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ON BI-DIMENSIONAL SECOND p-VARIATION

Abstract. In this paper, we present a generalization of the notion of bounded slope
variation for functions defined on a rectangle I2 in R2. Given a strictly increasing function
u, defined in a closed real interval, we introduce the class BV“’Q(ISIT)7 of functions of
bounded second p-variation on IP, and show that this class can be equipped with a norm
with respect to which it is a Banach space. We also deal with the important case of
factorizable functions in BV*?(I?) and finally we exhibit a relation between this class
and the one of double Riemann—Stieltjes integrals of functions of bi-dimensional bounded
variation.

1. Introduction

In 1881, Camile Jordan ([11]) introduced the concept of function of
bounded variation after a rigorous study of the proof given by Dirichlet
([5]) on the convergence of the Fourier series of a monotone function. In
fact, Jordan showed that a function is of bounded variation if and only if
it is the difference of two monotone functions. From the spatial point of
view, the notion of bounded variation was extended to functions defined on
the plane in 1905 by Hardy and Vitali ([1], 8], [19]). In 1908, De La Val-
lée Poussin (|18]) introduced the notion of second variation of a function,
showing that a function is of bounded second variation if and only if it is
the difference of two convex functions. The subsequent denomination of this
class as functions of bounded convexity, apparently, is due to A. W. Roberts
and D. E. Varberg (|15] and [16]). A few years later, in 1911, F. Riesz ([14])
proved that a function F' is of bounded second variation on an interval [a, b]
if and only if, it is the indefinite Lebesgue integral of a function f of bounded
variation.
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The unvarying interest generated by the classical notion of function of
bounded variation has lead to some generalizations of the concept, mainly,
intended to the search of a bigger class of functions whose elements have
pointwise convergent Fourier series.

From the PDEs point of view, the first successful generalization of this
concept to functions of several variables is due to L. Tonelli ([12]), who intro-
duced the class of continuous functions of bounded variation in 1926. Later
on, L. Cesari (|4]), modified the continuity requirement in Tonelli’s definition
by a less restrictive integrability requirement, obtaining the class of functions
of bounded variation of several variables; actually, he applied the concept to
solve a problem concerning the convergence of Fourier series of functions of
two variables. After that, many authors have considered several generaliza-
tions of the concept of function of bounded variation to study Fourier series
in several variables. As in the classical case, these generalizations have found
many applications in the study of certain (partial) differential and integral
equations (see e.g., [3]), in geometric measure theory, calculus of variations
and mathematical physics.

In 2011, the authors ([6]) studied the class BV?(IP), of function of
bounded second variation on a rectangle of R?, and proved that, equipped
with a suitable norm, this class is a Banach space. We also showed that inte-
grals of functions of first bounded variation (on I?) are in BV2(IP). See also
[2, 7, 20, 21] for related generalizations of the concept of function of bounded
variation to the plane or of the notion of function of second variation.

In this work, we present a spatial generalization of the notion of bounded
slope variation or p-variation, as given by F. N. Huggins in [10], for the case of
functions defined on a rectangle I? in R? and introduce the space BV*2(IP),
of all functions of bounded second y-variation on IP. We show that this space
can be equipped with a norm and prove that the functions in the unit ball of
this normed space are uniformly majorized by a polynomial-like continuous
function. This fact allows us to show that BV#*2(IP) is a Banach space.
We also deal with the important case of factorizable functions in BV*2(IP)
and finally, we show that double u-Riemann—Stieltjes indefinite integrals
of functions of bi-dimensional bounded variation are functions of bounded
second p-variation.

2. Preliminaries
In this section, we will expose the basic facts of the notions of function of
bounded variation and function of bounded second variation in one variable.
Given an interval [a,b] c R, we will use the notation II([a, b]) to denote
the set of all partitions of [a, b], whereas II3([a, b]) will denote the subset of
II([a, b]) consisting of partitions of [a,b] with at least three points.
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Recall that a function u : [a,b] — R is said to be of bounded variation
(in the sense of Jordan) if

V(u;[a,b]) := sup > u(ty) — ult;1)] < oo,
ei([ab) (=

where the supremum is taken over the set of all partitions £ = {a = t, <
t <.+ <ty =0>}ell[a,b]).

The notion of bounded second variation in the sense of De La Vallée
Poussin is defined as follows:

A function w : [a,b] — R is of bounded second variation if and only if

m—2
V2(’U,7 [avb]) = sup Z ’u[ti+17ti+2] - u[ti7ti+1]‘ < 0,
TI'EHg([a,b]) i=0
where
(2.1) W[tiss, tivg] i WUipR) ultivn) 0

tivo —tiy1
The class of all the functions of bounded second variation (on [a,b]), in
the sense of De La Vallée Poussin, is denoted by BV?([a,b]).
The following are known properties of the functional V2(-;[a,b]) and of
the functions in the class BV?([a,b]) (see e.g., [13], [15] and [17]).

PROPOSITION 2.1. Let u € BV?([a,b]).
(1) Ifve BV?([a,b]) and X\ is any real constant, then
VZ(\u; [a, 8]) = [A[VZ(u; [a, 0]),
VZ(u + v;[a,b]) < V2(u; [a,b]) + VZ(v;[a,b]).

(2) (Monotonicity) If a < ¢ < d < b, then V2(u;[c,d]) < V?(u;[a,b]).

(3) (Semi-additivity) If a < ¢ < b then u € BV?([a,c]), u € BV?([c,b]) and
V2(u;[a,b]) > VZ(u;[a,c]) + V2(u; [c, b]).

(4) ulyo,y1] is bounded for all yo,y1 € [a,b].

(5) w is Lipschitz and therefore absolutely continuous on [a,b].

(6) u € BV2([a,b]) if and only if u = u1 — uz, where ui,us are convexr
functions.

(7) A necessary and sufficient condition for a function F to be the integral
of a function f € BV ([a,b]) is that F € BV?([a,b]).

(8) Ifu is twice differentiable with u" integrable on [a,b] then u € BV?([a,b])
and V2(u; [a,b]) = §° [u”(t)|dt.

Now, we recall Huggins’ notion ([10]) of a function of bounded second
p-variation.
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DEFINITION 2.2. Let g : [a,b] — R be a strictly increasing function.
A function u : [a,b] — R is said to be of bounded second pu-variation if
and only if

m—2
VA2 (us[a,0]) i=  sup - fupltivrs tive] = wplti, tia]| < oo,
ﬂ'EHg([a,b]) i=0
where
(2.2) wultisn, tisa] = ulbive) zultiv)) 50 o

pltive) — pltiv1) 7

ExXAMPLE 2.3. If u(x) = m%, then it is of bounded second p-variation on
[a,b], for p(z) := z'/3. In fact, it readily follows from the definitions that

V2(u; [a,b]) < 20073 — a'%) = 2(u(b) — u(a)) < +.

The class of all the functions of bounded second p-variation (on [a, b]) is
denoted by BV*2([a,b]).

The following proposition shows an interesting relation between functions
of bounded second p-variation and indefinite Riemann—Stieltjes integrals of
functions of (ordinary) bounded variation.

PROPOSITION 2.4. Iff € BV([a b]) is continuous, [ is a strictly increas-
ing function and F(T) := S f(t)du(t) then VH2(F, [a,b]) < V(f,[a,b]) and
F € BV#?([a,b]).
Proof. Let £ := {t;}I", € II3([a,b]), by the definition of F' and the Mean
Value Theorem for Riemann—Stieltjes integrals, we have

F(tlurg) — F(tlurl) _ StH—Q f )

p(tive — p(tiv1)  pltive) — M(tz+1)
fleive)(ultiva) — p(tiv))

= = fci
p(tive) — pltivr) (€i+2)
with ¢i12 € (tiv1,tit2)-
On the other hand,
VI3 (Fi[a,b]) = sup Z |Fpltivns tiva] — Fulti, tival|
7'('61_[3([ =
_ | Fltis2) = F(tis1)  F(ti) — F(t)
= sup —
retlz([ap]) 2 | #(tir2) = pltivn)  pltiven) — p(ti)

= sup Z |f(civ2) = fleiv)] S V(f3[a,b]) < +oo,
mellz([a,b]) ;—p

therefore F' € BV*2([a,b]). =
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3. Bi-dimensional second p-variation
We begin by recalling the definition of (bounded) variation for functions
defined on rectangles of R? (c.f. [9]).
Let a = (a1,a2), b = (b1,b2) € R?, such that a; < by and ay < bo.
In the sequel, we will use the symbol IP to denote the basic rectangle
[CLl, bl] X [CLQ, bg].
For € := {t;}]_, € Il([a1,b1]) and n := {s;}]Ly € [I([az, b2]), we will use
the following notation:
(i) Ajou(ts,s) :=u(ti, s) — u(ti—1, s) for s € [ag, ba] fixed.
(i) Aogru(t,s;) :=u(t,s;) —u(t,sj—1) for t € [a1, b1] fixed.
(iii) Anu(ti, Sj) = u(ti_l, Sj_l) + u(tz- Sj) - u(ti_l, Sj) — u(ti, Sj_l).
DEFINITION 3.1. Let u: I? — R.

o If s € [ag, bo] is fixed, we define the variation in the sense of Jordan of u
in [a1,b1] x {s} by

n
Viay oy (@l 8)) = Sup D Avoulti, s)]
i=1
where the supremum is taken over the set of all partitions £ € II([aq, b1]).
e Similarly for t € [a1,b1], we define the variation in the sense of Jordan of
w in {t} X [ag, ba] by

Viagbe) (u(t,-)) := sup Z |Aoru(t, s5)|,

n j=1

where the supremum is taken over the set of all partitions n € II([ag, b2]).
e We define the variation of u, in the sense of Hardy—Vitali as

V(u, I?) := sup Z Z |A11u(t; s5)],
&m) i=1j=1

where the supremum is taken over the set of all partitions (£, n)eIl([a1, b1])
X H([CLQ, bz])

e The total variation of u on I? is defined as
TV (u, 13) := Vi, 5 (- 50)) + V a0y (ulto, -)) + V(u, I3),

where (g, o) is any point in IP?.
e u is said to be of total bounded variation if TV (u, IP) < oo. The class of
all functions u : I? — R of total bounded variation is denoted as BV (I?).

Now we present a spatial generalization of the notion of second p-variation.

Assume u : IP — R. Let € := {t;}7, € Us([a1,b1]), n := {sj}ilo €
II3([az, b2]) and w is a real-valued strictly increasing function whose domain
includes [a1,b1] and [ag, ba] . We will use the following notations:
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(i) For each s € [ag, bo] fixed, set

u(tiyo,s) — u(tis1,s)
Uy |tir1, tivo; 8| 1=
ultien, fivais] p(tive) — pltivr)
Ajoup[tivi, tivos s] := uptiv1, tivos s] — wulti tiv1;s]  and
n—2
2
Vi g s)) == sup Z |[Avoupltive, tiva; s]] .

&ellz([a1,b1]) ;=¢
(ii) Similarly, for each fixed ¢ € [a1, b1]
u(t, sj2) — ult, sj41)

p(sj+2) — p(sj+1)
(3.1)  Aoruplt; sj+1,8j42] = wult; sj41,5j42] — uult; sj,s541] and

m—2
2
Vs (ult,) : sup > |Aoruult; 541, 8512]]

nellz([a2,b2]) j=o

uult; Sj+1, Sj42) =

DEFINITION 3.2. Let u : I? — R and let u be a real-valued strictly in-
creasing function whose domain includes [ag,b1] and [ag,b2]. The second
p-variation of u on IP is defined as

VH2(u, IP) := sup V“Q(u Exn),

&m)
n—2m-—2
where Vl‘é’g(u,ﬁ xmn):i= > Z | A% uy,(t;, s5)| with
a 1=0 j=

Aorupltive; Sj+1, 8j+2] — Dorup[tivi; sj+1, Sj+2]
p(tiv2) — pltiva)
B [AOIUN[ti+1§ Sj41s 8j42] — Dorup[ti; sjv1, 3j+2]}
pultiv1) — p(ts) ’
the supremum being taken over the set of all partitions (£,n) € II3([a1,b1]) x
II5([az, ba]).

Af up(ti, s5) - =

The total bi-dimensional second p-variation of u, is defined by

(3.2) TVH2(u, IR) := VP2 (u, I3) + V2 (u(-,a2)) + V2 (u-,b2))

[a1,b1]

+V[§fb2]( ulay, ")) + vu: (u(by, )

[ag,b2]

and a function u: I® — R is said to be of bounded (bi-dimensional) second
p-variation if

TVH2(u, IP) < o0



916 J. Eren, J. Giménez, N. Merentes

The class of all functions u € R of bounded second p-variation is de-
noted by V#2(IP); that is,

VEA(IR) i= {u: I - R/TVF2(u,IP) < oo}.

REMARK 3.3. In order to define A%, we only considered combinations
of expressions of type Ag; (see (3.1)). Actually, A%, could have been also
defined in the following way:

For each j € {0,2,...,m — 2} fixed, we define the function A%l[u]? :

[a1,b1] — R as the (second order) difference quotient variation

(3.3) AGi[ul(t) == Doruy[t; 55, 5541

Then, it is readily seen that

(3.4) Afyu(tissj) = A [ul? [tivrs tiva] — Afy[u]?, [ti; tia]

(we recall that the notation f[a,b] stands for the difference quotient f,[a, b]

= (f(b) = f(a))/(u(b) — p(a)) (see (2.1)).

If, instead of proceeding as set forth above, we were chosen to consider
the subsequent difference quotients variations of expressions of type Aig,
then an analogous reasoning would lead us to differences of type

(3.5) A []1+1[33+1733+2] A10[ ]Z+1[SJ7S]+1]

but, as it is easy to verify after expanding and regrouping, the difference (3.5)
is precisely A% u,(t;, s;). Thus our definition of V*?(u,IP) is independent
of the choice of either Agy or Ajg, to perform the subsequent difference
quotients variations.

EXAMPLE 3.4. The function u(z,y) = (2y)*® has bounded second u-
variation on I? = [a1,b1] x [ag, by], for u(t) := tV/3.

Proof. Indeed, suppose
= {ti}izo € U3([a1,b1]) and n:= {s;}7L, € [3([az, b2]).
By Example 2.3 we have

(i) for each s € [ag, ba] fixed:

n—2

s%p Z |Avoup[tiv, tiv; s]|
=0

1,2 .
Vieron (0+9))

5 | (tiro)V? + (ti41) "3 = ((tz‘+1)1/3 + (tz‘)l/g)‘

< [s152(u(br) — p(ar)) < +oo.

A
S
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(ii) Similarly, for each t € [a1,b1] :

m—2

V[Zsz](u(t’ )= 5171]p ‘Z(:) | Aoruplt; sj41, 5542]]
]:
m—2
= 5 / 13 _ ((5;,1)1/3 1/3
= sup [t15 |(s542)"° + s541) ((Sj Y3 4 (s5) >‘
=0

On the other hand,

Aoruyltive; sj1,8542] = upltive; sj41, 8j42] — wultive; sj, sj41]
(tiv2)?? [(5j+2)1/3 + (3j+1)1/3]
= (ti2)* [ (5140) M + ()]
(tiva)?[(s512)"% = (7)),

Similarly

Aorupultivt; Sj+1, 8j+2] = Upltiz1; Sj41, Sj+2) — upltivt; s, 8541]
= (tis1)P[(s542)"% = (57)"]

and

Aorupltis sjet, sj+2] = wults; Sj+1, 8542] — upltis s, 8541]
= (t:)*P[(sj42)"3 = (s5)"].

Hence

Aoruy[tive; Sj+1, Sj+2] — Dorupltivi; sj+1, Sj+2]
p(tive) — p(tiv1)
B [Amuu[tiﬂ; Sj41,8j42] — Dorup[ti; sjs1, 3j+2]]
pltive) — p(t:) ’

[(ti42)%3 — (ti01)3][(5542) Y2 — (s7)1/3]

(tiv2)'/3 — (tis1)/3
B [(ti1)?? = (t)*][(5542)"/ = (5;)"?]

(ti41) 3 — ()13

= [(ti42)"® = (t:) 2] [(5j52) % = (7)),

ATy (ti, s5) =

Adyup(ti, s5) =

917
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and therefore

n—2m—2 n—2m-—2
DU A uutissi) = D) Y] [tae)® = ()2 1(sj02) " = ()%
i=0 j=0 =0 j=0

i=0 j
= (0 4 (b)) = (1) — )0 + (5m-1) V% = (1) — ay®)
<201 — a)/*)2(by* — a3*) = 4(u(br) — plar)) (u(ba) — p(as)),

n—2m-—2

(36)  VFAuIR)=sup > > |Afu(ti,s))]
&m =0 j=0

< A(p(br) — plar))(p(b2) — plaz)) < +oo.
From (i), (ii) and (3.6) it follows that
TVH2(u, I7) = VI (u, I3) + V2 (u(,a2)) + V2 (ul-, b))

[a1,b1
52 . 152 .
+ V[ag,bg] (u(al, )) + V[a27b2] (u(bl, )) < +00. m
The proof of the following lemma follows in a straightforward manner
from the definition.

LEMMA 3.5. If u and v belong to V*2(IP) and X is any real constant then
TVH2(Au, IP) = |\ TVH2 (u, IP)
and
TVH2(u+ v, IP) < TVH2(u, IP) + TVH2 (v, IP).

LEMMA 3.6. Let ue VP2(IP).
(Monotonicity) If ¢ = (¢1,c2) and d = (dy,ds) with a1 < ¢1 < dy < by and
ag < C2 < d2 < bQ then
TVH2(u, IS) < TVH2(u, IP).
(Semi-additivity) If a1 < x < by then

2 (%,b2) 2 (b1,b2) 2 b
Vi (u, 15502 ) + v (w1000 < Vi, I2).
Proof. For the sake of brevity, we will omit the proof of part (a) which
is similar to the (readily seen) correspondent one for functions in BV ()
(I < R), taking into account, of course, the specific bi-dimensional setting.

To prove (b), let & := {t;}1" , € II3([a1, z]), €= ()7 € T3([z, b1]) and
n:= {Sj}gzo € II3([ag, b2]). Then
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n—2r—2 n—2r—2
DU T A uuti, 5| + DD 1A  uu(Ei, s
i=0 j=0 i=0 j—O

n—2r—2

A [t A T s .
< 300 1A (i, s5)| + 2 01uu[t15 8541, 5j42] — 01Up[t03 8j+1, 5j+2]
=0 =0 p(tr) — u(to)
_ [AOluﬂ[tna Sj+1, 8j+2] — AOlup[tn—l; Sj 41, gj+2]H
,U,(tn) - N(tn—l)

n—2r—2 N
+ Z Z ’Aflu,u(tivsj)’ < Vﬂ’2(u7 I:)'
i=0 j=0

Therefore

(a1,a2) (x,a2)

a2 (u’ 70xb2) > V. (u (b1, bz)) < VH2(y, ). u

DEFINITION 3.7. By Lemma 3.5, V#2(IP) is a linear space. In the sequel,
it will be denoted as BV#*2(IP).

DEFINITION 3.8. Let u : [a,b] — R be a strictly increasing function. We
say that a function u : I® — R is a p-affine function if there are real constants
A, B and C such that

u(z,y) = Au(x) + Bu(y) + C.

REMARK 3.9. Let p : [a,b] — R be a strictly increasing function. It
is readily seen (by just solving, for A, B and C, the system of equations
determined by the conditions w(z;,y;) = Ap(z;) + Bu(y;) + C) that if
I;’ c R? is a rectangle and « : R? — R is any p-affine function then the
coefficients of u depend linearly on the values of u over the vertices of IP
(with coefficients depending on (u(b;) — p(a;)) ™%, i = 1,2) and

(3.7) Ajiuf[a, b] := u(by, by) — u(ay, b)) — u(by, a2) + u(ay,az) = 0.

THEOREM 3.10. Let i be a real-valued strictly increasing function whose
domain includes [a1,b1] and [ag,b2]. A function u : I® — R satisfies the
conditions Ajjufa,b] = 0 and TV*2(u,IP) = 0 then there are constants
A, B,C such that u(x,y) = Ap(z) + Bu(y) + C.

Proof. If TV#2(u, IP) = 0 then, for all (z,y) € (a1,b1) x (az,bz), the follow-
ing implications hold:
u(ar, b2) —u(ar,y)  ular,y) —u(ar, az)

(3:8) Vi (u(a1,)) =0 = wb2) —ply)  ply) — plaz)
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2 PN u(bi, by) —u(by,y) _ u(br,y) — u(b,a2)

(39) " Vapan (u(br-)) =0 pu(b2) — pu(y) (y) — p(az)
2 (g =0 = u(by, a2) — u(z, az) _ u(z,a2) —ulay, az)

(B0 Vil (@) =0 = =2 G ) o) — plar)
0,2 ul- _ - (bl bz) ’U,(.%' bg) _ (l’,bQ) —u(al,bg)'
GAL Wity (b)) =0 = = @) u(x) — plar)

while V2 (u, I?) = 0 implies

1 [u(bl, by) —u(br,y)  wu(bi,y) —u(by,az)
p(br) —p(z) [ plb2) — p(y) w(y) — p(az)

B (u(%bz) u(z,y)  ulz,y) —U(fv,az))]
p(b2) — p(y) w(y) — plaz)
_ 1 {u(x, be) —u(z,y) u(z,y) —u(z,az)
w(x) — plar) [ p(b2) — p(y) w(y) — plaz)
_ (U(alab2) —u(a1,y) _ u(ar,y) — U(al,a2)>]
p1(b2) — p(y) u(y) — p(az) '

The first and fourth summands of this last equality vanish, by virtue of
(3.8) and (3.9). Hence, we have

_ 1 |:U($,b2) _u(x7y) o U($,y) —U($, a?):|
p(br) — plz) [ p(b2) — p(y) 1(y) — plaz)
_ 1 [u(z,bg)—u(x,y . u(xay)_u(xaa2>j|
p(x) — plar) | p(b2) — p(y) 1(y) — plaz)
and solving this equation for u(z,y), we get

_ (1) —pla2) #b2) = W) N g
(3.12)  wu(z,y) = (N(@)-M(@)) (@, b2) + (M(%)-M(@)) (z,a2).

Moreover, making use of (3.10) and (3.11), we obtain the relations
_ (@) —pla) o plbr) —pl) \ o
o) = (155 ) e+ (1) ey ) oo
and
_ (Ma) —play) ) plbr) —pl@) \ o
) = (o) 000+ () o)
which, combined with (3.12) yields
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_ (#y) —plaz) \ (p(z) — plad) )
(3.13) ““’“””‘(Mbﬁ e ><u(bl) u(al)) (b1, B2)

+(u )(u(bl) () )
1i(b2) pu(br) — p(ar)
p p(z) — plar)
<u( > (u(bl — n(az) )u )
N ( (bz) (y > < u(fﬂ )
(b2) — p(az)
Although (3.13) was established assuming that (:n,y) (a1,b1) x (ag,b2), a
straightforward computation shows that if we replace in (3.13), (x,y) by any
point in the boundary of I?, then we get an identity. Thus (3.13) actually
holds for all (x,%) € IP. Finally, notice that after expanding and regrouping

terms in the right hand side of (3.13), the coefficient of the product p(z)u(y)
is

u(ay, ba)

»—‘,_.

_|_

u al,ag

Ajjula, b]
(1(b2) — p(az))(p(b1) — plar))

which is zero, by hypothesis. Thus u must be a p-affine function. =

Based on Theorem 3.10, and in the discussion previous to it, the following
definition is now natural.

DEFINITION 3.11. For any u € BV*2(IP) define
(3.14) lull == ulla,b] + TV**(u, I2),
where ¥ |u|[a, b] := |u(a1, a2)| + |u(b1, b2)| + |u(ai, b2)| + |u(b1, a2)|.
COROLLARY 3.12. |- | is a norm on BVH2(IP).
Proof. Let u € BV#2(IP). By definition |u| > 0 and clearly v = 0 im-
plies |u| = 0. On the other hand, if |u| = 0, then TV#*2(u, I?) = 0 and
|Aj1ula, b]| < 3 |ul[a,b] = 0. It follows, by (3.13), that u = 0.
On the other hand, the properties:
(Py) VaeR: |au| = |a||u| and .
(Ps) JJu+of < ful + vl (u,ve BVA2(IR))
follow readily from the definition and the properties of the functionals of

modulus (] |) and supremum (sup). =

In the following proposition, we present a result which will be funda-
mental to present BV*2(IP) as a Banach space. The result asserts that
the functions in the unit ball of BV*? are (uniformly) majorized by a single
function h (a second degree polynomial-like function on p(z) and p(y), whose
coefficients depend only on the values of u at the end points of I?). Despite
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the fact that this result allows us to prove that BV*2(1, ;'f) is a Banach space,
the result might be of some interest in itself.

PROPOSITION 3.13. Let u be a real-valued strictly increasing continuous
function whose domain includes [a1,b1] and [az,bs]. There is a continuous
function h : R2 — R of the form Z?:o Z?:o aij () u(y)?, with a;; € R,
such that for all u e BV*2(IP)

lu(z,y)| < h(z,y)|ul for all (z,y) € IY.

In particular, BVH2(IP) is a subspace of B(IP), the Banach space of all
bounded functions on I? with the sup norm.

Proof. Let u be in BVH#2(IP). Put 61 := u(b1) — p(a1) and 82 := pu(b) —
w(az). Then, by (3.2) and Definition (3.14) for all (x,y) € (a1,b1) x (az,bs),
we have the following inequalities

u(ay, b2) —ular,y) _ ular,y) —ular,a2)| .\
(8.15) u(be) — (y) wlg) —plazy | < Il
u(by,b2) —u(byy) _ ulby) —ulbr,a)| .\
(3.16) pu(b2) — p(y) () —plaa) |- Il
u(bi,a2) —u(z,a2)  u(z,a2) —ular,az) ol
(347 ulb1) — p(a) ww) —ptar) |~
u(by,b2) — u(z,be) B u(x,be) —u(ay,be) ull-
(319 ulb1) — u(a) W) —pany | <
whereas V#2(u, IP) < |u| implies
1 u(by, ba) — u(b1,y) B u(by,y) — u(by, az2)
(819) ‘M(bl) — () { fu(b2) — pu(y) pu(y) — p(az)
B <u(:c,62) —u(z,y)  u(zy) - u(a:,ag))]
p(b2) — p(y) m(y) — plaz)
B 1 [u(aj,bg) —u(r,y)  u(z,y) —u(,az)
p(@) = plar) | p(b2) — p(y) u(y) — plaz)
_ (u(ath) — u(a17y) _ U((Il,y) — u(a’lﬂa’?))] < HUH
1(b2) — p(y) p(y) — pn(az) -
Now, (3.17), in turn, implies
01
B2 | ety =ty
u(by, az) u(ay, az)
<l + [ ] + s
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or

(o ap) < 00D = 1) () = plar)

Similarly, (3.18) implies

(3.21) Ju(e, by)| < 40D = (@) (1) = p(a) |l

On the other hand, from inequality (3.20)

‘ d162u(z,y)

(1(b1) — plz)) (w(z) — plar))(u(bz) — w(y)) (1(y) — plaz))
u(ay, bz) — u(ay, y) _ u(a1,y) —u(a, as)
(n(x) — plar))(u(b2) — pu(y))  (p(z) — plar))(w(y) — plaz))
u(by, ba) — u(b1,y) B u(bi,y) — u(by, az)
(1(b1) — (@) (p(b2) — pu(y))  (wl(br) — p(2))(1(y) — plaz))

du(zx, be)
(1(b1) — p(2)) () — p(ar))(p(b2) — p(y))

hu(z,ag)

(1(b1) = p(2)) ((x) = p(a1)) (uly) — plaz)) |’
and from this, by (3.15) and (3.16), we get

+

d102u(z,y)
(1(b1) — p(z)) () — plar))(pu(b2) — w(y)) (u(y) — plaz))
[ [
w(z) —plar) — p(br) — p()
(5111,(.%', bg) ‘
(p(b1) — p()) () — plar))(u(b2) — w(y))
hu(z,az)

(p(b1) — p(x)) () — plar))(u(y) — plaz))

<l +

+ ‘

+ ‘
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or equivalently

(1(b1) — p(x)) () — p(ar))(pu(bz) — p(y))(uly) — pulaz))
5109
N (1(b1) — p(x)) (p(b2) — pl(y)) (u(y) — plaz)) ]
5169
(p(z) — plar))(p(be) — p(y)) (uly) — plaz))

+ ]

0102
(u(y) — plaz))u(@, ba)| ’(u(bz) — wy))u(z, as)
52 52 .

Taking into account (3.20), (3.21) and the fact that X|ul[a,b] < |ul, we
obtain

(3.22)  fu(z,y)|

u(z, y)| < ]

_|_

< [(u(bl) — p(x)) () — plar))(u(bz) — w(y)) (u(y) — plaz))
o 0102
(1(b1) — p(2))((b2) — pu(y)) (u(y) — p(az))
5102
N (p(z) — plar))(p(be) — p(y)) (wly) — plaz))
5109
N ((y) — p(az))(p(br) — p(x))(u(w) — plar))
0201
N (1(y) — plaz))(u(x) — p(a))
8901
N (1(y) — plaz))(u(b1) — pu(x)) N (1(b2) — p(y)) (p(z) — plar))
5152 5251
N (p(b2) — p(y)) (p(br) — p(x))(p(x) — plar))
5901
L (nlb2) — N(y()gigl;(bl) - u(fﬂ))] .

Finally, by regrouping the right hand side of this inequality, we may
define

h(z,y)
= 14067105 (u(br) — p(@)) (@) — plar)) (b)) — p(y)) (uly) — plaz))
+ 07 ((br) — (@) () — plar)) + 05 (b)) — p(y)) (u(y) — plaz)).

Now, any point in the boundary of I? which is not a vertex must satisfy,
respectively, one of the inequalities (3.15), (3.16), (3.17) or (3.18), and so
(3.22) holds also for those points. On the other hand, if (zg, o) is a vertex
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then h(zo,yo) = 1 and since |u(zg,yo)| < X|u|[a,b] < |ul, the condition
(3.22) actually holds for every (z,y) € [a1,b1] X [ag2,b2]. This finishes the
proof. m

COROLLARY 3.14. If m s a real-valued strictly increasing bounded func-
tion whose domain includes [a1,b1] and [az, bs] then BV*2(I?) is a Banach
space.

Proof. Suppose that {u,},>1 is a Cauchy sequence in BV*2(IP) and let h
be the function given by Proposition 3.13. Then, for all (z,y) € IP and all
r, s € N, we have

[(ur —us)(@,y)| < sup  h(z,y) |ur — us|.
(z,y)ell

Thus, {u,},>1 is a Cauchy sequence in B(I?) and therefore there is u € B(IP)
such that [|u, —u[w — 0. Fix € > 0. Since {u,},>1 is a Cauchy sequence
in BV#2(IP), there is p € N such that for all ,s > p and all £, = {¢; }no €
Usla1,b1], n, = {33}71% € s[ag, bo]:

€ > TV, (u, — ug, I?) > VA2 (u, — ug, IP)
n—2k—2
> sup{ Z Z ’A (tl,sj)‘ :
=0 j=0
¢ = {t:}1 € Islay, b1], n = {s;}} € Ms[as, 52]}
>3 Y Ak (), (1)),

It follows that, for all» > p andall £, = {t? V10 € Ts[ar, bi], = {s; }mo €
II3[az, ba]:

ng—2mg—2

(3.23) €> sli_)rrgg Z 2 ’A%l (ur —us), (tz,sj)‘
i=0 =0

ny—2mg—2

=3 Y [Ah - w, @8]

i=0 ;=0
Consequently, for all > p
n—2k—2
VA2 (u, —u, I?) = sup Z Z ‘A tz,s])‘ <e.
(&m) =0 j=0

A similar procedure, applied to the rest of the summands of TV*2(u, — uy),
implies that for all » > p

(3.24) TVH2(uy — u, IP) < Be,
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which, in turn, implies v € BV#*2(IP) and (since u, — u pointwise in I?)

lim |u, —u| = 0.
r—00
We conclude that BV*2(IP) is a Banach space. =

4. Factorizable functions in BV*?(IP)

In this section, we will study a distinguished subfamily of BV#*2(IP).

DEFINITION 4.1. A function u : I? — R is said to be factorizable if it can

be expressed as the product of two non-zero functions g : [a1,b;] — R and
h:[az,be] — R; ie.,

u(t,s) =g(t)h(s); g#0 y h+#0.

REMARK 4.2. Based on the definitions, it is readily seen that a factorizable
function v : I? — R is of bounded variation if and only if each factor is of
(one-dimensional) bounded variation.

LEMMA 4.3. Ifu : I? — R with u(t,s) = g(t)h(s) and p is a real-valued
strictly increasing function whose domain includes [a1,b1] and [ag, ba] then
for any partitions {t;}7_q € I3([a1,b1]) and {s;}]L, € H3([az, b2]), we have

Afyup(ti s5) = (gultivr, tiva] — gultis tis]) (hulsjc1s sjv2] — hyuls;, sj1]) -
Proof. Indeed:
A%luu(ti,s]-) = A11(gh)u(ti, s5)
_ Doi(gh)ultive; sjr1, 2] — Doi(gh)ultivis sj+1, 542
p(tive) — p(tiva)

B [AOI(gh)u[tHl? $j+1, 8j+2] — Do1(gh)ultis sj+1, 5j+2]]
p(tiv1) — p(t)

{ 9(tiv2)h(sj+2) — g(tiva)h(sj+1)
(1(tive) — ptiv1)) (u(sj+2) — p(sj+1))
~ g(tir2)h(sjr1) — g(tir2)h(s;) ]
(1(tir) — ptiv1)) (p(sj+1) — p(s;))
_[ 9(tiv1)h(sj+2) — g(tiv1)h(sj41)
(1(tive) — ptivn)) (u(sj+2) — p(sj+1))
~ g(ti)h(sj+1) — g(tiv1)h(s;) ]
(1(tiv) — ptivn)) (p(sj+1) — p(s;))




On bi-dimensional second p-variation 927

_{ g(tiv1)h(sjr2) — g(tiv1)h(sjt1)
(u(tiv1) — p(ti)) (n(sjr2) — p(sj41))
~ 9(tip1)h(sj1) — g(tiv1)h(s;) ]
(u(tiv1) — p(ti)) (n(sjr1) — pls;))

J{ g(ti)h(sj+2) — g(ti)h(sj+1)
((tiv1) — pu(ti)) (u(sj+2) — p(sj+1))
~g(ti)h(sj+1) — g(ta)h(s;) ]
((tiv1) — p(ts)) (u(sj+1) — p(sy))
= (gultivistive]l = gultis tiva]) (hulsjvr, sj2] = hulsj, s541])

and the result follows. =

Now we present the main theorem of this section.

THEOREM 4.4. A factorizable function u : I® — R is of bounded second
w-variation if and only if each factor is of (one-dimensional) bounded second
p-variation.

Proof. Let § := {t;}]_, € H3([a1,b1]), n := {s;}]Lo € H3([az, b2]) and let p
be a real-valued strictly increasing function whose domain includes [a, b1 |
and [ag,ba]. Then if u = g - h, we have for s € [ag, ba]

g(ti+2)h(s) — g(tiz1)h(s)  g(ti+1)h(s) — g(ti)h(s)
|A10UM[tz+1a i+2 S ]| - ‘ 2( Z+2) ( z+11) - ,ul(ti.H) _ M(ti)
_ (s " tive) —g(tiv1)  g(tir1) —g(ti)
(tive) — pltiv1)  pltivr) — p(ts) |’

and for ¢ € a1, b1]

g(W)h(si42)—g(®h(sjr1)  gO)h(s541)—g(t)h(s))
/J'(Sj+2) - :U'(Sj+1) M(Sj—&-l) o M(Sj)

= |g()| ‘h(3j+2) — h(sj+1)  h(sj+1

Bovt[t: sj1. 8542]] = \

) —
1(sjre) — p(sj+1)  p(sj+1) — M(Sy
Ifu=g-he BV’““Q( ) then by definition of TV#2(u, Ib)

n—2 n—2
stgp Z |Atoup[tiv, tivo; az]| = Slgp Z |h(a2)| |gultisis tiva] — gults, tiv1]|
i=0 i=0

< TV (u, IP?) < oo,
m—2 m—2

sup Y [ Aorwy[ar; sjin, sivell = sup Y g(an)|hylsjsr, s542] = hulsg, s511]]
T =0 T j=0

< TVR2(u, IP) < 0.
Therefore g € BV*2([a1,b1]) and h € BV*2([ag, ba]).
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Conversely, if u = g - h with g € BV#2([a1,b1]) and h € BV*?([az, b2])
then

TVH2(u, IP)
n—2m-—2
= s >, Z Gultivsive ] = gulte, tivall [hulsivr, sjee] = Ryulsj, sl
n) i=0 j=
n—2
+  sup Z |h(a2)| |gultivrs tiva] — gults, tiva]]
¢ellz([a1,b1]) ;=9
n—2
+  sup Z [R(b2)| |gultisrs tive] — gulti, tiv1]]
¢ellz([a1,b1]) ;=o
m—2
+  sup Z lg(a)] [hulsj+1, sj4+2] — Pylsjs il
nellz([az,b2]) ;=0
m—2

+  sup > {g(b0)] [hulsje sjea] — Bulsj, sl
nellz([az,b2]) j=o

= Vi%(g; [ar, bi])V*2 (h; [az, be]) + 2max{|h(az)[ , |h(b2)[}V**(g; [ar, b1])
+2max{|g(ar)|, [g(b)[}V*?(h; [az, ba]) < 0. m

5. Relation with Riemann—Stieltjes integrals

In this section, we will present a result that relates the notion of bounded
second p-variation and (double) indefinite Riemann-Stieltjes integrals of
functions in BV (IP). This generalizes Proposition 2.4.

REMARK 5.1. If f € BV (IP) is a continuous function and y is a real-valued
strictly increasing bounded function whose domain includes [a1,b1] and
[a2, b2], then for all (1,0) € IP, f is integrable over I, := [a1, 7] x [a2, 0] and
its integral over I, is equal to the iterate integral S; SZQ f(t,s)du(s)du(t) =
So, So, f(t,5) du(t) du(s) ([9, Chapter IIT]). In this case, if we set

F(ro)i= [ | 7(t.s)duts)duce)

then, for all a1 <7 < by and ag < 01 < 09 < by, the (uniform) continuity of
f implies that

(5.1)  F(roz) - F(r,01) = f " F(t. ) du(s) du(t)

= (u(o2) — (1)) j £t ¢*) dp(t)

al

for some ¢* € (01, 09).
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We will use identity (5.1) reiteratively in the proof of the next proposition.

THEOREM 5.2. If f € BV (IP) is a continuous function, u is a real-valued
strictly increasing function whose domain includes [aq,b1] and [az,b2], and
F(r,o0) := S; SZQ f(t,s)du(s) du(t) then VF2(F,IP) < V(f,IP) and F €
BVH2(IP).

Proof. Let f = {ti}?:() € Hg([al,bl]), n:i= {Sj};-nzo € Hg([ag,bg]). By (51)

>t fp o4 1 F(tivo, sjr2) — F(tir2,5541)
SRIFY. enti] = [ R
B F(tiv2,sj41) — F(ti2, s5) ]
[1(tive) — ptiva)][p(sj+1) — p(s))]
~ 1 Jtiw §os f(t ) du(s)
©opltive) — p(tinn) Joy,  p(si2) — p(sj)
1 tive §700 f(t,5) dpu(s)
p(tive) — p(tiva) Ll p(sj+1) — p(s;)

dp(t)

du(t
Similarly
[ F(tiv1,85+2) — Ftiv1,8541)
[p(tiv1) — p()][(sj+2) — p(sj+1)]
 F(tiv1,8541) — Ftiva, ) ]
[(tir1) — ()] [1(s541) — pls5)]
| s §57°2 (2, ) du(s)
p(tivn) — plts) Ll w(sr2) — mlsjen)
1 tie §770 f(t,5) dpu(s)
 ul(tin) — p(t) L1 p(sj+1) — pu(sj)
Hence, using the notation as indicated in Remark 5.1, we have

1 tit2
A [FIY tig, tive] = i) — D) f ft,sTyo)du(t)
(3 (3 al

AG[FT* [t ti1] =

Jj+1

du(t

1 tito .
a /.L(t+2) — M(t+1) f f(t7 S]+1)d,u(t)
7 i a
Analogously
A2 [F* 1 tit1 oy
ol st = w)_u@)f F(t, 8T aa)dut)

1 tit1

 pltien) — plt) Ll (&' j)dn(t).
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Therefore
n—2m-—2
Vu72(F7 I;E) = Sup |A11 (t1,8])|
(5777) 1=0 j:()
n—2m—2
:(sgup) Z ’A [ ]J+1[t'+17 ’L+2] AOl[ ]]+1[t17t’b+1]’
n—2m-— 1 fien * *
= Sup J ft’s. _ft,S~ d/,tt
(&m) ; ; (tiv2) —pltiv1) Joipy (t,5752) = (8 5511)du(?)
1 t1+1 t J t . d t
i) — pti) S, [, 8'500) — f(t,8"511)du(t)
n—2m-—2
= 3 2, 12 55e) = St 550
=0 5=0

— [t 8 f0) + F(t, s S VL TD).

We conclude that V#2(F, IP) < V(f,IP) < +oo.
Now, since by definition F(al, s) = F(t,az) = 0 for all (t,5) € I?, we

must have V[Zf,bg](F(ah ) = V[’;l b1]( (-,a2)) = 0. On the other hand, using
(5.1) and the mean value theorem, we get

m—2

V[f:;,bz]( (b1,-)) = Sup ZO | Ao1 Fpufbis sj11, 85+2]|
]:
_ Supm_2 F(b1,sj42) = F(b1,841)  F(b1,sj41) — F(b, s5)
L p(sj+2) — p(sj+1) p(sj+1) — p(s;)
m—2 b
= sup 3 | [[F00.87.2) = £(8 53] i)
=0 |

m—2
= (1) — plar))sup D [f(e,s510) = fler854))
n j=0

< (p(br) = p(a1))Viay 1) (f (e ) < (ulb1) = pl@)TV (£, I3) < +o0

by (|6, Proposition 2.3]). A similar estimate holds for V[Zfbl](F(" b2)). We
conclude that F'€ BV#2(IP). =

We would like to thank the reviewer of our initial manuscript by his/her
work and valuable comments that have improved the quality of this paper.
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