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EXISTENCE AND CONTROLLABILITY RESULTS FOR
MIXED FUNCTIONAL INTEGRODIFFERENTIAL
EQUATIONS WITH INFINITE DELAY

Abstract. Sufficient conditions are established for the existence of solution for mixed
neutral functional integrodifferential equations with infinite delay. The results are obtained
using the theory of fractional powers of operators and the Sadovskii’s fixed point theorem.
As an application we prove a controllability result for the system.

1. Introduction

In this article, we establish existence results of the following mixed func-
tional integrodifferential equations with infinite delay:

1) L) - gt m)] + Ax(t)

dt
t b
=f (t, xt,f w(t,s,xs)ds,j h(t,s,xs)ds> , ted,

0 0
(1.2) zo=debB,

where J = [0,b], —A is the infinitesimal generator of an analytic semigroup
of bounded linear operators T'(¢),t > 0 in a Banach space (X,| - |), the
nonlinear functions g : JxB — X, f : JIxBxXxX - X, w,h: AxB — X,
A ={(t,s) : 0 <s <t <b} are continuous functions and B is a phase space
defined later. The histories z; : (—0,0] — X, x(s) = z(t +s), s < 0,
belong to an abstract phase space B.

Due to the application in many areas of applied mathematics, there has
been an increasing interest in the investigation of neutral functional differ-
ential and integrodifferential equations with the effect of infinite delay. The
work on first order abstract neutral functional differential equations with
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infinite delay was initiated by Hernadndez and Henriquez in [15, 16]. After-
wards, several works reporting existence results, controllability problem and
other properties of mild solution for first-order abstract neutral functional
differential and functional integrodifferential equations with infinite delay
have been published, see for example, [1]-[6], [10]-[12], [14]-[16], [20] and
the reference cited therein. The problems related to existence, uniqueness
and other properties of mild solutions of mixed functional integrodifferential
equations with bounded delay have been studied in [7, 8, 18, 19| by using
different techniques.

The aim of this paper is to study the existence and controllability of the
problem (1.1)—(1.2) by using the theory of fractional powers of operators and
the Sadovskii’s fixed point theorem. The results of this paper are based on
the analytic semi group theory and the ideas and techniques in Fu [11] and
Li et al. [20]. The results obtained here generalizes the results of [11, 20].

The paper is organized as follows. In Section 2, we recall some prelim-
inaries and list the hypotheses that will be used through out. In Section
3, we establish the existence result for the system (1.1)—(1.2), in Section 4,
we deal with controllability problem and finally in Section 5, an example is
considered to illustrate the application of our result.

2. Preliminaries and hypotheses

We introduce some preliminaries from [9, 13, 17, 22] and hypotheses that
will be used in our further analysis.

We suppose that (X, | - |) is a Banach space, and —A : D(—A) — X
is the infinitesimal generator of a compact analytic semigroup {7'(¢)}s>0 of
uniformly bounded linear operators. Let 0 € p(A). Then it is possible to
define the fractional power A%, for 0 < a < 1, as a closed linear operator
on its domain D(A®). Furthermore, the subspace D(A®) is dense in X and
|z|a = [|[A%z|, z € D(A?%) defines a norm on D(A%). We denote by X,
the Banach space D(A%) normed with |z|.

Lemma 2.1. (|22]) The following properties hold:
i) If 0 < B < a < 1, then X, < Xg and the imbedding is compact
whenever the resolvent operator of A is compact.

(ii) There exists constant M > 1 such that |T(t)|| < M, for all t € J.
(iii) For every 0 < a <1 there exists Co > 0 such that

Ay <2 o<i<o

To study the system (1.1)—(1.2), we assume that the histories x; : (—0, 0]
— X, 24(0) = z(t+6) belong to a seminormed abstract linear space (B, | -|5)
of functions mapping (—o0,0] into X, which has been introduced by Hale
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and Kato [13] and widely discussed in [17]. We assume that B satisfies the
following axioms:

(A1) If 2 : (—o0,0 +b) — X, b > 0 is continuous on [o,0 + b) and z, € B,
then for every ¢ € [0, 0 + b) the following statements hold:
(i) z¢ is in B;
(i) 2] < Hlzls:
(iii) |:]s < K(t — o) sup{[z(s)] : 0 < s <t} + M(t - 0)[o]5,-
Here H > 0 is a constant, K, M : [0, +0) — [0, +0), K(-) is continu-
ous and M(+) is locally bounded, and H, K(-), M(:) are independent
of z(t).
(A2) For the function z(-) in (A1), z; is a B-valued continuous function on
[o,0 +b].
(A3) The space B is complete.
DEFINITION 2.1. A function x : (—o0,b] — X is called a mild solution of
the problem (1.1)—(1.2) if 29 = ¢ € B on (—0o0, 0], the restriction of z(-) to the
interval J is continuous, and for each s € [0, ), the function AT (t—s)g(s, ),
0 <t < b is integrable and the integral equation

t

(1) 2(t) = T(O[H0) - (0, )] + glt,z1) — f AT(t — s)g(s, x.)ds

0
t s b
+ J Tt—s)f (s,xs,f w(s, T, SCT)dT,J h(s, T, .’ET)d7'> ds, telJ
0 0 0
is satisfied.
Lemma 2.2. (|24], Sadovskii) Let D be a convex, bounded and closed subset

of a Banach space X. If F : D — D 1is a condensing operator, then F' has a
fized point in D.

We list the following hypotheses in order to establish our existence result.

(H1) There exist constants G, Ly > 0, such that
(i) [APg(tz, ¥2) — APg(tr, )] < Gtz — ta] + |2 — ¥1lp)., t1,t2 €
Ja ¢17¢2 €B.

(it) |A%g(t,¥)| < Le(|¥ls + 1), te J, ¥ eB.
(H2) There exist p,q € C(J,[0,0)), such that

t b
f wit, s, 9)ds| < p(t)|]s and ] f W, s, 0)ds
0 0

for every (t,s) € A and ¥ € B.
(H3) For every positive integer k, there exists ag € L'(J, [0, 0)), such that

sup If(t, 0, z,y)| < ag(t) for ae. t e J
[¥ls, ][yl <k

<q®)[¢]s,
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and

1 b
liminff ag(s)ds = p < 0.
k—+ow k 0

(Hy) (i) For each (t,s) € A, the functions w(t,s,.), h(t,s,.): B— X are
continuous and for each ¢ € B the functions w(.,.,v), h(.,., ) :
A — X are strongly measurable.
(ii) For each t € J, the function f(¢,.,.,.) : Bx X x X — X is
continuous and for each (¢, z, y) € B x X x X, the function
f(,, z, y): J — X is strongly measurable.

3. Existence result
THEOREM 3.1. Let the hypotheses (H1)—(Hy) be satisfied. Then the system
(1.1)<(1.2) has a mild solution on (—o0,b] if

Cy_pb?
(3.1) Ly = GK, (A—B + 1t§’> <1,
Cy_pb?
(3.2) K|A5| + 1; > L, + Mz?,u] K, <1,

where ¥ = maxe 7{1,p(t), q(t)} and K, = sup{K(t) : t € [0, b]}.
Proof. Consider the operator I' defined by
(b(t)v le (_007 O]’
T(x)(t) = { TO[6(0) = 9(0,6)] + g(t,z1) = § AT(t — 5)g(s, z4)ds
+ Sé Tt—s)f (s, s, §gw(s, 7,20 )dr, SS h(s,T, .%'T)dT) ds, teJ.
Then the equation (2.1) with the initial condition g = ¢ € B on (—0,0]
can be written as = I'z. We show that I' has a fixed point z(-), then this
fixed point z(-) is a mild solution of the system (1.1)—(1.2).
Let y(-) : (—o0,b) — X be the function defined by
T(t)p(0), t>0,
oy - (1000
o(t), -0 <t<0.
Then yy = ¢ and the map t — y; is continuous. We can assume that
N =sup{|yfg: 0 <t < b}
For each z € C(J; X), 2(0) = 0, we denote by Z the function defined by
t ted
0, -0 <t<O.

If x(-) satisfies (2.1) with zyp = ¢ € C, we can decompose it as z(t) =
z(t) +y(t), 0 <t < b, which implies that x; = Z; + y; for every t € J and the
function z(-) satisfies
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t
z(t) = =T(t)g(0,¢) + g(t,Zs + y1) — J AT(t — s)g(s,Zs + ys)ds
0

—i—LtT(t—s)
b

S
x f (s,zs + ys,f w(s, 7,2 + yT)dT,f

h(s, 7,2+ + yT)dT> ds, teJ.
0 0

Let F' be the operator on C([0,b]; X) defined by
t
F(2)(t) = =T()g(0,¢) + g(t, 2t + ye) — J AT(t = 5)g(s,Zs + ys)ds
0

—|—ftT(t—s)

0
s b
x f (3,23 + ys,f w(s, 7,Zr + yT)dT,J h(s,7,Z; + yT)dT> ds.
0 0

Obviously, the operator I' having a fixed point is equivalent to F' having one,
so it turns out to prove that I’ has a fixed point.

For each positive integer k, define
B ={zeC(J;X):2(0)=0, |z(t)| <k, teJ}.

Then for each k, By is clearly convex, bounded and closed subset of C'(J; X).
Note that, for any z € By and t € J, we have Z; + y € B. Thus from
assumption (A2)(iii), we have

(3.3) I1Zt + yils < IIZt]5 + llyels
< K(t)sup{|z(s)] : 0 < s <t} + M(t)|Zo]5 + |vt]5
< kKp+ N,

since |Zo||g = 0. Using Lemma 2.1, hypothesis (H;(ii)) and the condition
(3.3), we get

|AT(t = 8)g(s,Zs + )| < [APT(t — 5)APg(s, (2)s + us)|
Ci_p

< ——L,(kKy+ N +1).

=t —5)1-B g(kKy + N +1)

Thus from Bochner Theorem [21], it follows that AT (t — s)g(s,Zs + ys) is

integrable on [0,t), and hence, F is well defined on By.

We claim that there exists a positive integer k such that F'By < By. If
this is not true, then for each positive integer k, there is a function z; € By,
but F(zx) ¢ By, thatis, |F(z)(t)| > k for some ¢(k) € J, where (k) denotes
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t depending on k. However, on the other hand, we have
(34)  k<|[F(z)(@)]
<TO[AP[[A%g(0, @) + [ AP A%(t, (z1)e + e

+ [1A07 = 9 [ 4%gts, e+ )

ds+J [Tt —s)

X ds.

i ( @0)e + v [ (5.7, ) + ) th(s, ) (2)r + y»df)

0 0

Note that, from the condition (3.3) and hypothesis (Hz), for each t € J, we

have
[t @+ )a jhts 0.+ s |

< (kKp + N)I?ez?]x{l,p( ),q(t)} = (kK + N)Y.

(3.5) max{” (Zk)t + ye,

Using hypothesis (H;)—(H3) and the inequalities (3.3) and (3.5), from (3.4),
we obtain

k <M|A™P|Ly(I9]5 +1) + | AP Lg(kEG + N +1)
t Cy_ t
+ Jo ﬁ[@,(klﬁ, + N + 1)ds + Mfo kK, +N)9(5)ds.

Therefore,

MIA=BIL +1 N+1
< MAAG 4D sy, (1, 221)

k
n leBbBLg (Kb + %)

ISy

N 1 ’
+ M (Kb + k) ﬁwj;) Oé(ka+N)19(3)dS.

Taking lower limit and using (Hs), we get

_gb?
[(HA—BH LG ﬂﬁ ) Ly + Mw} K, > 1.

This contradicts (3.1). Hence, for some positive integer k, F By < By.

Next, we show that the operator F' has a fixed point in By by applying
Sadovskii’s fixed point theorem, which implies that (1.1)—(1.2) has a mild
solution. We decompose F' as F' = F| + F5, where the operators F1, F5 are
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defined on By, respectively by
¢

(F12)(t) = =T ()9(0,0) + g(t, 2 + 1) — fo AT (t = s)g(s,Zs + ys)ds,

(Fa2)(t) = j T(t - 3)

0

s b
x f (s,zs + ys,J w(s, 7,Zr + yT)dT,f h(s,T,Z; + yT)dT> ds,
0

0
for z € By and t € J. To prove F is a condensing operator [24], we will show
that Fj verifies a contraction condition, while F} is a compact operator.
Firstly, we prove that F} is a contraction. Take any z;, 29 € Bi. Then
for each ¢t € J, by Lemma 2.1, hypothesis (H;)(i) and (3.3), we have

[(Frz1)(8) = (Fiz2)(#)]
< [ATPIA%(t, (Z0)e + o) — A%g(t, (Z2)e + wo)

j |47t — )] [ APg(s, (1) + ) — A% (s, () + 1)

<A = (2l + | S5 Gl — o)l

< JATP|G{K (1) sup{|Z1(s) — Za(s)] : 0 < 5 < 1}
+ M (@) [I(z1)ollz + [(Z2)ol 8]}
+ L mG{K(S) sup{|z1(7) — Z2(7)|| : 0 < 7 < s}
+ M (@) [I(Z1)ols + [I(Z2)ollB] }ds

Cy_gbP
< GK, (Aﬁy + ltﬁﬁ ) sup{|z1(s) — z2(s)| : 0 < ¢ < b},

ds

since ||(Z1)ollg = 0 and [(Z2)o|s = 0. This implies,
[Fiz1 = Fiza| < Lofz1 — 2.

Therefore, by assumption (3.1), we see that F is a contraction.

To prove F5 is a compact operator, first we prove that F5 is continuous
on By. Let {z,} € By with z, — z in By; then for each t € J, (Z,): — Z;
and by using hypothesis (Hy), we have

t b
f(t,zmyt, f W(t, 5, (Fn)s + ys)ds, f W, s, <zn>s+y5>ds)
0

0

t b
— f <t,zt + yt,J w(t,s,Zs + ys)ds,f h(t,s,zs + ys)ds> as n — o0,
0 0
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for each t € J and since
b

¢
f <t,zm + yt,f w(t, s, (Zn)s + ys)ds,f h(t,s, (Zn)s + ys)ds>
0 0

t b
—f (t,zt + yt,f w(t, s,Zs + ys)ds,J h(t,s,zs + ys)ds) ’
0

0
< 20k, + Ny (1),

we have, by dominated convergence theorem

|Fzp, — Fz|
t S
= sup J T(t—s) {f <5, (Zn)s + ys,j w(s, T, (Zn)r + yr)dT,
teJ |JO 0

L (s, (Z)e + yf)d7>

s b
_f<s,zs + ys,f w(s, 7,Zr + yT)dT,J h(s,7,Zr + yT)dT>]ds

< f
0
b

—f (s,zs + ys,f w(s, 7,Zr + yT)dT,J h(s,T,Z7 + yT)dT>
0 0

— 0 as n — o0. Therefore, F' is continuous.

b

f (87 (Zn)s + Ys, JOS w(s, T, (Zn)r + yr)dr, Jo h(s, 7, (Zn)r + yT)d7>

ds

Next, we prove that the family {F'z : z € By} is an equicontinuous family
of functions. Let € > 0 be small and 0 < ¢; < 5. Then we have

[F2(2)(t2) — Fa(2)(t1)]

<£PWﬂw—@—ﬂn—m

X ds

s b
f (s,zs + y57J w(s, 7,Zr + yT)dT,J h(s,T,Z7 + yT)dT> ’

0 0

+£1|ﬂm—$—Tm—$

1—€

X ds

s b
f <Sazs + y&f w(SaTazT + y‘r)dTaJ h’(SaTazT + y‘/‘)d7-> ‘
0 0

+Lﬂﬂm@

1

ds

X

s b
f <8,ZS + ys,f w(s, 7,z + yT)dT,J h(s,7,z; + yT)dT> ‘
0

0
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t1—€
<[t - 9) = T - g xo(ds
0

t1
n f IT(bs — 8) — T(ts — ) overcy .79 ()ds
t

1—€

1)
n f IT(t2 — 5)oees 209 (5)ds.
t

1

Since T'(t), t > 0 is compact and hence continuous in the uniform operator
topology, and ok, +nyw € L', we see that |Fy(2)(t2) — Fa(z)(t1)| — 0
independent of z € By, as (t2 — t1) — 0 with € sufficiently small. This shows
that F' maps Bj into an equicontinuous family of functions.

Now, it remains to prove that V(¢) = {Fa(2)(t) : z € By} is relatively
compact in X. Let 0 < ¢t < b be fixed and € be a real number satisfying
0 < e <t; for z € By, we define

t—e s
Fo (2)(t) = J Tt — 3)f<s,zs + ys7f w(s, T,z + yr)dr,

0 0

b
J h(s, 7,2 + yT)dT) ds

0

t—e S b
= T(e)f T(t—e—s)f(s,szLys,J w(s,T,zT~|—yT)d7',J h(s,T, zT+yT)dT> ds.

0 0 0
Since

f_e T(t—c—s)

0

s b
x f (s,zs + ys,f w(s, 7,Zr + yT)dT,f h(s,T,Zzr + yT)dT) ds
0 0

t—e
< ML kK, + N9 (8)ds,

the compactness of T'(t) (¢ > 0), implies that the set Ve(t) = {Fa.(2)(t) : z €
By} is relative compact in X for every €, 0 < e < t. Moreover, by making
use of Lemma 2.1, hypotheses (H2), (H3) and the condition (3.3), for every
z € By, we have

[ F2(2)(t) = Fae(2)(8)]

t s b
= J T(t— s)f<s,zs + ys,f w(s, 7,Zr + yT)dT,J h(s,T,Z7 + yT)dT>
t—e 0

0
t

< Mok g, +nyo(s)ds.
t—e

ds
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Therefore, there are relative compact sets arbitrarily close to the set V (t) =
{F5(2)(t) : z € By}; hence the set V() is also relative compact in X. Thus,
by the Arzela—Ascoli theorem, F5 is a compact operator. These arguments
enable us to conclude that F' = F} + F5 is condensing operator on By, and
by the fixed point theorem of Sadovskii’s, there exists a fixed point z(-) for
F on By. If we define z(t) = zZ(t) + y(t), —00 < t < b, it is easy to see that
x(+) is a mild solution of (1.1)—(1.2) satisfying zp = ¢. m

4. Application

As an application of Theorem 3.1, we shall consider the system (1.1)—
(1.2) with control parameter such as:

41 L) - glt.x)] + Ax(r)

dt
t b
= Cu(t) + f <t,xt,f w(t,s,xs)ds,f h(t,s,xs)d8> , ted,
0 0
(42) w0 =¢eB,

where the control function u(-) is given in L?(J,U) - the Banach space of
admissible control functions with U as a Banach space and C is a bounded
linear operator from U into X. The mild solution of the system (4.1)—(4.2)
is given by

(4.3) (t) = T(1)[6(0) — 9(0,6)] + g(t, 1) — fo AT (t - 8)g(s, 2.)ds
+ Jo T(t—s)

S b
X {Cu(s) + f<s,x5,f w(s, T, xT)dT,f h(s, T, JIT)dT>]dS, teJ,

0 0
(4.4) o = (;5 eB.

DEFINITION 4.1. The system (4.1)—(4.2) is said to be controllable on the
interval J if for every initial function ¢ € B and z; € X, there exists a
control u € L?(J,U) such that the mild solution x(-) of (4.1)-(4.2) satisfies
z(b) = x1.

To establish the controllability result, we need the following additional
hypothesis:

(Hg) The linear operator W : L2(J;U) — X defined by
b
Wu = J T(b— s)Cu(s)ds
0

has an induced inverse operator W1, which takes values in
L2(J;U)/kerW.



Ezistence and controllability results for mized functional. . . 903

For the construction of the operator W and its inverse, see [23].

THEOREM 4.1. Let the hypotheses (H1)—(Hg) be satisfied. Then the system
(4.1)—(4.2) is controllable on interval J if

Cr_gb°
(4.5) Lo = GK, (HA—BH I > <1,

Cy_pb?

(46)  (1+oarjcy ) K|A—B| + ) Ly + Mz?p] K, <1,

where ¥ = maxge s{1,p(t), q(t)} and K, = sup{K(t) : t € [0, b]}.

Proof. By use of the hypothesis (Hg), for an arbitrary function z(-), we
define the control

b
zm>=W“{mTwnmmg@¢ﬂmam>5LAngm&%m5

_JbT(b—s)f (s,xs,fsw(s,T,xT)dT, th(s,T,xT)dT) ds] (t).

0 0 0
Using this control, we show that the operator ¥ defined by

¢(t)7 te (—007 0]7
T)[6(0) - 9(0, 8)] + g(t,x0) = §3 AT(t = 5)g(s,x5)ds
DO =1+ 5,7 -9

X [Cu(s)—i—f <s, s, §gw(s, 7,20 )dr, Slo) h(s,T, acT)dT>] ds, telJ,

has a fixed point z(-). Then this fixed point z(-) is a mild solution of the
problem (4.1)—(4.2), and we can easily verify that z(b) = ¥(z)(b) = ;. This
means that the control u steers the system from the initial function ¢ to x
in time b, which implies that the system is controllable. As in the proof of
Theorem 3.1, the equivalent operator for ¥ is given by

t

Q2)(t) = =T()g(0,¢) + 9(t, 2t + ) — fo AT (t — s)g(s,Zs + ys)ds

+ f T(t— s) [Cu(s)

0

s b
+f (S’Zs + ys’f w(s, 7,z + y‘r)dTvJ h(s,7,Z; + y‘r)d7'>]d5,

0 0
Our aim is to prove that there exists a positive integer k such that QB < Bj.
If possible, for each positive integer k, there is a function z; € By such that
Q(z) ¢ By, then |Q(zx)(t)| > k for some ¢t depending on k. But by using
the hypotheses (H1)—(Hs), Lemma 2.1 and the inequalities (3.3) and (3.5),
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we obtain

(4.7) k< Q=)@
< MIA™P|Lg([ll5 +1) + | A7 Ly(kKy + N +1)

t
+f ﬁL (kKy + N + 1) ds+J M| C|||ug(s)|ds

+ Mfo kI, +N)o (8)ds,
where uy, is corresponding control of xy, xr = Zp + y. Note that
(4.8)  Jux(s)|
< |W‘1||{:n1| +TO)[6]s + A7 114%9(0, ¢)[]
+ [ A7) APg(b, (z1)s + wo)]

+ [ 1470|4267, Gr + 90

n L IT(b - 7‘)|Hf(7-’ N

| wtro G + oo, | " hirao, (o + ya>da)

0 0

dr

i)

< IW_ll\{wll + M{l6ls + | AP ILg(I6ll5 + 1)] + | A | Lg(kE, + N + 1)

b C b
1-p
+ L (b _ T)lfﬁLg(ka + N + 1)d7’ + ML a(ka_i_N)lg(T)dT}.
Using the estimate (4.8) in (4.7), we get

(49) k< M|AP|Ly(I¢l5 + 1) + |A77| Ly(kKy + N + 1)
Cl_gbBLg (ka + N + 1)
! B

+ bMCIIVV_l{Ile! + M[l9]5 + 1A Lg (615 + 1)

Cl_gbﬁLg (Kp+ N+1)
s

b b
+ Mfo a(ka+N)19(3)d8} + Mfo kK, +N)o(8)ds

+|AP|Ly(kKy + N + 1)
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= M| A Ly(|6]5 + 1)
+oMICIW {1 + MLI6ls + |A™P|Ly(l6]s + 1)}

+ (L+ bM[C|[W )| A7 Ly (kEy + N + 1)
C1_gbPLy (kK + N + 1)
s

b
(1L BMC| W )M f ey 09 (5)ds.

+ (1 +bM[Cl W)

Therefore,

*

. Cy_gb’ N +1
1< 2w e (Ja)+ S0 ) 1 (s 2

B

~ N 1 b
M OM(Ky+— | 9————
oo ar (K 3 ) 0t [ o molsias,

where

M* = MIA|Ly(| 6|5 + 1)
+ oMW {1 | + MTI6ls + 1A 1L (J6ls + 1)]}

is independent of k. Taking lower limit and using (Hs), we get

Cy1_gb?

(1 eanicp ) | (1421 +

>L9+M19u} Ky > 1.

This contradicts (4.6). Hence, for some positive integer k, we must have
OBy € Byg.

In order to apply Sadoviskii’s fixed point theorem, we decompose ) as
Q = I + Qq, where the operators F1, {1 are defined on By, respectively by

Fi(2)(t) = =T(t)g(0,0) + g(t,Z: + ye) — fo AT (t — s)g(s,Zs + ys)ds,

Q(2)(t) = J:T(t —s) [C’u(s)
b

+f (s,zs + yf w(s,T,Zr + yT)dT,J h(s, T,z + yT)dT>]ds
0 0
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t

T(t - )W [as CT®)[6(0) — 9(0,0)] — 9(b. % + )

b T
— f Tb—71)f (7‘, Zr + yT,J w(T,0,Z¢ + Yo )do,

0

Lb h(r, J;zg - ya)dU) dT] (s)ds

t S
+ J T(t— s)f<s,zs + ys,f w(s, 7,z + yT)dT,J
0 0

h(s,T,Zr + yT)dT> ds,
0

for z € B, and t € J. We have already proved that Fj verifies a contraction
condition. The proof that €21 is a compact operator can be completed by
closely looking at the proof of compactness of the operator F5. u

5. Example

Consider the mixed partial differential equation system

(5.1) 875 2(t, w) f f —tyw (s,y)dyds]
=;—(tw)+a () ff c(o — 5, y,w)2(0, w) do ds

f J —s,y,w)z(o,w)dods, 0 <t<b, 0<w<m,

(5.2)  z(t,0) = 2(t,m) =0,
(5.3) z(0,w)=o¢0,w), <0, 0<w<m.
To write the system (5.1)-(5.3) in the form (1.1)-(1.2), we shall take X =

L?[0, 7], and define z(t) = z(t,-) The operator A is defined by Av = —v"
with the domain

D(A) = {ve X : v, v absolutely continuous, v" € X, v(0) = v(w) = 0}.

It is well known that —A generates a strongly continuous semigroup {7'(¢) }+>0
which is analytic, compact and self-adjoint. Furthermore, —A has a discrete
spectrum, the eigenvalues are —n?, n € N, with the corresponding normal-

ized eigenvectors z,(z) = \/g sin(nz). Then the following properties hold:

(a) If ve D(A) then Av = > | n*(v, 2, zn.
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(b) For every v e X,

0
T(t)v = Z 67"2’5@, Zn)%n,
n=1
a1
A2y = N = .
o= 3 K

In particular, |T(t)| < e~* and |A~Y?| = 1.
(c) The operator AY? is given by AY2v = 3  n{v, 2,)zy, on the space

D(AY) = {v € X, S, o, )20 € X))

Consider the phase space B = C, x LP(g; X), r >0, 1 < p < oo, with r = 0,
p =2 and X = L?[0, 7], which has been discussed in [17]. Assume that the

following conditions hold:

(i) The function b(-) is measurable, and

JJ J (820, y,w)/9(0) ) dy dB dw < co.

ii) The function (= )b(f,y,w) is measurable, b(8,y,0) = b(6,y,7) = 0,
(?w

and

Jf J ey)Y@wM<w

(iii) The function ¢(+) is measurable with S (c2(6)/9(0))do < oo.

(iv) The function d(-) is measurable with Sioo 2(0)/9(9))dd < 0.

i
(v) The function ¢ defined by ¢(0)(w) = ¢(0, w) belongs to B.
Define the functions g : J x B - X, f: JxBx X x X - X, w,h:

AxB— X by

£ = f_ow | (6, y,10)(0, w) dw db,

0

wlt s, 0O = [ clb.y.w)ii6,w)ds
0

Bt s, €)= | (6. w)o 0, w)as,

I <t, Y, Lt k(t,s,)ds, J: h(t, s, w)ds> (€)
— a(©00.6) + [ Ko )(ds + [ bt 5,6)(€)ds
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Under the conditions (i) to (v), the above defined functions verifie the hy-
pothesis of the Theorem 3.1 (see |11, 20| for details). Additionally, if (3.1)
and (3.2) hold, the system (5.1)—(5.3) has mild solution on [—r, o).
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