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ON BI-DIMENSIONAL SECOND µ-VARIATION

Abstract. In this paper, we present a generalization of the notion of bounded slope
variation for functions defined on a rectangle Iba in R2. Given a strictly increasing function
µ, defined in a closed real interval, we introduce the class BV µ,2pIba q, of functions of
bounded second µ-variation on Iba , and show that this class can be equipped with a norm
with respect to which it is a Banach space. We also deal with the important case of
factorizable functions in BV µ,2pIba q and finally we exhibit a relation between this class
and the one of double Riemann–Stieltjes integrals of functions of bi-dimensional bounded
variation.

1. Introduction
In 1881, Camile Jordan ([11]) introduced the concept of function of

bounded variation after a rigorous study of the proof given by Dirichlet
([5]) on the convergence of the Fourier series of a monotone function. In
fact, Jordan showed that a function is of bounded variation if and only if
it is the difference of two monotone functions. From the spatial point of
view, the notion of bounded variation was extended to functions defined on
the plane in 1905 by Hardy and Vitali ([1], [8], [19]). In 1908, De La Val-
lée Poussin ([18]) introduced the notion of second variation of a function,
showing that a function is of bounded second variation if and only if it is
the difference of two convex functions. The subsequent denomination of this
class as functions of bounded convexity, apparently, is due to A. W. Roberts
and D. E. Varberg ([15] and [16]). A few years later, in 1911, F. Riesz ([14])
proved that a function F is of bounded second variation on an interval ra, bs
if and only if, it is the indefinite Lebesgue integral of a function f of bounded
variation.
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The unvarying interest generated by the classical notion of function of
bounded variation has lead to some generalizations of the concept, mainly,
intended to the search of a bigger class of functions whose elements have
pointwise convergent Fourier series.

From the PDEs point of view, the first successful generalization of this
concept to functions of several variables is due to L. Tonelli ([12]), who intro-
duced the class of continuous functions of bounded variation in 1926. Later
on, L. Cesari ([4]), modified the continuity requirement in Tonelli’s definition
by a less restrictive integrability requirement, obtaining the class of functions
of bounded variation of several variables; actually, he applied the concept to
solve a problem concerning the convergence of Fourier series of functions of
two variables. After that, many authors have considered several generaliza-
tions of the concept of function of bounded variation to study Fourier series
in several variables. As in the classical case, these generalizations have found
many applications in the study of certain (partial) differential and integral
equations (see e.g., [3]), in geometric measure theory, calculus of variations
and mathematical physics.

In 2011, the authors ([6]) studied the class BV 2pIba q, of function of
bounded second variation on a rectangle of R2, and proved that, equipped
with a suitable norm, this class is a Banach space. We also showed that inte-
grals of functions of first bounded variation (on Iba ) are in BV 2pIba q. See also
[2, 7, 20, 21] for related generalizations of the concept of function of bounded
variation to the plane or of the notion of function of second variation.

In this work, we present a spatial generalization of the notion of bounded
slope variation or µ-variation, as given by F. N. Huggins in [10], for the case of
functions defined on a rectangle Iba in R2 and introduce the space BV µ,2pIba q,
of all functions of bounded second µ-variation on Iba . We show that this space
can be equipped with a norm and prove that the functions in the unit ball of
this normed space are uniformly majorized by a polynomial-like continuous
function. This fact allows us to show that BV µ,2pIba q is a Banach space.
We also deal with the important case of factorizable functions in BV µ,2pIba q
and finally, we show that double µ-Riemann–Stieltjes indefinite integrals
of functions of bi-dimensional bounded variation are functions of bounded
second µ-variation.

2. Preliminaries
In this section, we will expose the basic facts of the notions of function of

bounded variation and function of bounded second variation in one variable.
Given an interval ra, bs Ă R, we will use the notation Πpra, bsq to denote

the set of all partitions of ra, bs, whereas Π3pra, bsq will denote the subset of
Πpra, bsq consisting of partitions of ra, bs with at least three points.
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Recall that a function u : ra, bs Ñ R is said to be of bounded variation
(in the sense of Jordan) if

V pu; ra, bsq :“ sup
ξPΠpra,bsq

n
ÿ

j“1

|uptjq ´ uptj´1q| ă 8,

where the supremum is taken over the set of all partitions ξ “ ta “ to ă
t1 ă ¨ ¨ ¨ ă tn “ bu P Πpra, bsq.

The notion of bounded second variation in the sense of De La Vallée
Poussin is defined as follows:

A function u : ra, bs Ñ R is of bounded second variation if and only if

V 2pu; ra, bsq :“ sup
πPΠ3pra,bsq

m´2
ÿ

i“0

|urti`1, ti`2s ´ urti, ti`1s| ă 8,

where

(2.1) urti`1, ti`2s :“
upti`2q ´ upti`1q

ti`2 ´ ti`1
, i “ 0, . . . ,m´ 2.

The class of all the functions of bounded second variation (on ra, bs), in
the sense of De La Vallée Poussin, is denoted by BV 2pra, bsq.

The following are known properties of the functional V 2p¨; ra, bsq and of
the functions in the class BV 2pra, bsq (see e.g., [13], [15] and [17]).

Proposition 2.1. Let u P BV 2pra, bsq.

(1) If v P BV 2pra, bsq and λ is any real constant, then

V 2pλu; ra, bsq “ |λ|V 2pu; ra, bsq,

V 2pu` v; ra, bsq ≤ V 2pu; ra, bsq ` V 2pv; ra, bsq.

(2) pMonotonicityq If a ă c ă d ă b, then V 2pu; rc, dsq ≤ V 2pu; ra, bsq.
(3) pSemi-additivityq If a ă c ă b then u P BV 2pra, csq, u P BV 2prc, bsq and

V 2pu; ra, bsq ≥ V 2pu; ra, csq ` V 2pu; rc, bsq.
(4) ury0, y1s is bounded for all y0, y1 P ra, bs.
(5) u is Lipschitz and therefore absolutely continuous on ra, bs.
(6) u P BV 2pra, bsq if and only if u “ u1 ´ u2, where u1, u2 are convex

functions.
(7) A necessary and sufficient condition for a function F to be the integral

of a function f P BV pra, bsq is that F P BV 2pra, bsq.
(8) If u is twice differentiable with u2 integrable on ra, bs then u P BV 2pra, bsq

and V 2pu; ra, bsq “
şb
a |u

2ptq|dt.

Now, we recall Huggins’ notion ([10]) of a function of bounded second
µ-variation.
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Definition 2.2. Let µ : ra, bs Ñ R be a strictly increasing function.
A function u : ra, bs Ñ R is said to be of bounded second µ-variation if
and only if

V µ,2pu; ra, bsq :“ sup
πPΠ3pra,bsq

m´2
ÿ

i“0

|uµrti`1, ti`2s ´ uµrti, ti`1s| ă 8,

where

(2.2) uµrti`1, ti`2s :“
upti`2q ´ upti`1q

µpti`2q ´ µpti`1q
, i “ 0, ...,m´ 2.

Example 2.3. If upxq “ x
2
3 , then it is of bounded second µ-variation on

ra, bs, for µpxq :“ x1{3. In fact, it readily follows from the definitions that

V µ,2pu; ra, bsq ≤ 2pb1{3 ´ a1{3q “ 2pµpbq ´ µpaqq ă `8.

The class of all the functions of bounded second µ-variation (on ra, bs) is
denoted by BV µ,2pra, bsq.

The following proposition shows an interesting relation between functions
of bounded second µ-variation and indefinite Riemann–Stieltjes integrals of
functions of (ordinary) bounded variation.

Proposition 2.4. If f P BV pra, bsq is continuous, µ is a strictly increas-
ing function and F pτq :“

şτ
a1
fptq dµptq then V µ,2pF, ra, bsq ≤ V pf, ra, bsq and

F P BV µ,2pra, bsq.

Proof. Let ξ :“ ttiu
n
i“0 P Π3pra, bsq, by the definition of F and the Mean

Value Theorem for Riemann–Stieltjes integrals, we have

F pti`2q ´ F pti`1q

µpti`2 ´ µpti`1q
“

şti`2

ti`1
fptqdµptq

µpti`2q ´ µpti`1q

“
fpci`2qpµpti`2q ´ µpti`1qq

µpti`2q ´ µpti`1q
“ fpci`2q

with ci`2 P pti`1, ti`2q.
On the other hand,

V µ,2pF ; ra, bsq “ sup
πPΠ3pra,bsq

n´2
ÿ

i“0

|Fµrti`1, ti`2s ´ Fµrti, ti`1s|

“ sup
πPΠ3pra,bsq

n´2
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

F pti`2q ´ F pti`1q

µpti`2q ´ µpti`1q
´
F pti`1q ´ F ptiq

µpti`1q ´ µptiq

ˇ

ˇ

ˇ

ˇ

“ sup
πPΠ3pra,bsq

n´2
ÿ

i“0

|fpci`2q ´ fpci`1q| ≤ V pf ; ra, bsq ă `8,

therefore F P BV µ,2pra, bsq.
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3. Bi-dimensional second µ-variation
We begin by recalling the definition of (bounded) variation for functions

defined on rectangles of R2 (c.f. [9]).
Let a “ pa1, a2q, b “ pb1, b2q P R2, such that a1 ă b1 and a2 ă b2.

In the sequel, we will use the symbol Iba to denote the basic rectangle
ra1, b1s ˆ ra2, b2s.

For ξ :“ ttiu
n
i“0 P Πpra1, b1sq and η :“ tsju

m
j“0 P Πpra2, b2sq, we will use

the following notation:

(i) ∆10upti, sq :“ upti, sq ´ upti´1, sq for s P ra2, b2s fixed.
(ii) ∆01upt, sjq :“ upt, sjq ´ upt, sj´1q for t P ra1, b1s fixed.
(iii) ∆11upti, sjq :“ upti´1, sj´1q ` upti sjq ´ upti´1, sjq ´ upti, sj´1q.

Definition 3.1. Let u : Iba Ñ R.
‚ If s P ra2, b2s is fixed, we define the variation in the sense of Jordan of u
in ra1, b1s ˆ tsu by

V
ra1,b1s

pup¨, sqq :“ sup
ξ

n
ÿ

i“1

|∆10upti, sq| ,

where the supremum is taken over the set of all partitions ξ P Πpra1, b1sq.
‚ Similarly for t P ra1, b1s, we define the variation in the sense of Jordan of
u in ttu ˆ ra2, b2s by

V ra2,b2s pupt, ¨qq :“ sup
η

m
ÿ

j“1

|∆01upt, sjq| ,

where the supremum is taken over the set of all partitions η P Πpra2, b2sq.
‚ We define the variation of u, in the sense of Hardy–Vitali as

V pu, Iba q :“ sup
pξ,ηq

n
ÿ

i“1

m
ÿ

j“1

|∆11upti sjq| ,

where the supremum is taken over the set of all partitions pξ, ηqPΠpra1, b1sq
ˆΠpra2, b2sq.

‚ The total variation of u on Iba is defined as

TV pu, Iba q :“ V
ra1,b1s

pup¨, s0qq ` V ra2,b2spupt0, ¨qq ` V pu, I
b
a q,

where pt0, s0q is any point in Iba .
‚ u is said to be of total bounded variation if TV pu, Iba q ă 8. The class of
all functions u : Iba Ñ R of total bounded variation is denoted as BV pIba q.

Now we present a spatial generalization of the notion of second µ-variation.
Assume u : Iba Ñ R. Let ξ :“ ttiu

n
i“0 P Π3pra1, b1sq, η :“ tsju

m
j“0 P

Π3pra2, b2sq and µ is a real-valued strictly increasing function whose domain
includes ra1, b1s and ra2, b2s . We will use the following notations:
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(i) For each s P ra2, b2s fixed, set

uµrti`1, ti`2; ss :“
upti`2, sq ´ upti`1, sq

µpti`2q ´ µpti`1q
,

∆10uµrti`1, ti`2; ss :“ uµrti`1, ti`2; ss ´ uµrti, ti`1; ss and

V µ,2
ra1,b1s

pup¨, sqq :“ sup
ξPΠ3pra1,b1sq

n´2
ÿ

i“0

|∆10uµrti`1, ti`2; ss| .

(ii) Similarly, for each fixed t P ra1, b1s

uµrt; sj`1, sj`2s :“
upt, sj`2q ´ upt, sj`1q

µpsj`2q ´ µpsj`1q
,

∆01uµrt; sj`1, sj`2s :“ uµrt; sj`1, sj`2s ´ uµrt; sj , sj`1s and(3.1)

V µ,2
ra2,b2s

pupt, ¨qq :“ sup
ηPΠ3pra2,b2sq

m´2
ÿ

j“0

|∆01uµrt; sj`1, sj`2s| .

Definition 3.2. Let u : Iba Ñ R and let µ be a real-valued strictly in-
creasing function whose domain includes ra1, b1s and ra2, b2s. The second
µ-variation of u on Iba is defined as

V µ,2pu, Iba q :“ sup
pξ,ηq

V µ,2

Iba

pu, ξ ˆ ηq,

where V µ,2

Iba

pu, ξ ˆ ηq :“
n´2
ř

i“0

m´2
ř

j“0

ˇ

ˇ∆2
11uµpti, sjq

ˇ

ˇ with

∆2
11uµpti, sjq : “

∆01uµrti`2; sj`1, sj`2s ´∆01uµrti`1; sj`1, sj`2s

µpti`2q ´ µpti`1q

´

„

∆01uµrti`1; sj`1, sj`2s ´∆01uµrti; sj`1, sj`2s

µpti`1q ´ µptiq



,

the supremum being taken over the set of all partitions pξ, ηq P Π3pra1, b1sqˆ
Π3pra2, b2sq.

The total bi-dimensional second µ-variation of u, is defined by

TV µ,2pu, Iba q :“ V µ,2pu, Iba q ` V
µ,2
ra1,b1s

pup¨, a2qq ` V
µ,2
ra1,b1s

pup¨, b2qq(3.2)

` V µ,2
ra2,b2s

pupa1, ¨qq ` V
µ,2
ra2,b2s

pupb1, ¨qq

and a function u : Iba Ñ R is said to be of bounded (bi-dimensional) second
µ-variation if

TV µ,2pu, Iba q ă 8.
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The class of all functions u P RIba of bounded second µ-variation is de-
noted by V µ,2pIba q; that is,

V µ,2pIba q :“
 

u : Iba Ñ R{TV µ,2pu, Iba q ă 8
(

.

Remark 3.3. In order to define ∆2
11, we only considered combinations

of expressions of type ∆01 (see (3.1)). Actually, ∆2
11 could have been also

defined in the following way:
For each j P t0, 2, . . . ,m ´ 2u fixed, we define the function ∆2

01rus
µ
j

:

ra1, b1s Ñ R as the (second order) difference quotient variation

(3.3) ∆2
01rus

µ
j
ptq :“ ∆01uµrt; sj , sj`1s.

Then, it is readily seen that

(3.4) ∆2
11uµpti, sjq “ ∆2

01rus
µ
j`1
rti`1, ti`2s ´∆2

01rus
µ
j`1
rti, ti`1s

(we recall that the notation f ra, bs stands for the difference quotient fµra, bs
:“ pfpbq ´ fpaqq{pµpbq ´ µpaqq (see (2.1)).

If, instead of proceeding as set forth above, we were chosen to consider
the subsequent difference quotients variations of expressions of type ∆10,
then an analogous reasoning would lead us to differences of type

(3.5) ∆2
10rus

µ
i`1
rsj`1, sj`2s ´∆2

10rus
µ
i`1
rsj , sj`1s

but, as it is easy to verify after expanding and regrouping, the difference (3.5)
is precisely ∆2

11uµpti, sjq. Thus our definition of V µ,2pu, Iba q is independent
of the choice of either ∆01 or ∆10, to perform the subsequent difference
quotients variations.

Example 3.4. The function upx, yq “ pxyq2{3 has bounded second µ-
variation on Iba “ ra1, b1s ˆ ra2, b2s, for µptq :“ t1{3.

Proof. Indeed, suppose

ξ :“ ttiu
n
i“0 P Π3pra1, b1sq and η :“ tsju

m
j“0 P Π3pra2, b2sq.

By Example 2.3 we have

(i) for each s P ra2, b2s fixed:

V µ,2
ra1,b1s

pup¨, sqq “ sup
ξ

n´2
ÿ

i“0

|∆10uµrti`1, ti`2; ss|

“ sup
ξ

n´2
ÿ

i“0

|s|
2
3

ˇ

ˇ

ˇ
pti`2q

1{3 ` pti`1q
1{3 ´

´

pti`1q
1{3 ` ptiq

1{3
¯ˇ

ˇ

ˇ

≤ |s|
2
3 2pµpb1q ´ µpa1qq ă `8.
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(ii) Similarly, for each t P ra1, b1s :

V µ,2
ra2,b2s

pupt, ¨qq “ sup
η

m´2
ÿ

j“0

|∆01uµrt; sj`1, sj`2s|

“ sup
ξ

m´2
ÿ

i“0

|t|
2
3

ˇ

ˇ

ˇ
psj`2q

1{3 ` sj`1q
1{3 ´

´

psj`1q
1{3 ` psjq

1{3
¯ˇ

ˇ

ˇ

≤ |t|
2
3 2pµpb2q ´ µpa2qq ă `8.

On the other hand,

∆01uµrti`2; sj`1, sj`2s “ uµrti`2; sj`1, sj`2s ´ uµrti`2; sj , sj`1s

“ pti`2q
2{3

”

psj`2q
1{3 ` psj`1q

1{3
ı

´ pti`2q
2{3

”

psj`1q
1{3 ` psjq

1{3
ı

“ pti`2q
2{3rpsj`2q

1{3 ´ psjq
1{3s.

Similarly

∆01uµrti`1; sj`1, sj`2s “ uµrti`1; sj`1, sj`2s ´ uµrti`1; sj , sj`1s

“ pti`1q
2{3rpsj`2q

1{3 ´ psjq
1{3s

and

∆01uµrti; sj`1, sj`2s “ uµrti; sj`1, sj`2s ´ uµrti; sj , sj`1s

“ ptiq
2{3rpsj`2q

1{3 ´ psjq
1{3s.

Hence

∆2
11uµpti, sjq “

∆01uµrti`2; sj`1, sj`2s ´∆01uµrti`1; sj`1, sj`2s

µpti`2q ´ µpti`1q

´

„

∆01uµrti`1; sj`1, sj`2s ´∆01uµrti; sj`1, sj`2s

µpti`1q ´ µptiq



,

∆2
11uµpti, sjq “

rpti`2q
2{3 ´ pti`1q

2{3srpsj`2q
1{3 ´ psjq

1{3s

pti`2q
1{3 ´ pti`1q

1{3

´
rpti`1q

2{3 ´ ptiq
2{3srpsj`2q

1{3 ´ psjq
1{3s

pti`1q
1{3 ´ ptiq1{3

“ rpti`2q
1{3 ´ ptiq

1{3srpsj`2q
1{3 ´ psjq

1{3s,
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and therefore

n´2
ÿ

i“0

m´2
ÿ

j“0

ˇ

ˇ∆2
11uµpti, sjq

ˇ

ˇ “

n´2
ÿ

i“0

m´2
ÿ

j“0

rpti`2q
1{3 ´ ptiq

1{3srpsj`2q
1{3 ´ psjq

1{3s

“ pb
1{3
1 ` ptn´1q

1{3 ´ pt1q
1{3 ´ a

1{3
1 qpb

1{3
2 ` psm´1q

1{3 ´ ps1q
1{3 ´ a

1{3
2 q

ă 2pb
1{3
1 ´ a

1{3
1 q2pb

1{3
2 ´ a

1{3
2 q “ 4pµpb1q ´ µpa1qqpµpb2q ´ µpa2qq,

V µ,2pu, Iba q “ sup
pξ,ηq

n´2
ÿ

i“0

m´2
ÿ

j“0

ˇ

ˇ∆2
11uµpti, sjq

ˇ

ˇ(3.6)

≤ 4pµpb1q ´ µpa1qqpµpb2q ´ µpa2qq ă `8.

From (i), (ii) and (3.6) it follows that

TV µ,2pu, Iba q “ V µ,2pu, Iba q ` V µ,2
ra1,b1s

pup¨, a2qq ` V µ,2
ra1,b1s

pup¨, b2qq

` V µ,2
ra2,b2s

pupa1, ¨qq ` V µ,2
ra2,b2s

pupb1, ¨qq ă `8.

The proof of the following lemma follows in a straightforward manner
from the definition.

Lemma 3.5. If u and v belong to V µ,2pIba q and λ is any real constant then

TV µ,2pλu, Iba q “ |λ|TV
µ,2pu, Iba q

and

TV µ,2pu` v, Iba q ≤ TV µ,2pu, Iba q ` TV
µ,2pv, Iba q.

Lemma 3.6. Let u P V µ,2pIba q.

pMonotonicityq If c “ pc1, c2q and d “ pd1, d2q with a1 ă c1 ă d1 ă b1 and
a2 ă c2 ă d2 ă b2 then

TV µ,2pu, Idc q ≤ TV µ,2pu, Iba q.

pSemi-additivityq If a1 ă x ă b1 then

V µ,2
´

u, I
px,b2q

pa1,a2q

¯

` V µ,2
´

u, I
pb1,b2q

px,a2q

¯

≤ V µ,2pu, Iba q.

Proof. For the sake of brevity, we will omit the proof of part (a) which
is similar to the (readily seen) correspondent one for functions in BV pIq
(I Ă R), taking into account, of course, the specific bi-dimensional setting.

To prove (b), let ξ :“ ttiu
n
i“0 P Π3pra1, xsq, rξ :“ trtiu

n
i“0 P Π3prx, b1sq and

η :“ tsju
r
j“0 P Π3pra2, b2sq. Then
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n´2
ÿ

i“0

r´2
ÿ

j“0

ˇ

ˇ∆2
11uµpti, sjq

ˇ

ˇ`

n´2
ÿ

i“0

r´2
ÿ

j“0

ˇ

ˇ∆2
11uµprti, sjq

ˇ

ˇ

≤
n´2
ÿ

i“0

r´2
ÿ

j“0

|∆2
11uµpti, sjq| `

r´2
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

∆01uµrrt1; sj`1, sj`2s ´∆01uµrrt0; sj`1, sj`2s

µprt1q ´ µprt0q

´

„

∆01uµrtn; sj`1, sj`2s ´∆01uµrtn´1; sj`1, sj`2s

µptnq ´ µptn´1q


ˇ

ˇ

ˇ

ˇ

`

n´2
ÿ

i“0

r´2
ÿ

j“0

ˇ

ˇ∆2
11uµprti, sjq

ˇ

ˇ ≤ V µ,2pu, Iba q.

Therefore

V µ,2
´

u, I
px,b2q

pa1,a2q

¯

` V µ,2
´

u, I
pb1,b2q

px,a2q

¯

≤ V µ,2pu, Iba q.

Definition 3.7. By Lemma 3.5, V µ,2pIba q is a linear space. In the sequel,
it will be denoted as BV µ,2pIba q.

Definition 3.8. Let µ : ra, bs Ñ R be a strictly increasing function. We
say that a function u : Iba Ñ R is a µ-affine function if there are real constants
A,B and C such that

upx, yq “ Aµpxq `Bµpyq ` C.

Remark 3.9. Let µ : ra, bs Ñ R be a strictly increasing function. It
is readily seen (by just solving, for A,B and C, the system of equations
determined by the conditions upxi, yjq “ Aµpxiq ` Bµpyjq ` C) that if
Iba Ă R2 is a rectangle and u : R2 Ñ R is any µ-affine function then the
coefficients of u depend linearly on the values of u over the vertices of Iba
(with coefficients depending on pµpbiq ´ µpaiqq´1, i “ 1, 2) and

(3.7) ∆11ura,bs :“ upb1, b2q ´ upa1, b2q ´ upb1, a2q ` upa1, a2q “ 0.

Theorem 3.10. Let µ be a real-valued strictly increasing function whose
domain includes ra1, b1s and ra2, b2s. A function u : Iba Ñ R satisfies the
conditions ∆11ura, bs “ 0 and TV µ,2pu, Iba q “ 0 then there are constants
A,B,C such that upx, yq “ Aµpxq `Bµpyq ` C.

Proof. If TV µ,2pu, Iba q “ 0 then, for all px, yq P pa1, b1qˆ pa2, b2q, the follow-
ing implications hold:

V µ,2
ra2,b2s

pupa1, ¨qq “ 0 ñ
upa1, b2q ´ upa1, yq

µpb2q ´ µpyq
“
upa1, yq ´ upa1, a2q

µpyq ´ µpa2q
;(3.8)
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V µ,2
ra2,b2s

pupb1.¨qq “ 0 ñ
upb1, b2q ´ upb1, yq

µpb2q ´ µpyq
“
upb1, yq ´ upb1, a2q

µpyq ´ µpa2q
;(3.9)

V µ,2
ra1,b1s

pup¨, a2qq “ 0 ñ
upb1, a2q ´ upx, a2q

µpb1q ´ µpxq
“
upx, a2q ´ upa1, a2q

µpxq ´ µpa1q
;(3.10)

V µ,2
ra1,b1s

pup¨, b2qq “ 0 ñ
upb1, b2q ´ upx, b2q

µpb1q ´ µpxq
“
upx, b2q ´ upa1, b2q

µpxq ´ µpa1q
;(3.11)

while V µ,2pu, Iba q “ 0 implies

1

µpb1q ´ µpxq

„

upb1, b2q ´ upb1, yq

µpb2q ´ µpyq
´
upb1, yq ´ upb1, a2q

µpyq ´ µpa2q

´

ˆ

upx, b2q ´ upx, yq

µpb2q ´ µpyq
´
upx, yq ´ upx, a2q

µpyq ´ µpa2q

˙

“
1

µpxq ´ µpa1q

„

upx, b2q ´ upx, yq

µpb2q ´ µpyq
´
upx, yq ´ upx, a2q

µpyq ´ µpa2q

´

ˆ

upa1, b2q ´ upa1, yq

µpb2q ´ µpyq
´
upa1, yq ´ upa1, a2q

µpyq ´ µpa2q

˙

.

The first and fourth summands of this last equality vanish, by virtue of
(3.8) and (3.9). Hence, we have

´
1

µpb1q ´ µpxq

„

upx, b2q ´ upx, yq

µpb2q ´ µpyq
´
upx, yq ´ upx, a2q

µpyq ´ µpa2q



“
1

µpxq ´ µpa1q

„

upx, b2q ´ upx, yq

µpb2q ´ µpyq
´
upx, yq ´ upx, a2q

µpyq ´ µpa2q



and solving this equation for upx, yq, we get

(3.12) upx, yq “

ˆ

µpyq ´ µpa2q

µpb2q ´ µpa2q

˙

upx, b2q `

ˆ

µpb2q ´ µpyq

µpb2q ´ µpa2q

˙

upx, a2q.

Moreover, making use of (3.10) and (3.11), we obtain the relations

upx, a2q “

ˆ

µpxq ´ µpa1q

µpb1q ´ µpa1q

˙

upb1, a2q `

ˆ

µpb1q ´ µpxq

µpb1q ´ µpa1q

˙

upa1, a2q

and

upx, b2q “

ˆ

µpxq ´ µpa1q

µpb1q ´ µpa1q

˙

upb1, b2q `

ˆ

µpb1q ´ µpxq

µpb1q ´ µpa1q

˙

upa1, b2q,

which, combined with (3.12) yields
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upx, yq “

ˆ

µpyq ´ µpa2q

µpb2q ´ µpa2q

˙ˆ

µpxq ´ µpa1q

µpb1q ´ µpa1q

˙

upb1, b2q(3.13)

`

ˆ

µpyq ´ µpa2q

µpb2q ´ µpa2q

˙ˆ

µpb1q ´ µpxq

µpb1q ´ µpa1q

˙

upa1, b2q

`

ˆ

µpb2q ´ µpyq

µpb2q ´ µpa2q

˙ˆ

µpxq ´ µpa1q

µpb1q ´ µpa1q

˙

upb1, a2q

`

ˆ

µpb2q ´ µpyq

µpb2q ´ µpa2q

˙ˆ

µpb1q ´ µpxq

µpb1q ´ µpa1q

˙

upa1, a2q.

Although (3.13) was established assuming that px, yq P pa1, b1q ˆ pa2, b2q, a
straightforward computation shows that if we replace in (3.13), px, yq by any
point in the boundary of Iba , then we get an identity. Thus (3.13) actually
holds for all px, yq P Iba . Finally, notice that after expanding and regrouping
terms in the right hand side of (3.13), the coefficient of the product µpxqµpyq
is

∆11ura,bs
pµpb2q ´ µpa2qqpµpb1q ´ µpa1qq

which is zero, by hypothesis. Thus u must be a µ-affine function.

Based on Theorem 3.10, and in the discussion previous to it, the following
definition is now natural.

Definition 3.11. For any u P BV µ,2pIba q define

}u} :“ Σ |u|ra,bs ` TV µ,2pu, Iba q,(3.14)

where Σ |u|ra,bs :“ |upa1, a2q| ` |upb1, b2q| ` |upa1, b2q| ` |upb1, a2q|.

Corollary 3.12. } ¨ } is a norm on BV µ,2pIba q.

Proof. Let u P BV µ,2pIba q. By definition }u} ≥ 0 and clearly u “ 0 im-
plies }u} “ 0. On the other hand, if }u} “ 0, then TV µ,2pu, Iba q “ 0 and
|∆11ura,bs| ≤ Σ |u|ra,bs “ 0. It follows, by (3.13), that u ” 0.

On the other hand, the properties:

pP2q @α P R : }αu} “ |α|}u} and
pP3q }u` v} ≤ }u} ` }v}, (u, v P BV µ,2pIba q)

follow readily from the definition and the properties of the functionals of
modulus (| |) and supremum (sup).

In the following proposition, we present a result which will be funda-
mental to present BV µ,2pIba q as a Banach space. The result asserts that
the functions in the unit ball of BV µ,2 are (uniformly) majorized by a single
function h (a second degree polynomial-like function on µpxq and µpyq, whose
coefficients depend only on the values of µ at the end points of Iba ). Despite
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the fact that this result allows us to prove that BV µ,2pIba q is a Banach space,
the result might be of some interest in itself.

Proposition 3.13. Let µ be a real-valued strictly increasing continuous
function whose domain includes ra1, b1s and ra2, b2s. There is a continuous
function h : R2 Ñ R of the form

ř2
i“0

ř2
j“0 aij µpxq

iµpyqj, with aij P R,
such that for all u P BV µ,2pIba q

|upx, yq| ≤ hpx, yq }u} for all px, yq P Iba .

In particular, BV µ,2pIba q is a subspace of BpIba q, the Banach space of all
bounded functions on Iba with the sup norm.

Proof. Let u be in BV µ,2pIba q. Put δ1 :“ µpb1q ´ µpa1q and δ2 :“ µpb2q ´
µpa2q. Then, by (3.2) and Definition (3.14) for all px, yq P pa1, b1q ˆ pa2, b2q,
we have the following inequalities

ˇ

ˇ

ˇ

ˇ

upa1, b2q ´ upa1, yq

µpb2q ´ µpyq
´
upa1, yq ´ upa1, a2q

µpyq ´ µpa2q

ˇ

ˇ

ˇ

ˇ

≤ }u};(3.15)
ˇ

ˇ

ˇ

ˇ

upb1, b2q ´ upb1, yq

µpb2q ´ µpyq
´
upb1, yq ´ upb1, a2q

µpyq ´ µpa2q

ˇ

ˇ

ˇ

ˇ

≤ }u};(3.16)
ˇ

ˇ

ˇ

ˇ

upb1, a2q ´ upx, a2q

µpb1q ´ µpxq
´
upx, a2q ´ upa1, a2q

µpxq ´ µpa1q

ˇ

ˇ

ˇ

ˇ

≤ }u};(3.17)
ˇ

ˇ

ˇ

ˇ

upb1, b2q ´ upx, b2q

µpb1q ´ µpxq
´
upx, b2q ´ upa1, b2q

µpxq ´ µpa1q

ˇ

ˇ

ˇ

ˇ

≤ }u};(3.18)

whereas V µ,2pu, Iba q ≤ }u} implies
ˇ

ˇ

ˇ

ˇ

1

µpb1q ´ µpxq

„

upb1, b2q ´ upb1, yq

µpb2q ´ µpyq
´
upb1, yq ´ upb1, a2q

µpyq ´ µpa2q
(3.19)

´

ˆ

upx, b2q ´ upx, yq

µpb2q ´ µpyq
´
upx, yq ´ upx, a2q

µpyq ´ µpa2q

˙

´
1

µpxq ´ µpa1q

„

upx, b2q ´ upx, yq

µpb2q ´ µpyq
´
upx, yq ´ upx, a2q

µpyq ´ µpa2q

´

ˆ

upa1, b2q ´ upa1, yq

µpb2q ´ µpyq
´
upa1, yq ´ upa1, a2q

µpyq ´ µpa2q

˙
ˇ

ˇ

ˇ

ˇ

≤ }u}.

Now, (3.17), in turn, implies

(3.20)
ˇ

ˇ

ˇ

ˇ

δ1

pµpb1q ´ µpxqqpµpxq ´ µpa1qq
upx, a2q

ˇ

ˇ

ˇ

ˇ

≤ }u} `
ˇ

ˇ

ˇ

ˇ

upb1, a2q

µpb1q ´ µpxq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

upa1, a2q

µpxq ´ µpa1q

ˇ

ˇ

ˇ

ˇ
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or

|upx, a2q| ≤
pµpb1q ´ µpxqqpµpxq ´ µpa1q}u}

δ1

`

ˇ

ˇ

ˇ

ˇ

pµpxq ´ µpa1qqupb1, a2q

δ1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

pµpb1q ´ µpxqqupa1, a2q

δ1

ˇ

ˇ

ˇ

ˇ

.

Similarly, (3.18) implies

|upx, b2q| ≤
pµpb1q ´ µpxqqpµpxq ´ µpa1qq}u}

δ1
(3.21)

`

ˇ

ˇ

ˇ

ˇ

pµpxq ´ µpa1qqupb1, b2q

δ1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

pµpb1q ´ µpxqqupa1, b2q

δ1

ˇ

ˇ

ˇ

ˇ

.

On the other hand, from inequality (3.20)

ˇ

ˇ

ˇ

ˇ

δ1δ2upx, yq

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

ˇ

ˇ

ˇ

ˇ

≤}u} `
ˇ

ˇ

ˇ

ˇ

upa1, b2q ´ upa1, yq

pµpxq ´ µpa1qqpµpb2q ´ µpyqq
´

upa1, yq ´ upa1, a2q

pµpxq ´ µpa1qqpµpyq ´ µpa2qq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

upb1, b2q ´ upb1, yq

pµpb1q ´ µpxqqpµpb2q ´ µpyqq
´

upb1, yq ´ upb1, a2q

pµpb1q ´ µpxqqpµpyq ´ µpa2qq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

δ1upx, b2q

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

δ1upx, a2q

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpyq ´ µpa2qq

ˇ

ˇ

ˇ

ˇ

,

and from this, by (3.15) and (3.16), we get

ˇ

ˇ

ˇ

ˇ

δ1δ2upx, yq

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

ˇ

ˇ

ˇ

ˇ

≤ }u} ` }u}

µpxq ´ µpa1q
`

}u}

µpb1q ´ µpxq

`

ˇ

ˇ

ˇ

ˇ

δ1upx, b2q

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

δ1upx, a2q

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpyq ´ µpa2qq

ˇ

ˇ

ˇ

ˇ
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or equivalently

|upx, yq| ≤ pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

δ1δ2
}u}

`
pµpb1q ´ µpxqqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

δ1δ2
}u}

`
pµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

δ1δ2
}u}

`

ˇ

ˇ

ˇ

ˇ

pµpyq ´ µpa2qqupx, b2q

δ2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

pµpb2q ´ µpyqqupx, a2q

δ2

ˇ

ˇ

ˇ

ˇ

.

Taking into account (3.20), (3.21) and the fact that Σ|u|ra,bs ≤ }u}, we
obtain

(3.22) |upx, yq|

≤
„

pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

δ1δ2

`
pµpb1q ´ µpxqqppb2q ´ µpyqqpµpyq ´ µpa2qq

δ1δ2

`
pµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

δ1δ2

`
pµpyq ´ µpa2qqpµpb1q ´ µpxqqpµpxq ´ µpa1qq

δ2δ1

`
pµpyq ´ µpa2qqpµpxq ´ µpa1qq

δ2δ1

`
pµpyq ´ µpa2qqpµpb1q ´ µpxqq

δ1δ2
`
pµpb2q ´ µpyqqpµpxq ´ µpa1qq

δ2δ1

`
pµpb2q ´ µpyqqpµpb1q ´ µpxqqpµpxq ´ µpa1qq

δ2δ1

`
pµpb2q ´ µpyqqpµpb1q ´ µpxqq

δ2δ1



}u}.

Finally, by regrouping the right hand side of this inequality, we may
define

hpx, yq

:“ 1` δ´1
1 δ´1

2 pµpb1q ´ µpxqqpµpxq ´ µpa1qqpµpb2q ´ µpyqqpµpyq ´ µpa2qq

` δ´1
1 pµpb1q ´ µpxqqpµpxq ´ µpa1qq ` δ

´1
2 pµpb2q ´ µpyqqpµpyq ´ µpa2qq.

Now, any point in the boundary of Iba which is not a vertex must satisfy,
respectively, one of the inequalities (3.15), (3.16), (3.17) or (3.18), and so
(3.22) holds also for those points. On the other hand, if px0, y0q is a vertex
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then hpx0, y0q “ 1 and since |upx0, y0q| ≤ Σ|u|ra,bs ≤ }u}, the condition
(3.22) actually holds for every px, yq P ra1, b1s ˆ ra2, b2s. This finishes the
proof.

Corollary 3.14. If m is a real-valued strictly increasing bounded func-
tion whose domain includes ra1, b1s and ra2, b2s then BV µ,2pIba q is a Banach
space.

Proof. Suppose that turur≥1 is a Cauchy sequence in BV µ,2pIba q and let h
be the function given by Proposition 3.13. Then, for all px, yq P Iba and all
r, s P N, we have

|pur ´ usqpx, yq| ≤ sup
px,yqPIba

hpx, yq }ur ´ us}.

Thus, turur≥1 is a Cauchy sequence in BpIba q and therefore there is u P BpIba q
such that }ur ´ u}8 Ñ 0. Fix ε ą 0. Since turur≥1 is a Cauchy sequence
in BV µ,2pIba q, there is ρ P N such that for all r, s ą ρ and all ξ0 “ tt

0

i u
n0
1 P

Π3ra1, b1s, η0 “ ts
0

ju
m0
1 P Π3ra2, b2s:

ε ą TV µ,2pur ´ us, I
b
a q ≥ V µ,2pur ´ us, I

b
a q

≥ sup

" n´2
ÿ

i“0

k´2
ÿ

j“0

ˇ

ˇ

ˇ
∆2

11 pur ´ usqµ pti, sjq
ˇ

ˇ

ˇ
:

ξ “ ttiu
n
1 P Π3ra1, b1s, η “ tsju

k
1 P Π3ra2, b2s

*

≥
n0´2
ÿ

i“0

m0´2
ÿ

j“0

ˇ

ˇ

ˇ
∆2

11 pur ´ usqµ pt
0

i , s
0

jq

ˇ

ˇ

ˇ
.

It follows that, for all r ą ρ and all ξ0 “ tt
0

i u
n0
1 P Π3ra1, b1s, η0 “ ts

0

ju
m0
1 P

Π3ra2, b2s:

ε ≥ lim
sÑ8

n0´2
ÿ

i“0

m0´2
ÿ

j“0

ˇ

ˇ

ˇ
∆2

11 pur ´ usqµ pt
0

i , s
0

jq

ˇ

ˇ

ˇ
(3.23)

“

n0´2
ÿ

i“0

m0´2
ÿ

j“0

ˇ

ˇ

ˇ
∆2

11 pur ´ uqµ pt
0

i , s
0

jq

ˇ

ˇ

ˇ
.

Consequently, for all r ą ρ

V µ,2pur ´ u, I
b
a q “ sup

pξ,ηq

n´2
ÿ

i“0

k´2
ÿ

j“0

ˇ

ˇ∆2
11pur ´ uqµpti, sjq

ˇ

ˇ ≤ ε.

A similar procedure, applied to the rest of the summands of TV µ,2pur ´ usq,
implies that for all r ą ρ

TV µ,2pur ´ u, I
b
a q ≤ 5ε,(3.24)
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which, in turn, implies u P BV µ,2pIba q and (since ur Ñ u pointwise in Iba )

lim
rÑ8

}ur ´ u} “ 0.

We conclude that BV µ,2pIba q is a Banach space.

4. Factorizable functions in BV µ,2pIba q

In this section, we will study a distinguished subfamily of BV µ,2pIba q.

Definition 4.1. A function u : Iba Ñ R is said to be factorizable if it can
be expressed as the product of two non-zero functions g : ra1, b1s Ñ R and
h : ra2, b2s Ñ R; i.e.,

upt, sq “ gptqhpsq; g ‰ 0 y h ‰ 0.

Remark 4.2. Based on the definitions, it is readily seen that a factorizable
function u : Iba Ñ R is of bounded variation if and only if each factor is of
(one-dimensional) bounded variation.

Lemma 4.3. If u : Iba Ñ R with upt, sq “ gptqhpsq and µ is a real-valued
strictly increasing function whose domain includes ra1, b1s and ra2, b2s then
for any partitions ttiuni“0 P Π3pra1, b1sq and tsjumj“0 P Π3pra2, b2sq, we have

∆2
11uµpti, sjq “ pgµrti`1, ti`2s ´ gµrti, ti`1sq phµrsj`1, sj`2s ´ hµrsj , sj`1sq .

Proof. Indeed:

∆2
11uµpti, sjq “ ∆11pghqµpti, sjq

“
∆01pghqµrti`2; sj`1, sj`2s ´∆01pghqµrti`1; sj`1, sj`2s

µpti`2q ´ µpti`1q

´

„

∆01pghqµrti`1; sj`1, sj`2s ´∆01pghqµrti; sj`1, sj`2s

µpti`1q ´ µptiq



“

„

gpti`2qhpsj`2q ´ gpti`2qhpsj`1q

pµpti`2q ´ µpti`1qqpµpsj`2q ´ µpsj`1qq

´
gpti`2qhpsj`1q ´ gpti`2qhpsjq

pµpti`2q ´ µpti`1qqpµpsj`1q ´ µpsjqq



´

„

gpti`1qhpsj`2q ´ gpti`1qhpsj`1q

pµpti`2q ´ µpti`1qqpµpsj`2q ´ µpsj`1qq

´
gpti`1qhpsj`1q ´ gpti`1qhpsjq

pµpti`2q ´ µpti`1qqpµpsj`1q ´ µpsjqq


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´

„

gpti`1qhpsj`2q ´ gpti`1qhpsj`1q

pµpti`1q ´ µptiqqpµpsj`2q ´ µpsj`1qq

´
gpti`1qhpsj`1q ´ gpti`1qhpsjq

pµpti`1q ´ µptiqqpµpsj`1q ´ µpsjqq



`

„

gptiqhpsj`2q ´ gptiqhpsj`1q

pµpti`1q ´ µptiqqpµpsj`2q ´ µpsj`1qq

´
gptiqhpsj`1q ´ gptiqhpsjq

pµpti`1q ´ µptiqqpµpsj`1q ´ µpsjqq



“ pgµrti`1, ti`2s ´ gµrti, ti`1sq phµrsj`1, sj`2s ´ hµrsj , sj`1sq

and the result follows.

Now we present the main theorem of this section.

Theorem 4.4. A factorizable function u : Iba Ñ R is of bounded second
µ-variation if and only if each factor is of pone-dimensionalq bounded second
µ-variation.

Proof. Let ξ :“ ttiu
n
i“0 P Π3pra1, b1sq, η :“ tsju

m
j“0 P Π3pra2, b2sq and let µ

be a real-valued strictly increasing function whose domain includes ra1, b1s
and ra2, b2s. Then if u “ g ¨ h, we have for s P ra2, b2s

|∆10uµrti`1, ti`2; ss| “

ˇ

ˇ

ˇ

ˇ

gpti`2qhpsq ´ gpti`1qhpsq

µpti`2q ´ µpti`1q
´
gpti`1qhpsq ´ gptiqhpsq

µpti`1q ´ µptiq

ˇ

ˇ

ˇ

ˇ

“ |hpsq|

ˇ

ˇ

ˇ

ˇ

gpti`2q ´ gpti`1q

µpti`2q ´ µpti`1q
´
gpti`1q ´ gptiq

µpti`1q ´ µptiq

ˇ

ˇ

ˇ

ˇ

,

and for t P ra1, b1s

|∆01uµrt; sj`1, sj`2s| “

ˇ

ˇ

ˇ

ˇ

gptqhpsj`2q´gptqhpsj`1q

µpsj`2q ´ µpsj`1q
´
gptqhpsj`1q´gptqhpsjq

µpsj`1q ´ µpsjq

ˇ

ˇ

ˇ

ˇ

“ |gptq|

ˇ

ˇ

ˇ

ˇ

hpsj`2q ´ hpsj`1q

µpsj`2q ´ µpsj`1q
´
hpsj`1q ´ hpsjq

µpsj`1q ´ µpsjq

ˇ

ˇ

ˇ

ˇ

.

If u “ g ¨ h P BV µ,2pIba q, then by definition of TV µ,2pu, Iba q

sup
ξ

n´2
ÿ

i“0

|∆10uµrti`1, ti`2; a2s| “ sup
ξ

n´2
ÿ

i“0

|hpa2q| |gµrti`1, ti`2s ´ gµrti, ti`1s|

≤ TV µ,2pu, Iba q ă 8,

sup
η

m´2
ÿ

j“0

!|∆01uµra1; sj`1, sj`2s| “ sup
η

m´2
ÿ

j“0

|gpa1q||hµrsj`1, sj`2s ´ hµrsj , sj`1s|

≤ TV µ,2pu, Iba q ă 8.

Therefore g P BV µ,2pra1, b1sq and h P BV µ,2pra2, b2sq.
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Conversely, if u “ g ¨ h with g P BV µ,2pra1, b1sq and h P BV µ,2pra2, b2sq
then

TV µ,2pu, Iba q

“ sup
pξ,ηq

n´2
ÿ

i“0

m´2
ÿ

j“0

|gµrti`1,i`2 s ´ gµrti, ti`1s| |hµrsj`1, sj`2s ´ hµrsj , sj`1s|

` sup
ξPΠ3pra1,b1sq

n´2
ÿ

i“0

|hpa2q| |gµrti`1, ti`2s ´ gµrti, ti`1s|

` sup
ξPΠ3pra1,b1sq

n´2
ÿ

i“0

|hpb2q| |gµrti`1, ti`2s ´ gµrti, ti`1s|

` sup
ηPΠ3pra2,b2sq

m´2
ÿ

j“0

|gpa1q| |hµrsj`1, sj`2s ´ hµrsj , sj`1s|

` sup
ηPΠ3pra2,b2sq

m´2
ÿ

j“0

|gpb1q| |hµrsj`1, sj`2s ´ hµrsj , sj`1s|

“ V µ,2pg; ra1, b1sqV
µ,2ph; ra2, b2sq ` 2 maxt|hpa2q| , |hpb2q|uV

µ,2pg; ra1, b1sq

` 2 maxt|gpa1q| , |gpb1q|uV
µ,2ph; ra2, b2sq ă 8.

5. Relation with Riemann–Stieltjes integrals
In this section, we will present a result that relates the notion of bounded

second µ-variation and (double) indefinite Riemann–Stieltjes integrals of
functions in BV pIba q. This generalizes Proposition 2.4.

Remark 5.1. If f P BV pIba q is a continuous function and µ is a real-valued
strictly increasing bounded function whose domain includes ra1, b1s and
ra2, b2s, then for all pτ, σq P Iba , f is integrable over Iτσ :“ ra1, τ sˆra2, σs and
its integral over Iτσ is equal to the iterate integral

şτ
a1

şσ
a2
fpt, sq dµpsq dµptq “

şσ
a2

şτ
a1
fpt, sq dµptq dµpsq ([9, Chapter III]). In this case, if we set

F pτ, σq :“

ż τ

a1

ż σ

a2

fpt, sq dµpsq dµptq

then, for all a1 ≤ τ ≤ b1 and a2 ≤ σ1 ă σ2 ≤ b2, the (uniform) continuity of
f implies that

F pτ, σ2q ´ F pτ, σ1q “

ż τ

a1

ż σ2

σ1

fpt, sq dµpsq dµptq(5.1)

“ pµpσ2q ´ µpσ1qq

ż τ

a1

fpt, c˚q dµptq

for some c˚ P pσ1, σ2q.
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We will use identity (5.1) reiteratively in the proof of the next proposition.

Theorem 5.2. If f P BV pIba q is a continuous function, µ is a real-valued
strictly increasing function whose domain includes ra1, b1s and ra2, b2s, and
F pτ, σq :“

şτ
a1

şσ
a2
fpt, sq dµpsq dµptq then V µ,2pF, Iba q ≤ V pf, Iba q and F P

BV µ,2pIba q.

Proof. Let ξ :“ ttiu
n
i“0 P Π3pra1, b1sq, η :“ tsju

m
j“0 P Π3pra2, b2sq. By (5.1)

∆2
01rF s

µ
j`1
rti`1, ti`2s “

„

F pti`2, sj`2q ´ F pti`2, sj`1q

rµpti`2q ´ µpti`1qsrµpsj`2q ´ µpsj`1qs

´
F pti`2, sj`1q ´ F pti`2, sjq

rµpti`2q ´ µpti`1qsrµpsj`1q ´ µpsjqs



“
1

µpti`2q ´ µpti`1q

ż ti`2

a1

şsj`2

sj`1
fpt, sq dµpsq

µpsj`2q ´ µpsj`1q
dµptq

´
1

µpti`2q ´ µpti`1q

ż ti`2

a1

şsj`1

sj
fpt, sq dµpsq

µpsj`1q ´ µpsjq
dµptq.

Similarly

∆2
01rF s

µ
j`1
rti, ti`1s “

„

F pti`1, sj`2q ´ F pti`1, sj`1q

rµpti`1q ´ µptiqsrµpsj`2q ´ µpsj`1qs

´
F pti`1, sj`1q ´ F pti`1, sjq

rµpti`1q ´ µptiqsrµpsj`1q ´ µpsjqs



“
1

µpti`1q ´ µptiq

ż ti`1

a1

şsj`2

sj`1
fpt, sq dµpsq

µpsj`2q ´ µpsj`1q
dµptq

´
1

µpti`1q ´ µptiq

ż ti`1

a1

şsj`1

sj
fpt, sq dµpsq

µpsj`1q ´ µpsjq
dµptq.

Hence, using the notation as indicated in Remark 5.1, we have

∆2
01rF s

µ
j`1
rti`1, ti`2s “

1

µpti`2q ´ µpti`1q

ż ti`2

a1

fpt, s˚j`2qdµptq

´
1

µpti`2q ´ µpti`1q

ż ti`2

a1

fpt, s˚j`1qdµptq.

Analogously

∆2
01rF s

µ
j`1
rti, ti`1s “

1

µpti`1q ´ µptiq

ż ti`1

a1

fpt, s1
˚

j`2qdµptq

´
1

µpti`1q ´ µptiq

ż ti`1

a1

fpt, s1
˚

j`1qdµptq.
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Therefore

V µ,2pF, Iba q “ sup
pξ,ηq

n´2
ÿ

i“0

m´2
ÿ

j“0

ˇ

ˇ∆2
11Fµpti, sjq

ˇ

ˇ

“ sup
pξ,ηq

n´2
ÿ

i“0

m´2
ÿ

j“0

ˇ

ˇ

ˇ
∆2

01rF s
µ
j`1
rti`1, ti`2s ´∆2

01rF s
µ
j`1
rti, ti`1s

ˇ

ˇ

ˇ

“ sup
pξ,ηq

n´2
ÿ

i“0

m´2
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

1

µpti`2q´µpti`1q

ż ti`2

ti`1

fpt, s˚j`2q´fpt, s
˚
j`1qdµptq

´
1

µpti`1q ´ µptiq

ż ti`1

ti

fpt, s1
˚

j`2q ´ fpt, s
1˚

j`1qdµptq

ˇ

ˇ

ˇ

ˇ

“ sup
pξ,ηq

n´2
ÿ

i“0

m´2
ÿ

j“0

|fpt˚i`2, s
˚
j`2q ´ fpt

˚
i`2, s

˚
j`1q

´ fpt˚i`1, s
1˚

j`2q ` fpt
˚
i`1, s

1˚

j`1q| ≤ V pf, Iba q.

We conclude that V µ,2pF, Iba q ≤ V pf, Iba q ă `8.
Now, since by definition F pa1, sq “ F pt, a2q “ 0 for all pt, sq P Iba , we

must have V µ,2
ra2,b2s

pF pa1, ¨qq “ V µ,2
ra1,b1s

pF p¨, a2qq “ 0. On the other hand, using
(5.1) and the mean value theorem, we get

V µ,2
ra2,b2s

pF pb1, ¨qq “ sup
η

m´2
ÿ

j“0

|∆01Fµrb1; sj`1, sj`2s|

“ sup
η

m´2
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

F pb1, sj`2q ´ F pb1, sj`1q

µpsj`2q ´ µpsj`1q
´
F pb1, sj`1q ´ F pb1, sjq

µpsj`1q ´ µpsjq

ˇ

ˇ

ˇ

ˇ

“ sup
η

m´2
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1
ż

a1

rfpt, s˚j`2q ´ fpt, s
˚
j`1qs dµptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ pµpb1q ´ µpa1qq sup
η

m´2
ÿ

j“0

ˇ

ˇfpc, s˚j`2q ´ fpc, s
˚
j`1q

ˇ

ˇ

≤ pµpb1q ´ µpa1qqVra2,b2spfpc, ¨qq ≤ pµpb1q ´ µpa1qqTV pf, I
b
a q ă `8

by ([6, Proposition 2.3]). A similar estimate holds for V µ,2
ra1,b1s

pF p¨, b2qq. We
conclude that F P BV µ,2pIba q.

We would like to thank the reviewer of our initial manuscript by his/her
work and valuable comments that have improved the quality of this paper.
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