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THE EXISTENCE OF A UNIQUE SOLUTION OF THE
HYPERBOLIC FUNCTIONAL DIFFERENTIAL EQUATION

Abstract. We consider the Z. Szmydt problem for the hyperbolic functional
differential equation. We prove a theorem on existence of a unique classical solution and
the Carathéodory solution of the hyperbolic equation.

1. Introduction
Existence of classical solutions for the Z. Szmydt problem for hyper-

bolic differential equations has been studied by Szmydt in [8, 9] and La-
sota in [7]. In this paper, we want to investigate the Z. Szmydt problem
for the functional differential equation. We deal with the classical and the
Caratheodory solutions for the considered problem. Theorems of the exis-
tence of Carathéodory solutions for hyperbolic equations can be found in
[2]–[4]. The papers [5, 6] discusses the problem of Z. Szmydt and its relation
with classical problems. The Z. Szmydt problem contains the problem of
Darboux, Cauchy, Picard and Goursat as special cases.

Put I “ r0, as ˆ r0, bs, where a, b ą 0. Let px, yq P I and

Arx, ys “ tps, tq P R2: px` s, y ` tq P Iu.

For u : I Ñ R, we define urx,ys : Arx, ys Ñ R by the formula

urx,ys ps, tq “ u px` s, y ` tq for ps, tq P Arx, ys.

Let E “ r´a, as ˆ r´b, bs. Then Arx, ys Ă E for px, yq P I. We denote by
C1 pE,Rq the space of all continuous functions u : E Ñ R such that Bu{Bx
and Bu{By exist and are continuous. The norm || ¨ ||˚ is defined by

||u||˚ “ sup
px,yqPE

|u px, yq | ` sup
px,yqPE

ˇ

ˇ

ˇ

ˇ

Bu

Bx
px, yq

ˇ

ˇ

ˇ

ˇ

` sup
px,yqPE

ˇ

ˇ

ˇ

ˇ

Bu

By
px, yq

ˇ

ˇ

ˇ

ˇ

.
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The existence of a unique solution of the hyperbolic functional differential equation 867

Put Ξ “ I ˆ C1 pE,Rq. Let f : Ξ Ñ R, g : r0, as ˆ R ˆ R Ñ R, h :
r0, bs ˆ R ˆ R Ñ R, ψ : r0, as Ñ r0, bs, φ : r0, bs Ñ r0, as, u0 P R and
px0, y0q P I be given. We will consider the Z. Szmydt problem

(1)

$

’

’

’

’

&

’

’

’

’

%

B2u
BxBy px, yq “ f

`

x, y, urx,ys
˘

in I,
Bu
Bx px, ψ pxqq “ g

´

x, u px, ψ pxqq , Bu
By px, ψ pxqq

¯

in r0, as,
Bu
By pφ pyq , yq “ h

`

y, u pφ pyq , yq , Bu
Bx pφ pyq , yq

˘

in r0, bs,
u px0, y0q “ u0.

Remark 1. The third variable of f belongs to the functional spaceC1 pE,Rq,
so the right-hand side of the differential equation depends on first order
derivatives of u even thought it is not explicitly seen.

We will need the following assumption.

Assumption 1. If px, yq P I and w, w P C1 pE,Rq are such that w px̃, ỹq “
w px̃, ỹq for px̃, ỹq P Arx, ys then f px, y, wq “ f px, y, wq.

The Assumption 1 means that the values of f at the point px, y, wq P Ξ
depend on px, yq and on the restriction of w to the set Arx, ys, only. We give
examples of equations which can be obtained from (1).

Example 1. Suppose that F : I ˆ RÑ R is a given function. Set

f px, y, wq “ F px, y, w pα1 px, yq ´ x, α2 px, yq ´ yqq ,

where α1 : I Ñ R, α2 : I Ñ R are given and pα1 px, yq ´ x, α2 px, yq ´ yq P
Arx, ys for px, yq P I. Consequently, as a special case of (1) we get the
following equation with a deviated argument

(2)
B2u

BxBy
px, yq “ F px, y, u pα1 px, yq , α2 px, yqqq in I.

If we want to get an integro-differential equation then we define

f px, y, wq “ F

ˆ

x, y,

ż ż

Arx,ys
w ps, tq dsdt

˙

and consequently we have

B2u

BxBy
px, yq “ F

ˆ

x, y,

ż ż

Arx,ys
urx,ys ps, tq dsdt

˙

in I.

Remark 2. Equation (1) contains as special cases equations, in which the
right-hand side depends on the first order derivatives of an unknown function
even though in f there is no explicit dependence on Bu{Bx and Bu{By. This
is due to the fact that the last variable of f belong to the functional space
C1 pE,Rq.



868 A. Karpowicz

2. The classical solutions
A function u : I Ñ R is called a classical solution of (1) if u P C1 pI,Rq

has the derivative B2u{BxBy and it satisfies (1) for all px, yq P I.

Theorem 1. We assume that the functions f : Ξ Ñ R, g : r0, as ˆ R ˆ
R Ñ R, h : r0, bs ˆ R ˆ R Ñ R, ψ : r0, as Ñ r0, bs, φ : r0, bs Ñ r0, as are
continuous and u0 P R is a constant. Moreover, Assumption 1 is satisfied
and there exist constants L, K, M ≥ 0 such that

(3) |f px, y, ω̃q ´ f px, y, ωq | ≤ L||ω̃ ´ ω||˚,

(4) |g px, ρ̃, ν̃q ´ g px, ρ, νq | ≤ K|ρ̃´ ρ| `M |ν̃ ´ ν|,

(5) |h py, ρ̃, µ̃q ´ g py, ρ, µq | ≤ K|ρ̃´ ρ| `M |µ̃´ µ|,

for px, yq P I, ω, ω̃ P C pE,Rq and ρ, ρ̃, ν, ν̃, µ, µ̃ P R. Moreover,

2K `Ka`Kb` La` Lb` 2Lab ă 1,(6)
M p1` bq ` L pa` b` 2abq ă 1,(7)
M p1` aq ` L pa` b` 2abq ă 1.(8)

Then there exists exactly one solution of problem (1).

Proof. Now, we define the operators S : C1 pI,Rq Ñ C1 pI,Rq by

pSuq px, yq “ u0 `

ż x

x0

g

ˆ

s, u ps, ψ psqq ,
Bu

By
ps, ψ psqq

˙

ds

`

ż y

y0

h

ˆ

t, u pφ ptq , tq ,
Bu

Bx
pφ ptq , tq

˙

dt

`

ż y

y0

ż x0

φptq
f
`

s, t, urs,ts
˘

dsdt

`

ż x

x0

ż y

ψpsq
f
`

s, t, urs,ts
˘

dtds in I.

It is easy to see that under our assumptions, the operator S is well defined
and Su P C1 pI,Rq for u P C1 pI,Rq. Moreover, we have
B

Bx
pSuq px, yq“g

ˆ

x, u px, ψ pxqq ,
Bu

By
px, ψ pxqq

˙

`

ż y

ψpxq
f
`

x, t, urx,ts
˘

dt in I,

B

By
pSuq px, yq“h

ˆ

y, u pφ pyq , yq ,
Bu

Bx
pφ pyq , yq

˙

`

ż x0

φpyq
f
`

s, y, u1rs,ys
˘

ds`

ż x

x0

f
`

s, y, u1rs,ys
˘

ds

“ h

ˆ

y, u pφ pyq , yq ,
Bu

Bx
pφ pyq , yq

˙

`

ż x

φpyq
f
`

s, y, u1rs,ys
˘

ds in I.
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By the above, it is easily seen that equation upx, yq “ pSuqpx, yq is equivalent
to problem (1).

Now, we prove that S is a contraction. Let u, ũ P C1 pI,Rq. Then for
any px, yq P I, we have

| pSũq px, yq ´ pSuq px, yq |

≤
ż a

0

ˇ

ˇ

ˇ

ˇ

g

ˆ

s, ũ ps, ψ psqq ,
Bũ

By
ps, ψ psqq

˙

´ g

ˆ

s, u ps, ψ psqq ,
Bu

By
ps, ψ psqq

˙ˇ

ˇ

ˇ

ˇ

ds

`

ż b

0

ˇ

ˇ

ˇ

ˇ

h

ˆ

, t, ũ pφ ptq , tq ,
Bũ

Bx
pφ ptq , tq

˙

´ h

ˆ

, t, u pφ ptq , tq ,
Bu

Bx
pφ ptq , tq

˙ˇ

ˇ

ˇ

ˇ

dt

`

ż b

0

ż a

0

ˇ

ˇf
`

s, t, ũrs,ts
˘

´ f
`

s, t, urs,ts
˘ˇ

ˇ dsdt

`

ż a

0

ż b

0

ˇ

ˇf
`

s, t, ũrs,ts
˘

´ f
`

s, t, urs,ts
˘ˇ

ˇ dtds

≤
ż a

0

ˆ

K|ũ ps, ψ psqq ´ u ps, ψ psqq | `M

ˇ

ˇ

ˇ

ˇ

Bũ

By
ps, ψ psqq ´

Bu

By
ps, ψ psqq

ˇ

ˇ

ˇ

ˇ

˙

ds

`

ż b

0

ˆ

K|ũ pφ ptq , tq ´ u pφ ptq , tq | `M

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
pψ ptq , tq ´

Bu

Bx
pφ ptq , tq

ˇ

ˇ

ˇ

ˇ

˙

dt

` 2

ż a

0

ż b

0
L
ˇ

ˇ

ˇ

ˇũrs,ts ´ urs,ts
ˇ

ˇ

ˇ

ˇ

˚
dtds

≤ Ka||ũ´ u|| `Ma

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`Kb||ũ´ u|| `Mb

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` 2abL

„

||ũ´ u|| `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ



“ pKa`Kb` 2Labq ||ũ´ u|| ` pNb` 2Labq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` pMa` 2Labq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Moreover
ˇ

ˇ

ˇ

ˇ

B

Bx
pSũq px, yq ´

B

Bx
pSuq px, yq

ˇ

ˇ

ˇ

ˇ

≤
ˇ

ˇ

ˇ

ˇ

g

ˆ

x, ũ px, ψ pxqq ,
Bũ

By
px, ψ pxqq

˙

´ g

ˆ

x, u ps, ψ pxqq ,
Bu

By
px, ψ pxqq

˙
ˇ

ˇ

ˇ

ˇ

`

ż b

0
|f
`

x, t, ũrx,ts
˘

´ f
`

x, t, urx,ts
˘

|dt

≤ pK ` Lbq ||ũ´ u|| ` Lb

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` pM ` Lbq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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and
ˇ

ˇ

ˇ

ˇ

B

By
pSũq px, yq ´

B

By
pSuq px, yq

ˇ

ˇ

ˇ

ˇ

≤ pK ` Laq ||ũ´ u|| ` pM ` Laq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` La

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

By the above,

||Sũ´ Su||˚ ≤ pK `K `Ka`Kb` La` Lb` 2Labq ||ũ´ u||

` rM p1` bq ` L pa` b` 2abqs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` rM p1` aq ` L pa` b` 2abqs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Let

α “ maxt2K `Ka`Kb` La` Lb` 2Lab,
M p1` bq ` L pa` b` 2abq , M p1` aq ` L pa` b` 2abqu.

Then
||Sũ˚ ´ Su˚||˚ ă α||ũ´ u||˚.

We see from (6)–(8) that α ă 1. Using the Banach fixed point theorem, we
get the existence of exactly one solution of problem (1).

Now, we give an example with demonstrates that in Theorem 1 assump-
tions (6)–(8) are necessary.

Example 2. Let a0, b0, x0, y0 P r0, as ˆ r0, bs and

uxy px, yq “ 0 in r0, as ˆ r0, bs,(9)
ux px, b0q “ ku px, b0q in r0, as,(10)
uy pa0, yq “ lu pa0, yq in r0, bs,(11)
u px0, y0q “ u0, where u0 is a constant.(12)

It is an easy matter to prove that the solution of the problem (9)–(11) is

u px, yq “ Cpekpx´a0q ` elpy´b0q ´ 1q, where C “ const.

From (12), we see
Cpekpx0´a0q ` elpy0´b0q ´ 1q “ u0.

Let x0 “ y0 “ 1´ ln 2 ą 0, a0 “ b0 “ 1 and k “ l “ 1. Then

Cpekpx0´a0q`elpy0´b0q´1q “ Cpe´ ln 2`e´ ln 2´1q “ C

ˆ

1

2
`

1

2
´1

˙

“ 0.

Therefore, for u0 ‰ 0 the solution of our problem doesn’t exist. For u0 “ 0,
there exist infinitely many solutions of this problem.
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3. The Carathéodory solutions
Now, we discuss Carathéodory solutions of hyperbolic functional differen-

tial equations. In order to define this solutions we need an appropriate defini-
tion of an absolutely continuous function of two variables. For this purpose,
we first introduce suitable notation. Given a rectangle J “ ra1, a2s ˆ rb1, b2s
contained in I and u : I Ñ R, let

∆J puq “ u pa1, b1q ´ u pa2, b1q ´ u pa1, b2q ` u pa2, b2q .

A rectangle is called subrectangle of I if its sides are parallel to the coordinate
axes. Let m denote Lebesgue measure on R2. We say that u : I Ñ R is
absolutely continuous if the following two conditions are satisfied:

a) Given ε ą 0, there exists δ ą 0 such that
ÿ

JPJ
|∆J puq | ă ε,

whenever J is a finite collection of pairwise non-overlapping subrectangles
of I with

ÿ

JPJ
m pJq ă δ.

b) The marginal functions u p¨, bq and u pa, ¨q are absolutely continuous func-
tions of a single variable on r0, as and r0, bs, respectively.

Let AC pI,Rq denote the set of absolutely continuous functions on I. In [1],
we can find that the following statements are equivalent:

a) u P AC pI,Rq,
b) there exist g P AC pr0, as,Rq, h P AC pr0, bs,Rq and L P L1 pI,Rq such

that
u px, yq “ g pxq ` h pyq `

ż x

0

ż y

0
L ps, tq dsdt.

We denote by Cx pI,Rq, the space of functions ν of the variables px, yq defined
on I, continuous in x P r0, as for almost all y P r0, bs and measurable in
y P r0, bs for all x P r0, as and such that

||ν||x “

ż b

0
max
xPr0,as

|ν px, yq |dy ă 8.

Cy pI,Rq is the space of functions µ of the variables px, yq defined on I,
continuous in y P r0, bs for almost all x P r0, as and measurable in x P r0, as
for all y P r0, bs and such that

||µ||y “

ż a

0
max
yPr0,bs

|µ px, yq |dx ă 8.
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Note that if u P AC pI,Rq then Bu{Bx, Bu{By and B2u{BxBy exist almost
everywhere on I. Furthermore, Bu{Bx P Cy pI,Rq and Bu{By P Cx pI,Rq.
As in [3], we can verify that || ¨ ||x, || ¨ ||y are norms and pCx pI,Rq , || ¨ ||xq,
pCy pI,Rq , || ¨ ||yq are Banach spaces. We consider the following problem:

(13)

$

’

’

’

’

&

’

’

’

’

%

B2u
BxBy px, yq “ f

´

x, y, urx,ys,
Bu
Bx px, yq ,

Bu
By px, yq

¯

a.e. in I,
Bu
Bx px, ψ pxqq “ g px, u px, ψ pxqqq a.e. in r0, as,
Bu
By pφ pyq , yq “ h py, u pφ pyq , yqq a.e. in r0, bs,
u px0, y0q “ u0.

Remark 3. If Bu
Bx p¨, yq : r0, as Ñ R is measurable for fixed y P r0, bs and

φ : r0, bs Ñ r0, as is continuous then Bu
Bx pφ p¨q , yq : r0, bs Ñ R may not

be measurable. Therefore, in the case of Carathéodory solutions, we will
consider the problem (13) instead of (1).

Assumption 2. Assume that functions f : I ˆ C pE,Rq ˆ R ˆ R Ñ R,
g : r0, asˆRÑ R and h : r0, bsˆRÑ R of the variables px, y, ω, µ, νq, px, ρq
and py, ρq are such that

1˝ f p¨, ¨ ,ω,µ,νq : I Ñ R, g p¨,ρq : r0, as ˆRÑ R and h p¨,ρq : r0, bs ˆRÑ R
are measurable for all ω P C pE,Rq , µ P R, ν P R, ρ P R.

2˝ There are li P L1 pI,R`q for i “ 1, 2, 3, l4 P L1 pr0, as,R`q, l5 P
L1 pr0, bs,R`q and constants c2, c3 ≥ 0 such that

|f px, y, ω̃, µ̃, ν̃q ´ f px, y, ω, µ, νq | ≤ l1 px, yq ||ω̃ ´ ω||(14)

`g

ˆ

c2 `

ż x

0
l2 ps, yq dsg

˙

|µ̃´ µ| ` g

ˆ

c3 `

ż y

0
l3 px, tq dt

˙

|ν̃ ´ ν|,

|g px, ρ̃q ´ g px, ρq | ≤ l4 pxq ||ρ̃´ ρ|| ,(15)
|h py, ρ̃q ´ h px, ρq | ≤ l5 pyq ||ρ̃´ ρ|| ,(16)

for a.e. px, yq P I and all pω, µ, νq , pω̃, µ̃, ν̃q P C
`

I,Rk
˘

ˆ Rk ˆ Rk.

Theorem 2. Suppose that Assumption 2 is satisfied. Moreover,
ż a

0
l4 psq ds`

ż b

0
l5 ptq dt` 2

ż a

0

ż b

0
l1 ps, tq dtds ă 1,(17)

2g

ˆ

c2b`

ż b

0

ż a

0
l2 ps, yq dsdt

˙

ă 1,(18)

2g

ˆ

c3a`

ż a

0

ż b

0
l3 px, tq dtdxg

˙

ă 1.(19)

Then problem (13) has a unique solution.
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Proof. We define the operator S : AC pI,Rq Ñ AC pI,Rq by

pSuq px, yq “ u0 `

ż x

x0

g ps, u ps, ψ psqqq ds`

ż y

y0

h p, t, u pφ ptq , tqq dt

`

ż y

y0

ż x0

φptq
f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙

dsdt

`

ż x

x0

ż y

ψpsq
f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙

dtds on I.

It is easy to see that under our assumptions, the operator S is well defined
and Su P AC pI,Rq for u P AC pI,Rq. Moreover, we have

B

Bx
pSuq px, yq “ g px, u px, ψ pxqqq

`

ż y

ψpxq
f

ˆ

x, t, urx,ts,
Bu

Bx
px, tq ,

Bu

By
px, tq

˙

dt a.e. on I,

B

By
pSuq px, yq “ h py, u pφ pyq , yqq

`

ż x

φpyq
f

ˆ

s, y, u1rs,ys,
Bu

Bx
ps, yq ,

Bu

By
ps, yq

˙

ds a.e. on I.

By the above, it is easily seen that equation upx, yq “ pSuqpx, yq is equivalent
to problem (13). Now, we define the norm || ¨ ||˚ by

||u||˚ “ ||u|| `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

.

We prove that S is contraction. Let u, ũ P AC pI,Rq. Then

| pSũq px, yq ´ pSuq px, yq | ≤
ż a

0
|g ps, ũ ps, ψ psqqq ´ g ps, u ps, ψ psqqq| ds

`

ż b

0
|h pt, ũ pφ ptq , tqq ´ h pt, u pφ ptq , tqq |dt

`

ż b

0

ż a

0

ˇ

ˇ

ˇ

ˇ

f

ˆ

s, t, ũrs,ts,
Bũ

Bx
ps, tq ,

Bũ

By
ps, tq

˙

´f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙
ˇ

ˇ

ˇ

ˇ

dsdt

`

ż a

0

ż b

0

ˇ

ˇ

ˇ

ˇ

f

ˆ

s, t, ũrs,ts,
Bũ

Bx
ps, tq ,

Bũ

By
ps, tq

˙

´f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙ˇ

ˇ

ˇ

ˇ

dtds
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≤
ż a

0
pl4 psq |ũ ps, ψ psqq ´ u ps, ψ psqq|q ds

`

ż b

0
pl5 ptq |ũ pφ ptq , tq ´ u pφ ptq , tq |q dt

` 2

ż a

0

ż b

0

„

l1 ps, tq
ˇ

ˇ

ˇ

ˇũrs,ts ´ urs,ts
ˇ

ˇ

ˇ

ˇ

` g

ˆ

c2 `

ż x

0
l2 ps, yq dsg

˙ ˇ

ˇ

ˇ

ˇ

Bũ

Bx
ps, tq ´

Bu

Bx
ps, tq

ˇ

ˇ

ˇ

ˇ

` g

ˆ

c3 `

ż y

0
l3 px, tq dt

˙ ˇ

ˇ

ˇ

ˇ

Bũ

By
ps, tq ´

Bu

By
ps, tq

ˇ

ˇ

ˇ

ˇ



dtds

≤
ż a

0
l4 psq ds||ũ´ u|| `

ż b

0
l5 ptq dt||ũ´ u||

` 2

ż a

0

ż b

0
l1 ps, tq dtds||ũ´ u||

` 2

ż b

0

„

g

ˆ

c2 `

ż a

0
l2 ps, yq ds

˙
ż a

0
|
Bũ

Bx
ps, tq ´

Bu

Bx
ps, tq |ds



dt

` 2

ż a

0

„

g

ˆ

c3 `

ż b

0
l3 px, tq dt

˙
ż b

0

ˇ

ˇ

ˇ

ˇ

Bũ

By
ps, tq ´

Bu

By
ps, tq

ˇ

ˇ

ˇ

ˇ

dt



ds

≤
ˆ
ż a

0
l4 psq ds`

ż b

0
l5 ptq dt` 2

ż a

0

ż b

0
l1 ps, tq dtds

˙

||ũ´ u||

` 2

ˆ

c2b`

ż b

0

ż a

0
l2 ps, yq dsdt

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y

` 2

ˆ

c3a`

ż a

0

ż b

0
l3 px, tq dtdxg

˙ ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

.

Moreover
ˇ

ˇ

ˇ

ˇ

B

Bx
pSũq px, yq ´

B

Bx
pSuq px, yq

ˇ

ˇ

ˇ

ˇ

≤ |g px, ũ px, ψ pxqqq ´ g px, u ps, ψ pxqqq |

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż y

ψpxq

ˇ

ˇ

ˇ

ˇ

f

ˆ

x, t, ũrx,ts,
Bũ

Bx
px, tq ,

Bũ

By
px, tq

˙

´f

ˆ

x, t, urx,ts,
Bu

Bx
px, tq ,

Bu

By
px, tq

˙ˇ

ˇ

ˇ

ˇ

dt

ˇ

ˇ

ˇ

ˇ

.

By the above
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B

Bx
Sũ´

B

Bx
Su

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y

≤
ż a

0
max
yPr0,bs

|g ps, ũ ps, ψ psqqq ´ g ps, u ps, ψ psqqq |ds

`

ż a

0
max
yPr0,bs

ˇ

ˇ

ˇ

ˇ

ż b

0

ˇ

ˇ

ˇ

ˇ

f

ˆ

s, t, ũrs,ts,
Bũ

Bx
ps, tq ,

Bũ

By
ps, tq

˙

´f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙ˇ

ˇ

ˇ

ˇ

dt

ˇ

ˇ

ˇ

ˇ

ds

≤
ż a

0
|g ps, ũ ps, ψ psqqq ´ g ps, u ps, ψ psqqq| ds

`

ż a

0

ż b

0

ˇ

ˇ

ˇ

ˇ

f

ˆ

s, t, ũrs,ts,
Bũ

Bx
ps, tq ,

Bũ

By
ps, tq

˙

´f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙
ˇ

ˇ

ˇ

ˇ

dsdt

≤
ˆ
ż a

0
l4 psq ds`

ż a

0

ż b

0
l1 ps, tq dtds

˙

||ũ´ u||

` g

ˆ

c2b`

ż b

0

ż a

0
l2 ps, yq dsdt

˙ ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y

` g

ˆ

c3a`

ż a

0

ż b

0
l3 px, tq dtdxg

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

.

We see that
ˇ

ˇ

ˇ

ˇ

B

By
pSũq px, yq ´

B

By
pSuq px, yq

ˇ

ˇ

ˇ

ˇ

≤ |h py, ũ pφ pyq , yqq ´ h py, u pψ pyq , yqq |

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż x

φpyq

ˇ

ˇ

ˇ

ˇ

f

ˆ

s, y, ũrs,ys,
Bũ

Bx
ps, yq ,

Bũ

By
ps, yq

˙

´f

ˆ

s, y, u1rs,ys,
Bu

Bx
ps, yq ,

Bu

By
ps, yq

˙ˇ

ˇ

ˇ

ˇ

ds

ˇ

ˇ

ˇ

ˇ

.

Therefore
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B

By
Sũ´

B

By
Su

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

≤
ż b

0
max
xPr0,as

|h pt, ũ pφ ptq , tqq ´ h pt, u pψ ptq , tqq |dt

`

ż b

0
max
xPr0,as

ˇ

ˇ

ˇ

ˇ

ż a

0

ˇ

ˇ

ˇ

ˇ

f

ˆ

s, t, ũrs,ts,
Bũ

Bx
ps, tq ,

Bũ

By
ps, tq

˙

´f

ˆ

s, t, urs,ts,
Bu

Bx
ps, tq ,

Bu

By
ps, tq

˙ˇ

ˇ

ˇ

ˇ

ds

ˇ

ˇ

ˇ

ˇ

dt
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≤
ˆ
ż b

0
l5 ptq dt`

ż a

0

ż b

0
l1 ps, tq dtds

˙

||ũ´ u||

` g

ˆ

c2b`

ż b

0

ż a

0
l2 ps, yq dsdt

˙ ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y

` g

ˆ

c3a`

ż a

0

ż b

0
l3 px, tq dtdx

˙ ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

.

Now, we see

||Sũ´ Su||˚ ≤
ˆ
ż a

0
l4 psq ds`

ż b

0
l5 ptq dt` 2

ż a

0

ż b

0
l1 ps, tq dtds

˙

||ũ´ u||

` 2

ˆ

c2b`

ż b

0

ż a

0
l2 ps, yq dsdt

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B̃u

Bx
´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y

` 2

ˆ

c3a`

ż a

0

ż b

0
l3 px, tq dtdx

˙ ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bũ

By
´
Bu

By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

.

By the above,
||Sũ´ Su||˚ ă α||ũ´ u||˚,

where

α “ max

"
ż a

0
l4 psq ds`

ż b

0
l5 ptq dt` 2

ż a

0

ż b

0
l1 ps, tq dtds ,

2c2b` 2

ż b

0

ż a

0
l2 ps, yq dsdt, 2c3a` 2

ż a

0

ż b

0
l3 px, tq dtdx

*

.

We see from (17)–(19) that α ă 1. Using the Banach fixed point theorem,
we get the existence of exactly one solution of problem (2).
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