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ON THE COEFFICIENT PROBLEM OF MEROMORPHIC
HARMONIC MAPPINGS

Abstract. In this paper, we shall study estimates for the coefficients a,, n = 1,2 of
a class of univalent harmonic mappings defined on the exterior of the unit disk U= {z:
|z| > 1}, which keep infinity fixed. For this purpose, we apply Faber polynomials and an
inequality of the Grunsky type.

1. Introduction

In [1], Hengartner and Schober introduced the class ¥y of all complex-
valued, harmonic, orientation preserving, univalent mappings f defined on
U = {z : |z| > 1}, which are normalized at infinity by f(c0) = oo. Such
functions admit the representation

(1) f(z) = h(z) + g(2) + Alog |z,

where A € C and

(2) h(z) = az + Z anz™ ", g(z) =Bz + Z bz "
n=0 n=1

are analytic in U, 0 < |8] < |a|, and a = f-/f. is analytic and satisfies
la(z)| < 1 for z € U.

Since the affine transformation (af — Bf — @ag + Bao)/(|a|* — |B]?) is
again in the class, we may let « = 1, § = 0, and a9 = 0 in (2). Therefore, let
E/H be the set of all harmonic, orientation preserving, univalent mappings f
given by (1), where

(3) h(z) =z + Z anz™ ", g(z) = Z bz~ "
n=1 n=1

are analytic in U. We further consider a special case E}I ={fe ZIH : A =0},
that is, the subclass without logarithmic singularity.
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Finally, let Z[}I denote the non-vanishing class defined by
50— {f—c:fez’H and c¢f(®)}.

The families E%, Z/H, and E}J are compact with respect to the topology
of locally uniform convergence (see Theorem 3.6, [1]).

Using Schwarz’s lemma, Hengartner and Schober (|1]) proved the follow-
ing theorem.

THEOREM A.
(i) If f € X} then |A] <2 and |by| < 1.
(i) If fe Xy t{Len |b1] <1 and |be| < %(1 — %) < %
(iii) If f € Xy has the representation (1) and it satisfies (3) then
Y- m(lan]? = [bn]?) <1+ 2 Reby.
All the results are sharp.

Furthermore, they also proved the distortion theorem, which we shall use
in this paper.

THEOREM B. If f € X0, then |f(2)| < 4(1 + |2])%/|2| for all z € U. More-
over, f(U) contains the set {w : |w| > 16}, and |c| < 16.

Their work gave rise to several fascinating problems and conjectures.
Though several researchers solved some of these problems and conjectures,
yet many questions are still unanswered and need to be investigated. One
of these is the problem of finding best possible bounds for modulus of the
coefficients of function f € Y.

In this note, we give some estimates of the coefficients a,, n = 1,2 when
fe Z/H or f e ZH The bounds are not best possible, but so far nothing is
known about the behavior of the coefficients of the analytic part h.

2. Main results
We shall first recall some facts concerning the so called Faber polynomials.
Given a function
c1 Co ~
(4) g(z)=cz+co+—+ 5+, c>1, z€el
z oz

of class ¥ of meromorphic univalent functions, consider the expansion
0
(5) £9'(€) = (9(&) —w) > Fu(w)é™,
n=0

valid for all £ in some neighborhood od c0. F,,(w) is a monic polynomial of
degree n, called the nth Faber polynomial of the function g.

Comparing the coefficients of like powers of £ on both sides of (5), we
obtain Fy(w) = 1, Fi(w) = 1(w — ¢p) and Fh(w) = L(—2¢; + (w — ¢0)?2).

Cc c



850 J. Widomski

After additional assumption |g(z)| > 1, we can transform the function
g(z) € ¥ to

b b-
(6) h(z) = (g(z2))1/2 :b02+;1+z;;+... )
Then h € 3, and a calculation gives
2
Co CO 1
by = by = ——  ba = _%)
0 =+/c, b N <01 )

Putting g(&) — h(€) in (5), we get Fy(w) — 1, Fy(w) — &, Fy(w) —
2 2
%(—21)1 + ”“l;’—o) and F3(w) = %(—3()1 + %’—0)
Now observe that since g is univalent, the function

§g/(€) - § _ o Z—k -n
@) @ o) £ 2y 2w

is analytic for |z| > 1 and |£] > 1. In view of (5), the relation (7) gives

Y Falg()e = 14 Y+ Y gt
n=0 n=1 k=1

Thus the Faber polynomials satisfy

e}
(8) Fu(g(z)) = 2"+ > Barz®, n=12,....
k=1
The coefficients [, are known as the Grunsky coefficients of g. The property
(8) characterizes the nth Faber polynomial of g among all polynomials of
degree n.
Let us put

) F<g(1§>) _ éankg—k.

Singh in [4] showed that if w = g(z) maps U conformally onto a domain
Q contained in |w| > 1 and Ay, ..., Ay are arbitrary complex numbers then

N N N N N
(10) ‘Z M kB < D Al = 30 N kA AGGak, N = 1,2,

n=1k=1 n=1 n=1k=1

Now, we use (10) to prove the following theorem.

THEOREM 1. Let g belong to the class 3 of unwalent functions of the form
(4) and satisfying |g(2)| > 1, z € U. Then the following inequalities hold:

(a) |eol <2(c—1),
(b) ler] < (1= ),

2
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(c) 1) \cﬂﬁ%(e—i) for1 < e <4,
i) |eo] < 7<C+M) forc>4.

wino

Proof. Singh in [4] considered the class of regular analytic functions in
|z] < 1 having the power series expansion f(z) = b1z + byz? 4+ -+, by > 0,
which are bounded so that |f(z)| < 1 for |z| < 1. He showed that

|ba| < 2b1(1 — by).

Similar inequality for the coefficient by was earlier proved by Pick [3]|. This

inequality is sharp, equality is attained for the function f given by % =

(1 Z)Q and its rotations. By the simple inversion g(z) = m, z € @, we

have by = 2 and by = —*. Hence (a) holds.

With the choices N = 2 and Ay = 0, the inequality (10) takes the form
|B11] < 1—611. If we use (8), (9) and the fact that Fy(w) = (w — c)?,
then we obtain 811 = %, 011 = C%, which gives the required condition (b).
Equality holds in (b) for domain bounded by the unit circumference with a
rectilinear slit in the direction away from the center.

Let us apply the inequality (10) to the function h(z) given by (6). On
taking N = 3 in (10) and setting A\; = A2 = 0, we have |833] < 1—d33. Using
once again equalities (8), (9) and the Faber polynomial F3(w) for w = h(z),

we get
3 2
3er |y (Bleol”
2¢c 83 4¢3 03

From this, we conclude that
|C()|3 ‘00‘2 2 2c

el < e~ e Tze Ty
It remains to find the maximal value of the right hand of above inequality.
Maximinizing the function w(t) = 1;2;2 - % — &+ 2 0<t <2 1),
¢ > 1, we have (c). In the case 1 < ¢ < 4, the 1nequahty is sharp, the
extremal domain is the domain bounded by the unit circumference with

three symmetrically situated rectilinear slits of equal length. =
We can now formulate our main result.
THEOREM 2. If f € ¥}, has expansion (1) along with (3) then
(i) |ai| < d+ 3,
(ii) |ag| < 2d+2Z7 for1<c<4, and |as| < 3d+ % for ¢ > 4,
where d is the smallest constant for which f(U) contains the set {w : |w| > d}.

Proof. The point of departure is the covering theorem for E/H (Theorem B).
It says that the range of each harmonic mapping f € E'H contains the domain
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|w| > d, where d < 16. Let A be the preimage of this domain under f. Let
¢ be the meromorphic conformal mapping of U onto A, so that |¢(z)| > 1,
z € U with ¢(0) = o and ¢/(20) = 1. Then the composition F = % (f o ¢)
is a harmonic automorphism of U.

Now, let ¢(2) =z+d0+d71+g—§+-~. Thus,

J— 1 Z al a2 PR bl b2 A
) = 5 W e I P65 e Sl oo O
+ 2loga(s) + 1og<z>>]

1 1 1
Ifz-l-do-l-AkTrZ'-i-* d1+a1+*Ad0
d z 2
1 1 1 9 1 /— 1 —
+272 <d2+a2—a1d0+2Ad1—4Ad0> ++% <b1+2Ad0>

1 /[— —— 1 — 1 —
t o <52 ~budo + S Ad; ~ 4Ad02) +o Alog|z|}.

Using the notation

o0 e}
F(z)=az+ Bz + Z Apz™" + Z Bpz7" 4 Alog 2|,
n=0 n=1
we get formulas
1 1 1
== = Ay == —A
« d, B Oa 1 d<dl+a1+2 d0)7
1 1 1 1 1—
Ay == (d —aydy + = Ady — ~ Ad} By =~ (b +-Ady | .
2 d<2+a2 a10+2 1= o>, 1 d(1+2 0)

Since F' € Xy and it maps U harmonically onto itself, it follows that

_ _ 1 1
lao+ B <1, |[f+A1l <1, |4, < —, [|Bp|<— for n>2,
n n

as was shown in [2|. Above estimates along with an application of the triangle
inequality yield

1 1
di + §Ad0 and Jag| < §d +

1 1
|a1|§d+ d2a1d0+2A<d12d%>‘.

Theorem 1, when applied to the function ¢, gives

1 1
!d0!<2<1—>, ldi] <1 - —.
C C

Thus, in view of |A| < 2, the estimate for |a;| reduces to |ai| < d+ 3 < 19.
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Similarly, by Theorem 1, the coefficient do of ¢ satisfies the inequalities

2 1 2 & —6c2+9c—5

3

c
for 1 < ¢ < 4 and ¢ > 4, respectively. It finally leads to the estimate
las| < 2d + 2T < 38.75 for 1 < ¢ < 4, and |as| < 3d + 3} < 50.(3) for ¢ > 4.
This completes the proof. m

REMARK 1. If we suppose that f € E}{, then similar calculations lead to
slightly better bounds |ai| < 17, |ag| < 34.0625 for ¢ € (1,4) and |ag| <
43.(3) for ¢ > 4.
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