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GENERALIZATIONS OF OPIAL-TYPE INEQUALITIES IN
SEVERAL INDEPENDENT VARIABLES

Abstract. In this paper, we consider Willett’s and Rozanova’s generalizations of
Opial’s inequality and extend them to inequalities in several independent variables. Also,
we present some new Opial-type inequalities in several independent variables.

1. Introduction

In 1960, the Polish mathematician Zdzistaw Opial [6] proved next integral
inequality, known in literature as the Opial inequality:

Let x(t) € C1[0, h] be such that z(0) = x(h) = 0 and z(¢) > 0 for
t € (0,h). Then

h h
(1.1) f | (t) 2/ (t)| dt < Zf (/' () dt,

0 0
where constant h/4 is the best possible.

This integral inequality, containing the derivative of the function, is rec-
ognized as fundamental result in the analysis of qualitative properties of
solution of differential equations (see [1]). Over the last five decades, an
enormous amount of work has been done on Opial’s inequality. Many papers,
which deal with new proofs, various generalizations, extensions and discrete
analogues, have appeared in the literature (see [1, 5| and the references cited
therein).

One such inequality is the next one involving z(™, n > 1, given in [2]
(it’s actually an extension of Willett’s inequality [9], [1, page 128]):

THEOREM 1.1. Let f be a convex function on [0, 00) with f(0) = 0. Further,
let x € AC™[a,b] be such that xD(a) = 2D (b) =0,i=0,...,n—1,n > 1.
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If f is a differentiable function, then the following inequality holds

' n—1) (* . ((b—a) 2™
2 [ rewnlole < 30 f<<b 2&11)!@)\) .

Following inequality is an extension of Rozanova’s inequality ([8], [1, page
82]), given also in [2]:

THEOREM 1.2. Let f be a convex function on [0,00) with f(0) = 0. Let
g be convez, nonnegative and increasing on [0,00). Let w(t) > 0, w'(t) > 0,

€ [a,b] with w(a) = 0. Further, let x € AC™[a,b] be such that ) (a) = 0,
1=0,....,n—1,n>1. If f is a differentiable function, then the following
wequality holds

19 [wos( g ) (o) o
<3 i - Lb f <(b —a)u'(t)g ( (b(;f)f)_!l |x$)(g)|>>dt.

Next theorem comes from [4] and presents inequality in several indepen-
dent variables. It uses the following notation:
Let Q=T [a;,b;]. Let t=(t1,...,tm) be a general point in Q, Q=
HJ 1[aj,t;] and dt=dt ...dt,,. Further, let Du(z)=-Lu(z), Dyu(ty,. .. ty)
(tl, . ,tm) and Dk (tl,..., m)=D1---Dku(t1,...,tm), 1§k§m

THEOREM 1.3. Let m > 2 and let x;, Dix;, i =1,....p, j=1,...,m be
real-valued continuous functions on 0 with

zi(t)t;=a; =0, i=1,....p, j=1,...,m

or
2i(O)lti=ar = D'@i(t)lty=ar = -+ = D" ' @i(O)]tyy=ar = 0, i=1,...,p

Let f be a nonnegative and differentiable function on [0, 00)P with f(0,...,0)

= 0 such that D;f, i =1,...,p are nonnegative, continuous and nondecreas-

ing on [0,00)P. Then the integral inequality

(14) f (2 Dif (jz1(8)] ..., lay (D)) |Dmxi<t>|>dt
Q =1

< f(fﬂ D™ (1) dt, L D™ (0)] dt>

The aim of this paper is to generalize Opial-type integral inequalities
from Theorem 1.1 and Theorem 1.2, following the idea of Theorem 1.3 for

holds.



Generalizations of Opial-type inequalities in several variables 841

the case of several independent variables. As a consequence, we obtain more
general result for the Theorem 1.3. Hence, we introduce further notation:

Let Q' = [[/L,[a;j,bj] and dt' = dts ..., dtm. Let vol() =[]}, (b; —aj;)

and Oy = [/ [t;, bj]. Let Ditu(ty, ... ty) = %u(tl,..., tm), 1< j <
m,1 <[ <n.

Also by C™*(Q2), we denote the space of all functions v on Q which
have continuous derivatives D3y for j = 1,...,m and [ = 1,...,n. Further,

AC(Q) is the space of all absolutely continuous functions on Q2. By AC™" (),
we denote the space of all functions u € C™"~1(Q) with D™Dy e AC(Q).

Finally, next lemma about convex function of several variables will be
used in our proofs ([7, page 11]).

LEMMA 1.4. Suppose f is defined on the open conver set U < R™. If f
is convex (strictly) on U and the gradient vector f'(x) exists throughout U,
then f' is (strictly) increasing on U.

2. Main results
First theorem is a generalization of Theorem 1.3.

THEOREM 2.1. Let m,n,p € N. Let f be a nonnegative and differentiable
function on [0,00)P, with f(0,...,0) = 0. Further, for i = 1,...,p, let
x; € AC™(Q) be such that Djlxi(t)|tj:aj = Djl:ci(t)|tj=bj = 0, where j =
1,....mandl =0,....,n—1. Also, let D;f, i = 1,...,p, be nonnegative,
continuous and nondecreasing on [0,00)P. Then the following inequality holds

21) f(ﬁ 7 1@ b)) D™ i(0)] )

< 2((n—1)H™ f( (vol(Q)

n 1
= i@y \2((n - f D @] b,

vol )t o
Q

Proof. We extend technique used in [2, Theorem 2.1] on several independent
variables. Let ¢ = (¢q, -+ ) € Q and let

(2.2) f f J D™a(s)| ds iy . A1

Q¢ Q1 Qt m—1

T th — s D™ (s) ds,

Q, =1
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forte Qe i =1,...,p. Hence D"™"y;(t) = |D™"x;(t)| and y;(t) > |x;(¢)]. It
is easy to conclude that for each I = 0,...,n — 1, we have D7%;(t) > 0 and
nondecreasing on €2 (i=1,...,pand j=1,...,m). From Dﬂyi(t)|tj:aj =0,
it follows

lt) < LT oy, vea,
and also
o) < LAV Dy, teq.
Define
) = (2 Dy ),
fort € Q. and ¢ = 1,...,p. Since D;f are nonnegative, continuous and

nondecreasing on [0, 00)P, we have

(23 f [i FUar® - lap(O)) D™ (0)] |dt
= p
< J[Z D;f (y1(), ... ayp(t))Dmnyi(t)]dt-
=1
Consequently,

@) [[X Dt (O] Jag(t)) 1D a0
1=1

c

v, p (299" (w0l )
< [ 22 (Gt 0 o)
Dm”yi(t)]dt

p
< “2 Dif (wn(tren - ). upltrea, ) D™yi(1)|de
Q

— Jﬁ [Z Dif (ui(ti,co, ... cm), .. up(ti,co, ..., Cm))
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S fq |:2sz U1 tl,CQ ) up(tl,cZ...,cm))

&
WDluz(tl,cz )}dtl
:W ° d‘; [ (Ua(t1, Co. ey m)see s ttp(F1 o s c))] di
_ Wf (UL(C1, Co, ooy s st (€1, Co ey )
G
W f D™ (1) dt>.

c

Forte Q. and i =1...,p, we have

(2.5) J f J |Dmn |d8 dtl 1- dtm’nfl

Qi Qi1 Qtm—1
JH sj—t;)"" 1’Dmn i(s)] ds,
from which analogously, we obtam

26) [ [L D (0] e D™t
= =1
((n=1D))™ [ @ol(@)"
< (s [Iomaoa.....

(ol 1! \ ((n |
V0 n—1
”(_%n [ 1, 0) dt>.
QC

((n

Let c € Q be such that for every i =1,...,p

(2.7) f | D™ ()] dt = f |D™ ()] dt = % f |D™(t)| dt.
Q 9 Q

Now from (2.4), (2.6) and (2.7), it follows (2.1). m

REMARK 2.2. For n = 1, the inequality (2.4) becomes the inequality (1.4),
requiring boundary conditions only on a;, j = 1,...,m.
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Next, we follow with inequality for convex function f.

THEOREM 2.3. Let m,n,p € N. Let f be a convex and differentiable func-
tion on [0,0)P with f(0,...,0) = 0. Further fori =1,...,p, letx; € AC™"Q
be such that Djlmi(t)hj:aj = Djlmi(t)hj:bj = 0, where j = 1,...,m and
l=0,...,n—1. Then the following inequality holds

(2:8) j(Z Dif (Jzi(t)], ..., lzp(t)]) IDm”xi(t)Ddt
o =1
2((n —1)H™ (vol(Q))
= (UOZ(Q))"Jf<2((n—1)!)m‘D z1(t)],...,

G -~
) 1D (>|)dt.

Proof. As in the proof of the previous theorem, we obtain (2.1) with the
difference of applying Lemma 1.4 in (2.3) since f is a convex function. Then,
from Jensen’s inequality |7, page 51|, we have

f[i Dif (|1 (®)], ..., |zp(t)]) |Dm”a:i(t)|]dt
o i=1

2((n—1)H™ (vol ()"~ .
= (’UOl(Q))”_l <2((TL— 1)|>mJ|D $1(t)|dt,...,

V0 n—1

_2((n 1) ) 1 (vol(Q)) .
(vol (2
 [D™ay ()| di
vol(Q S{Q( (n — )
(n—=1)Y (vol(Q2)) i,
S@ozwif(wlﬂ YOI
2((n — 1)) |D p(t)’ )dt.

REMARK 2.4. As a special case for p = 1 and m = 1, Theorem 1.1 is
reobtained.

Next theorem is a generalization of Theorem 1.2 for several independent
variables.
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THEOREM 2.5. Let m,n,p € N. Let f be a convex and differentiable func-
tion on [0,00)P with f(0,...,0) = 0. Let g; be convex, nonnegative and
increasing on [0,00) fori = 1,...,p. Fori=1,...,p, let h; : Q@ — [0,00)
be such that D™h; is nonnegative with Dj_lhi(t)]tjzaj =0,7=1,...,m.
Further for i = 1,...,p, let x; € AC™Q be such that Dﬂxi(t)|tj:aj =0,
where j=1,...,mandl =0,...,n—1. Then the following inequality holds

(2.9) J<ZDf(h1 ("TEJ) ,---,hp(t)gp(|zg;|>>
< Dt (LD DR o

(n=1D)™ D"kt
L (oot o 1) o (@01 D721 (0)
Svoumif( @ 0O (G )

m vol ()"~ 1 | D™z, (t
vol () D™ hy(t) gp <(((n (_ Bl)m | Dmhp((t))|> >dt'

Proof. As in the proof of Theorem 2.1, for i = 1,...,p, t € Q we have
D™yi(t) = [D™ i (t)], yi(t) = |2s(t)| and

(vol Q)1
(n=D))"
From Jensen’s inequality, monotonicity and convexity of each g; (i=1,...,p),
we have

0] yi(t) (vol(€2))"~! D™Dy (1)
gi(hz—m>59"<hi<t>>§"‘“<<< — O™ R )
Lol @ §o, D™ ha(s) Dl ds
=G SQ,/ D™h;(s)ds

yi(t) < D™Dy ().

L[y o (@0l@) D)
S (D) Jo, P )gl<<<n—1>!>m Dmm<s>>d'

Define

(vol ()"~ 1 Dm”yi(s)>

Us(s) = D™hi(s)g; < ((n— )™ D™hy(s)

forte Qandi=1,...,p. Hence,

[ (oon (5.0 (529)

" (v0l())"" D"z (1)
xD™h;(t)g; (((n _ 1)[)’" D™h,(t) )] dt
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fléij<JZT%1 ”((l“%>12225?>“

Jo, Pt (Wl 1§$@>>
om0 1; )]

e

.....

.....

O™ Dmhy(f)
V0 —1|pmng

f Dmhp(t)gp <( l(_ )i |D p(t)|

Q .

Finally, by Jensen’s inequality, we obtain

J 3200 (1 (529 .y

)"t D™ (t)]
—1)!)’" Dmhi(t)
(

IN
&H
A/~
-
3 S
>
=
=
Q
—
/=

n— 1)) DMy (t

)
. (vol(2))"1 (D (1)
Jf)%@%@m—MWIW@w “)

:f< ll(Q) Lvoz(g)pmhl() (“’OZ(Q

L D™ ()]

i e ot
o L\ Dmng (
< ll(Q)L< Q) D™hy( <(( I( 1;!)m |%mh11 |>

m (0ol ()"~ [D™"ay (1))
vol(£2) D™ hy () gp < (=)™ D (t) ))dt. .

i
(=1} DmM@>>dt
i

.....

)

.....

.....
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REMARK 2.6. Theorem 1.2 follows for p = 1 and m = 1. Also, the inequal-
ity (2.10) is an extension of the inequality given in [3, Theorem 1].

(1
2]
3l
4]
5]

(6]
(7]

18]
191
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