)’ = (a(t) — o(a))?
+<1 a(t) — alt) )‘
Vovh it (| (a(t) (@) (o) ~a@)?) ,
) ol < o)~ ali) >()

+ Lalyy —y5 —y1 + 4o

|

multiplying the inequality by |a(t") — a(t)| and applying the triangular in-
equality, we get

}h(t/7y/1) - h’(t,a yé) - h(tayl) + h(t>y2)’q
< K[l — salla®) — al®)*™" + Ly} — g5 — 91 + 3alla(t) — a(a)|?
+ lys — b — 1+ 127la(d) — a(@)|? + LBly; — o — v + 1,

for every fixed y € R, the constant function ug(t) = y, t € [a, b] belongs to

BV(p )[a, b], and from hypothesis Hug(t) = h(t,uo(t)) = h(t,y) belongs to
BV(p o) [a,b]. Consequently, h(-,y) is continuous on [a, b]. Therefore, letting

t’ — t in the above inequality and considering the continuity of the a, we
obtain

(6)  |n(',y)) — h(t',yy) — h(t,y1) + h(t,y2)| < AN|yy — v — y1 + val,

for all ¢t € [a,b] and y1,y2, ¥}, v5 € R.
Let us fix t € [a,b] and define the function P, : R — R by Pi(y) :=
h(t,y) = h(t,0).
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Setting y1 = v + w, y2 = v, y; = w and y4 = 0 in the inequality (6), we
get

h(t,v +w) = h(t,v) + h(t,w) + h(t,0)

rewritten in terms of Py, results P;(v+w) = P;(v) + P;(w) v, w € R. Setting
v} = y4 = 0 in the inequality (6), we obtain

|Pi(y1) — Pi(y2)| <4Nly1 — 92|, y1,9y2 € R.

Thus, the function P; is additive and continuous on R, consequently is
linear on R and there exists a function A : [a, b] — R such that P,(y) = A(t)y,
y € R. Defined the function B : [a,b] — R by B(t) = h(t,0), t € [a,b], it
follows from the definition of P; that

h(t,y) = A(t)y + B(t), t € [a,b], yeR.

Since the composition operator H maps the space BVé o) [a,b] into
BV(Z a)[a,b], the function B(-) = h(-,0) belongs to BV(Z a)[a, b], and the
function A(-) = h(-,1) — h(+,0) also belongs to BV(Zq o) [a,b]. Thus the func-

tion A has the following form
h(t,y) = At)y + B(t), tela,b], yeR,

where A, B € BV(?] o) [a,b].

Reciprocally, if we suppose that the function h is additive; i.e., h(t,y) =
A(t)y + B(t), where A, B € BV(?I o) [a,b] is an algebra, we get

|Hf1 = Hfallp2,a) < Al g2l fi = folg2a) f1sfo € BV ,la,b].

Therefore, the composition operator H generated by the function A maps
the space BV(?) o) [a,b] into BV(2q o) [a,b] and satisfies the global Lipschitz
condition. m

5. Uniformly continuous composition operator

Now we shall weaken the hypothesis of Theorem 4.1 and we get a propo-
sition that holds only the necessary condition for the Composition Operator.
For this we need to recall some definitions and results that we will use for
this purpose.

We shall say

p(f) :=p(f;[a,b]) = inf {e >0: Vé’a)(f/e) < 1}; fe BVé’a)[a, bl,
S0

1£lp2.0 = £ (@) + |f (@] + [P(HIV.
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LEMMA 5.1. Let f € BVé) wla,b] and 1 < p < +co. We have:

(1) i p(f) >0, then V7, (f/p(f)) < 1;
(2) if p>0, then Vi (f/p) <1 iff p(f) < p;
(3) if p>0 and ‘/(;a)(f/p) <1, then p(f) = p.

Proof. (1) The definition of p(f) implies Vé o) < 1forall p> p(p). Choose

a sequence p, > p(f), n € N, which converges to p(f) as n — +oo. Then
f/pn — f/p(f) uniformly on [a,b]. So that

Vi) (£/p(1) < liminf V2 ) (F/pn) < 1.
It follows that p(f) e {p>0: Vé’a)(f/p(f)) <1} and

p(f) ={p>0: V ,(f/p(f) <1}.

(2) If Vé’a)(f/p(f)) < 1, the definition of p(f) implies p(f) < p. If
p(f) = p then V(i’a)(f/p(f)) <1 by (1). Let us show that

(7) if p(f) <1 then V2 ,\(f/p) < 1.

If p(f) =0, then f is a constant mapping and V(i a)(f/p) = 0, so assume
that p(f) > 0. From the convexity of Vé a)( f) and item above, we have:

V2 oy (£/0) < PUN/pVE oy (f/p(f) < P(F)/p < 1.

(3) Let Véa) (f/p) = 1. By (2), if p(f) > p then Véa) (f) > 1, which
is impossible. Taking into account (7), we conclude that p(f) = p. m

Our second main result reads as follows:

THEOREM 5.2. Let 1 < g <p < +w and h: [a,b] x R — R. If a composi-
tion operator H, maps the space BVé o) [a,b] into BV(?I ) [a,b] generated by
h, is uniformly continuous, i.e.,

|H f1 - Hf2|\q7a <w(|fi - f2||p,a7 f1: fa € BV}, ,yla, b,
where w : Ry — Ry is the modulus continuity of H. Then
h(t,z) = A(t)x + B(t), tea,b], xeR,

where A, B € BV(?I wla, bl

Proof. For every x € R, the constant function u(t) = z, t € [a, b] belongs to
BV(?W) [a,b]. Since the Nemytskii operator H maps the space BV(?W) [a, b]
into BV(Q%OL) [a, b], it follows that the function ¢ — h(t,u(t)) = h(t,x) belongs
to BV(;Q) [a, b].
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The uniform continuity of H on BV, 4)[a, b] and the embedding (5) imply

(8) [Hf = Hfo|, < N[Hf = Hfs ) < (1 = fo, )

where f1, fo € BV(?7 o) [a,b] and w : Ry — Ry is the modulus continuity of H,
ie.

w(B) == sup {|H(f1) = H(f2)lga : |1 = follpa < Bs fi. fo € BV o lasb]},
for 8 > 0. From the definition of the norm | - |, o, we obtain
(9) P(H(f1) — H(f2)) < |H(f1) — H(f2)lq.0;

for f1, fo € BV(?D o) [a,b]. Hence, in view of Lemma 5.1 and (9), if p(H(fl) —

H(f2)) <w([|f1 = f2lpa) then
v (Hwn—Hum>§L

)\ (| f1 — Falpa)

Fix t,t € [a,b], t < t; let y1,y2,71,Yo € R and define two polynomial
functions u; : [a,b] - R, i =1,2 by

T [ s (1 (el — (@)~ (a(t) - afa))

16 1= = a e -a@r+ 1 a(®) = alt )
(4 (el — (@) - (aft) — a(@)?

(@ls) = a@) - (a(0) - a(@* - (1 Ao )

(@)~ al@)| 3 sefat]

The inequality (8) for the above functions gives
|Hfr = Hfs, < M([7 — yel + (2771 — 72 — 91 + 12]7))
where M = K L.

Since f; satisfies the following conditions f;(t) = v, fi(t) = y;, fori = 1,2;
then by definition of the norm | - |, we get

<!h(t, f1(#) = h(E, fa(B)) — h(E, [1(E)) + h(E, fz(t))!q>

’(W(Hfl — fo|) () — a(t)]a1
< 2075, — ol + 2907, — T — o1+ pel)

or equivalently

[R(E, [1(B) = h(T, f2(2)) = h(t, f1 (1)) + h(t, f2(t)]"
< (W(Ifr = L) 7297 M ([gy — wol® + 277y — 73 — w1 + 2|7) la(E) — a(t)|.
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Passing to the limits on both sides of this inequality as «(t) /" a(t), we
get,

(10) |R(E, f1(2) — h(E, f2(8)) — h(t, f1(t) + R(t, f2(t))] < 0.
Let us fix ¢t € [a,b] and define the function P, : R — R by the following
formula

(11) P,(s) := h(t,s) — h(t,0), seR.
Setting

p=w+tz, Y=w, Y=2 Yp=0
in the inequality (10), we have
(12) h(t,z) — h(t,0) — h(t,w + z) + h(t,w) = 0.
By using (11), we can write (12) in terms of the function P;:

Pi(w + z) = Pi(w) + Py(z), w, z € R.
Thus, for each t € [a, b], the function P;(-) = h(t,-) satisfies the Cauchy func-
tional equation in R. Modifying a little the standard argument (cf. Kuczma
[8]), we conclude that, for each t € [a, b], there exist A(t), B(t) € BC’(Qq o) [a,b]
such that

h(t,s) = A(t)s + B(t).

The uniform continuity of operator H : BVé)’a) [a,b] - B Vé’a) [a,b] implies

the continuity of the additive function A(t). This completes the proof. =
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