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THE EXISTENCE OF A UNIQUE SOLUTION OF THE
HYPERBOLIC FUNCTIONAL DIFFERENTIAL EQUATION

Abstract. We consider the Z. Szmydt problem for the hyperbolic functional
differential equation. We prove a theorem on existence of a unique classical solution and
the Carathéodory solution of the hyperbolic equation.

1. Introduction

Existence of classical solutions for the Z. Szmydt problem for hyper-
bolic differential equations has been studied by Szmydt in [8, 9] and La-
sota in [7]. In this paper, we want to investigate the Z. Szmydt problem
for the functional differential equation. We deal with the classical and the
Caratheodory solutions for the considered problem. Theorems of the exis-
tence of Carathéodory solutions for hyperbolic equations can be found in
[2]-[4]. The papers |5, 6] discusses the problem of Z. Szmydt and its relation
with classical problems. The Z. Szmydt problem contains the problem of
Darboux, Cauchy, Picard and Goursat as special cases.

Put I = [0,a] x [0,b], where a, b > 0. Let (z,y) € I and

Alz,y] = {(s,t) eR* (z+s,y+1t) e},
zy] ¢ Al7,y] — R by the formula
Uz (5,1) = u(z + s,y +1) for (s,t) € Alz,y].

Let E = [—a,a] x [=b,b]. Then A[z,y] c E for (z,y) € I. We denote by
C' (E,R) the space of all continuous functions u : E — R such that ou/ox

For u: I — R, we define uj

and Ou/dy exist and are continuous. The norm || - ||« is defined by
ou
lulle = s fut) [+ swp [ G|+ s |2 (o)
(zy)el (z,)eE | 0T (zy)eE | OY
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Put Z = I xCHE,R). Let f :Z - R, g:[0,a] x RxR - R, h:
[0,0] x Rx R — R, ¥ : [0,a] — [0,b], ¢ : [0,b] — [0,a], up € R and
(x0,y0) € I be given. We will consider the Z. Szmydt problem

0%u

dxoy (.T,y) =f (xvyau[x,y]) in I,
" % @0 (2) = g (@, (@), 2 (0,0 @) i [0,a],
S@W)y) =h(yu(@®),y), %@ ),y) inl0,b],

u (z0,%0) = uo.

REMARK 1. The third variable of f belongs to the functional space C! (E, R),
so the right-hand side of the differential equation depends on first order
derivatives of u even thought it is not explicitly seen.

We will need the following assumption.
AsSUMPTION 1. If (z,y) € I and w, w € C' (E,R) are such that w (T, ) =
w (z,y) for (T,7) € Alz,y] then [ (z,y,w) = [ (z,y,w).

The Assumption 1 means that the values of f at the point (z,y,w) € E

depend on (z,y) and on the restriction of w to the set A[x,y], only. We give
examples of equations which can be obtained from (1).

EXAMPLE 1. Suppose that F': I x R — R is a given function. Set

f (.T, Y, w) =F (.%', Yy, w (061 ($>y> — T, Q2 (.%', y) - y)) )
where a; : I — R, ag : I — R are given and (o3 (x,y) — z,a0 (z,y) —y) €
Alz,y] for (x,y) € I. Consequently, as a special case of (1) we get the
following equation with a deviated argument
52
2) Saag (00 = F(esu (e (,9), 02 (e,)) in T

If we want to get an integro-differential equation then we define

f(xava) = F(%%JJA[ ]w(S,t)det>
z,y

and consequently we have

*u
— =F t)dsdt | in I.
oxdy (x, y) <5L‘, Y, JfA[m,y] Ulz,y] (37 ) & > n

REMARK 2. Equation (1) contains as special cases equations, in which the
right-hand side depends on the first order derivatives of an unknown function
even though in f there is no explicit dependence on du/dx and du/dy. This
is due to the fact that the last variable of f belong to the functional space
C!' (E,R).
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2. The classical solutions

A function u : I — R is called a classical solution of (1) if u e C*! (I,R)
has the derivative 0%u/0xdy and it satisfies (1) for all (z,vy) € I.

THEOREM 1. We assume that the functions f : 2 - R, g : [0,a] x R x
R—->R,h:[0,b] x RxR >R, ¢:[0,a] — [0,0], ¢ :[0,0] = [0,a] are
continuous and ug € R is a constant. Moreover, Assumption 1 is satisfied
and there exist constants L, K, M > 0 such that

(3) |f($[7,y,(:}) _f(xayaw)| < LH(:)—LUH*,

(4> |g<$,ﬁ,l})—g<$,p,l/)‘SK’ﬁ—p|+M|ﬁ—V|,

(5) \h (y,p,11) — g (y, p, 1) | < K|p— p|l + M|fi — pl,
for (z,y) eI, w, we C(E,R) and p, p, v, U, u, i € R. Moreover,
(6) 2K + Ka+ Kb+ La + Lb+ 2Lab < 1,

(7) M((1+4+b)+L(a+b+2ab) <1

(8) M((1+a)+ L(a+b+2ab) <1

Then there exists exactly one solution of problem (1).
Proof. Now, we define the operators S : C! (I,R) — C* (I,R) by

(s0) () = o+ [ g(ssulov (), 52 (50 () )

o

+Jy h<t u(¢(t)’t)>?;(¢(t),t)>dt

J J stust)dsdt
Yo

J f stust)dtds in I.
o

It is easy to see that under our assumptlons, the operator S is well defined
and Su € C! (I,R) for u e C' (I,R). Moreover, we have

% ou Y .
o (Su) (z,y) =g<x,u (9 (x)), 67@/ (x, (:E)))—Ffw(m) f (:c,t,u[m]) dt in I,
& (50 ) =1 (0 0).0). 5 0w

xT

X0
+ f f (S7y7u1[s,y]) ds + f f (Suya ul[s,y]) ds
#(y) zo

_ h(y,u<¢ W) 1), 2 (o <y>,y>>+j¢( Sy ds T
)
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By the above, it is easily seen that equation u(z,y) = (Su)(x,y) is equivalent
to problem (1).

Now, we prove that S is a contraction. Let u, @ € C' (I,R). Then for
any (a: y) € I, we have

D=9 E]

U (suw DG (5.0~ (sl (9). 5 5.0 (9)
v, h(w,mt)?t),?;<¢<t>7t>) “h (1000, 00,0
+Lbf:’f(5,t,&[s7t]) — [ (st upe )| dsdt
+J0a Lbff(s,t,&[&t]) — [ (st upen)| dids
<f% Klii (5,9 (5)) — u (s, (s)) Z“( <s>>-2§<87¢<>>>d8
*L <K|ﬂ —u(o(t), )|+ M ZW@%Q—Z(W)’”Ddt
+2faf L[t 5 — ugs,0)]], dtds
< Kallii — u|| + Ma Zj—gz +Kb|!ﬂ—“”+Mb‘Zz_gz
e e e |
:(Ka+Kb+2Lab)||a—uH+(Nb+2L“b)‘Zi‘gz
+(Ma+2Lab)‘Zz—2z

Moreover

£ (50 () — (50 (220)

<]g(xu<w<a:)> @) ~g (w0 @), 5 @)
f|f — [ (@, t,upg ) ldt
on  Ou oun  Ou

oxr Oz

K+ L — L
< (K + Lb) ||u—u|| + b‘ 5 " 2

(M+Lb)‘




870 A. Karpowicz

and
0 - 0
5o (S0 9) = 5 (50) ()
oun  ou ou  ou
< i — == — -
< (K + La) ||t — u|| + (M + La) Ere +La|0y 2

By the above,
S — Sullx < (K + K+ Ka+ Kb+ La+ Lb+ 2Lab) ||t — ul|

oun  ou
+[M(1+a)+ L(a+b+ 2ad)] du_ u
dy oyl

Let

a =max{2K + Ka + Kb+ La+ Lb+ 2Lab,
M@A+b)+L(a+b+2ab), M(1+a)+ L(a+0b+ 2ab)}.
Then
Is@* — Su*|l, < alli — ull.
We see from (6)—(8) that o < 1. Using the Banach fixed point theorem, we

get the existence of exactly one solution of problem (1). m

Now, we give an example with demonstrates that in Theorem 1 assump-
tions (6)—(8) are necessary.

EXAMPLE 2. Let ayg, by, zo, yo € [0,a] x [0,b] and

(9) Ugy (z,y) = 0 in [0, a] x [0, 0],
(10) uy (x,bp) = ku (x,bp) in [0,a],
(11) uy (ao,y) = lu(ao,y) in [0,0],

(12) u (zo,y0) = up, where ug is a constant.
It is an easy matter to prove that the solution of the problem (9)—(11) is
w(z,y) = C(F#0) 4 ¢w=b0) _ 1) where C' = const.

From (12), we see
C(ek(wo—ao) + elyo—bo) _ 1) = ug.

Let xp=yo=1—In2>0,a9=bp=1and k =7 =1. Then
C(eF@o=a0) 4 gllo=bo) _1) — C(e™M24e"M2_7) = C<1+1—1> =

Therefore, for ug # 0 the solution of our problem doesn’t exist. For ug = 0,
there exist infinitely many solutions of this problem.
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3. The Carathéodory solutions

Now, we discuss Carathéodory solutions of hyperbolic functional differen-
tial equations. In order to define this solutions we need an appropriate defini-
tion of an absolutely continuous function of two variables. For this purpose,
we first introduce suitable notation. Given a rectangle J = [a1, az] % [b1, ba]
contained in I and v : I — R, let

Ay (u) = u(al,bl) — U(GQ,bl) — u(al,bg) + u(az,bg) .

A rectangle is called subrectangle of I if its sides are parallel to the coordinate
axes. Let m denote Lebesgue measure on R?. We say that v : I — R is
absolutely continuous if the following two conditions are satisfied:

a) Given € > 0, there exists 6 > 0 such that
DA (W) ] <«
Jej

whenever J is a finite collection of pairwise non-overlapping subrectangles

of I with
dim(J) <6
JeJ

b) The marginal functions u (-, b) and u (a, -) are absolutely continuous func-
tions of a single variable on [0,a] and [0, b], respectively.

Let AC (I,R) denote the set of absolutely continuous functions on I. In [1],
we can find that the following statements are equivalent:

a) ue AC (I,R),
b) there exist g € AC ([0,a],R), h € AC (| R) and L € L' (I,R) such

that
u(z,y) =g(x J f (s,t)dsdt.

We denote by C, (I, R), the space of functions v of the variables (x,y) defined
on I, continuous in z € [0,a] for almost all y € [0,b] and measurable in
y € [0,b] for all z € [0, a] and such that

b
[ j max |v (z,y) dy < oo.
o z€[0,a]

Cy (I,R) is the space of functions p of the variables (z,y) defined on I,
continuous in y € [0, b] for almost all = € [0, a] and measurable in z € [0, a]
for all y € [0, b] and such that

a
Uy = max |u(x,y) |dr < o0.
il = | e s )|
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Note that if uw € AC (I,R) then ou/dz, 0u/dy and 0%*u/dxdy exist almost
everywhere on I. Furthermore, ou/dx € Cy(I,R) and du/dy € C, (I,R).

As in [3], we can verify that || - ||, || - ||, are norms and (Cy (I,R),|| - ||2),
C,(I,R),||- are Banach spaces. We consider the following problem:
(Cy y
2u U u 3
aag;ay (a:,y) = f <I‘,y, u[x,y]a % (ZE, y) ) % (:1:73/)) a.c. 1m Ia
(13) (@, () = g (z,u (2,9 (2))) a.e. in [0,a],
(b (y),y) =h(yu(dy),y) a.e. in [0, 0],

u (x0,Yo) = Uo.

REMARK 3. If & (-,y) : [0,a] — R is measurable for fixed y € [0,b] and
¢ : [0,b] — [0,a] is continuous then %(qb (+),y) : [0,b] - R may not
be measurable. Therefore, in the case of Carathéodory solutions, we will
consider the problem (13) instead of (1).

ASSUMPTION 2. Assume that functions f : I x C(E,R) x R x R - R,
g:[0,a] xR - R and h : [0,b] x R — R of the variables (z,y,w, u,v), (z,p)
and (y, p) are such that

1° f(~,-,w,,u,l/):l—>R, g(-,p) : [O,CL] xR—R cmdh(,p) : [Oab] xR—-R
are measurable for allwe C(E,R), u € R, veR, peR.

2° There are l; € L*(I,Ry) for i = 1,2,3, Iy € L'([0,a],R,), I5 €
L' ([0,b],Ry) and constants ca, c3 > 0 such that

(14) f (2, y,0, 0, 0) = (2, y,w,p0,v) | < (z,y) |0 —w|

@ Y
+g <02 —i—f la (s,y) dsg) l|i—pl+g (03 —|—f I3 (1) dt) |0 — v,

0 0
(15) g (z,p) =g (z,p) | < la(2)[|p—pll,
(16) [k (y,p) = h(z,p)[ <15 W) llp = pll,

for a.e. (z,y)e I and all (w,p,v), (@, 0) e C (I,RY) x RF x RF.

THEOREM 2. Suppose that Assumption 2 is satisfied. Moreover,

(17) Jaz4 (s)ds+fbl5 (t)dt+2LaJObl1 (5.1) dtds < 1,

0 0

b ra

(18) 2g (czb + J J la (s,y) dsdt) <1,
0 Jo
a rb

(19) 29 <03a +f J I3 (z,1) dtdxg) <1.
0 Jo

Then problem (13) has a unique solution.
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Proof. We define the operator S : AC (I,R) — AC (I,R) by
y

(Su) (z,y) —uo+fg<s w (5,9 (s >>>ds+f B tu(6(t),0)) di

Yo

LOJ (s £, ULs 4] g (s,1), ZZ (s,t)) dsdt

ou ou
s, b, ups (s,t), (s,t)) dtds on I.
JJ ( i ar oy

It is easy to see that under our assumptions, the operator S is well defined
and Su e AC (I,R) for u e AC (I,R). Moreover, we have
0

Y ou ou
+ f<:r,t,ux ,— (z,t), — :U,t>dt a.e. on I,

aay (Su) (z,y) = b (y,u (o (y),y))
X 8u
+L><y>f<s’y’ul[ g ()

By the above, it is easily seen that equation u(z,y) = (Su)(x,y) is equivalent
to problem (13). Now, we define the norm || - ||« by

ou ou
o 6y

(2 (s, )>ds a.e. on I.

el = Il +\
We prove that S is contraction. Let u,@ € AC (I,R). Then
(50) ) = (50) () < [l 2500 60) = g (s, (0 () s
+Lb\h<t,a<¢<t>,t>>—h(t,uw(t),t))dt
+Lbf f<s,t,a[svt] Z“ (5,4). ZZ (s, t))
1 (st 51 (5.0 5 50

a rb ot ot >
+ Syt Urs 41, =— (8,t), =— (8,
fofof( it 5o (5.0, 5 (5.0

ou ou
—f (s £, ULs 4] P (s,t), — % (s,t))‘dtds
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< f (La () 3 (5, (3)) — u (5,10 (s))]) ds
0
b
+j (Is (1) i (6 (£) 1) — u (6 (£) . £) )

a b
+2fj{llst||ust wps|

va (e [ niad) [T 60 - 36
g( ng(x t)dt> ‘;Z( t)—(;y‘(s,o}dtds
j ds||uu||+fb (t) el — ]

a rb
+2f J l1 (s,t) dtds||a — ul|

0

+2Jb [g <02 z2 (5, ds)j |5“ (5,1) — gz (s,t)|ds}dt
+2J0 [g(c l3 xtdt)f ou

ou
<J la(s ds+fl5 dt+2f Jll stdtds)Hu—uH
0

o

[e=]

dt] ds
Y

b ra
+2<02b+J | zg(s,mdsdt) di_ ou
o Jo 3:1: al' y
a b ou  ou
+2 ca+f fl x,t dtdxg) — - =
<3 0 Jo 3(@1) 0 oy |l,
Moreover
2 (59) (2,9) — = (Su) (z,9)
ox Y ox Y

%
N
8
(ﬂ.
S
)
Q)Q)
—~
8
Nt
DD
—~
8
Nt
N~
QU
=

By the above
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K 0

- ot on
f <S’ t, U[s,t]> (3793 (87 t) ) aiy (57 t))

ds

dsdt

+9

g max |g (s, (s, (s))) — g (s,u (s, (s)))|ds
0 ye[0,b]
a b
“J, m |,
1 (st 5 6100, 5 60 ) a
gf m@xuaw@»>—g@¢maw@»n@
ot ot
<stu8t ax(sat)aay(sﬂt)>
6 0
(LM dS+JJl1 stdtds)Hu—uH
ou 0
<CQb+ l2 (s,9) dsdt> ‘ % — % ,
( oo

+g|c3a+ f I3 (x,t) dtdmg)‘

dy |,
We see that

0 - 0
2y 50 (@:y) = o (Su) (z,9)

<I|h(y,a(ey),y) —h(y,u(y),y))]

v ol ol
f<87y7ﬂ’s, 7(87y)7(87y)>
L(y) s o oy

+

ou ou
—f <5 Y, Ul[s,y]> &r (Say) ’ aiy (Say)> ds
Therefore
b
| &= Sosul| < [ (006 (). = B tu o 6) ) o
= 0 z€[0,a
b @ _ o Ol
+ 0 wrél[%ﬁ] J() / <S,tau[s t]» Oz (Sat) ) @ (S’t)>
ou ou

—f (s £, ULs 4] o (s,t),ay(s,t)> ds|dt
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b a rb
< (J z5<t)dt+f f ll(s,t)dtds)Hﬁ—uH
0 0 Jo
b ra ~
+g<62b—|—f j la (s,9) dsdt) ' G _ ou
0 Jo
w  Ou

a rb ~
+g <63a+f J I3 (x,t) dtd:v) ‘ d
o Jo

Y

or ox
dy oy

x
Now, we see

a b a rb
1S4 — Sul]. < U z4(s)ds+f l5(t)dt+2f J ll(s,t)dtds>|]7l—uH
0 0 JO

0

b du  du
+2<02b+LLlg(s,y)dsdt>‘am—ax
y

@ rb ou  Ou
+2(C3a+f0ng(x,t)dtdx>'ay—ay )

By the above,
156 = Sullx < af|t — ull,

where

a b a rb
azmax{f l4(s)ds+f l5(t)dt+2f J ly (s,t)dtds ,
0 0 0 Jo

b ra a rb
2c9b + QJ f la (s,y) dsdt, 2cza + 2J f I3 (z,1) dtdx} .
0 Jo 0 Jo

We see from (17)—(19) that « < 1. Using the Banach fixed point theorem,
we get the existence of exactly one solution of problem (2). m
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