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GENERALIZATIONS OF OPIAL-TYPE INEQUALITIES IN
SEVERAL INDEPENDENT VARIABLES

Abstract. In this paper, we consider Willett’s and Rozanova’s generalizations of
Opial’s inequality and extend them to inequalities in several independent variables. Also,
we present some new Opial-type inequalities in several independent variables.

1. Introduction
In 1960, the Polish mathematician Zdzisław Opial [6] proved next integral

inequality, known in literature as the Opial inequality:

Let xptq P C1r0, hs be such that xp0q “ xphq “ 0 and xptq ą 0 for
t P p0, hq. Then

(1.1)
ż h

0

ˇ

ˇxptqx1ptq
ˇ

ˇ dt ≤ h

4

ż h

0

`

x1ptq
˘2

dt,

where constant h{4 is the best possible.

This integral inequality, containing the derivative of the function, is rec-
ognized as fundamental result in the analysis of qualitative properties of
solution of differential equations (see [1]). Over the last five decades, an
enormous amount of work has been done on Opial’s inequality. Many papers,
which deal with new proofs, various generalizations, extensions and discrete
analogues, have appeared in the literature (see [1, 5] and the references cited
therein).

One such inequality is the next one involving xpnq, n ≥ 1, given in [2]
(it’s actually an extension of Willett’s inequality [9], [1, page 128]):

Theorem 1.1. Let f be a convex function on r0,8q with fp0q “ 0. Further,
let x P ACnra, bs be such that xpiqpaq “ xpiqpbq “ 0, i “ 0, . . . , n ´ 1, n ≥ 1.
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If f is a differentiable function, then the following inequality holds

(1.2)
ż b

a
f 1 p|xptq|q |xpnqptq| dt ≤ 2pn´ 1q!

pb´ aqn

ż b

a
f

˜

pb´ aqn |xpnqptq|

2pn´ 1q!

¸

dt.

Following inequality is an extension of Rozanova’s inequality ([8], [1, page
82]), given also in [2]:

Theorem 1.2. Let f be a convex function on r0,8q with fp0q “ 0. Let
g be convex, nonnegative and increasing on r0,8q. Let wptq ≥ 0, w1ptq ą 0,
t P ra, bs with wpaq “ 0. Further, let x P ACnra, bs be such that xpiqpaq “ 0,
i “ 0, . . . , n ´ 1, n ≥ 1. If f is a differentiable function, then the following
inequality holds

(1.3)
ż b

a
w1ptq g

ˆ

pb´ aqn´1

pn´ 1q!

|xpnqptq|

w1ptq

˙

f 1
ˆ

wptq g

ˆ

|xptq|

wptq

˙˙

dt

≤ 1

b´ a

ż b

a
f

ˆ

pb´ aqw1ptq g

ˆ

pb´ aqn´1

pn´ 1q!

|xpnqptq|

w1ptq

˙˙

dt.

Next theorem comes from [4] and presents inequality in several indepen-
dent variables. It uses the following notation:

Let Ω“
śm

j“1raj , bjs. Let t“pt1, . . . , tmq be a general point in Ω, Ωt“
śm

j“1raj , tjs and dt“dt1 . . . dtm. Further, letDupxq“ d
dxupxq,Dkupt1, . . . , tmq

“ B
Btk

upt1, . . . , tmq and Dkupt1, . . . , tmq“D1 ¨ ¨ ¨Dkupt1, . . . , tmq, 1≤k≤m.

Theorem 1.3. Let m ≥ 2 and let xi, Djxi, i “ 1, . . . , p, j “ 1, . . . ,m be
real-valued continuous functions on Ω with

xiptq|tj“aj “ 0, i “ 1, . . . , p, j “ 1, . . . ,m

or

xiptq|t1“a1 “ D1xiptq|t2“a2 “ . . . “ Dm´1xiptq|tm“am “ 0, i “ 1, . . . , p.

Let f be a nonnegative and differentiable function on r0,8qp with fp0, . . . , 0q
“ 0 such that Dif , i “ 1, . . . , p are nonnegative, continuous and nondecreas-
ing on r0,8qp. Then the integral inequality

(1.4)
ż

Ω

ˆ p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mxiptq|

˙

dt

≤ f

ˆ
ż

Ω
|Dmx1ptq| dt, . . . ,

ż

Ω
|Dmxpptq| dt

˙

holds.

The aim of this paper is to generalize Opial-type integral inequalities
from Theorem 1.1 and Theorem 1.2, following the idea of Theorem 1.3 for
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the case of several independent variables. As a consequence, we obtain more
general result for the Theorem 1.3. Hence, we introduce further notation:

Let Ω1 “
śm

j“2raj , bjs and dt1 “ dt2 . . . , dtm. Let volpΩq “
śm

j“1pbj´ajq

and Ω̄t “
śm

j“1rtj , bjs. Let Djlupt1, . . . , tmq “
Bjl

Btl1...Bt
l
j

upt1, . . . , tmq, 1 ≤ j ≤
m, 1 ≤ l ≤ n.

Also by CmnpΩq, we denote the space of all functions u on Ω which
have continuous derivatives Djlu for j “ 1, . . . ,m and l “ 1, . . . , n. Further,
ACpΩq is the space of all absolutely continuous functions on Ω. By ACmnpΩq,
we denote the space of all functions u P Cmpn´1qpΩq with Dmpn´1qu P ACpΩq.

Finally, next lemma about convex function of several variables will be
used in our proofs ([7, page 11]).

Lemma 1.4. Suppose f is defined on the open convex set U Ă Rn. If f
is convex (strictly) on U and the gradient vector f 1pxq exists throughout U ,
then f 1 is (strictly) increasing on U .

2. Main results
First theorem is a generalization of Theorem 1.3.

Theorem 2.1. Let m,n, p P N. Let f be a nonnegative and differentiable
function on r0,8qp, with fp0, . . . , 0q “ 0. Further, for i “ 1, . . . , p, let
xi P ACmnpΩq be such that Djlxiptq|tj“aj “ Djlxiptq|tj“bj “ 0, where j “
1, . . . ,m and l “ 0, . . . , n ´ 1. Also, let Dif , i “ 1, . . . , p, be nonnegative,
continuous and nondecreasing on r0,8qp. Then the following inequality holds

(2.1)
ż

Ω

´

p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mnxiptq|

¯

dt

≤ 2 ppn´ 1q!qm

pvolpΩqqn´1
f

ˆ

pvolpΩqqn´1

2 ppn´ 1q!qm

ż

Ω

|Dmnx1ptq| dt, . . . ,

pvolpΩqqn´1

2 ppn´ 1q!qm

ż

Ω

|Dmnxpptq| dt

˙

.

Proof. We extend technique used in [2, Theorem 2.1] on several independent
variables. Let c “ pc1, ¨ ¨ ¨ , cmq P Ω and let

yiptq “

ż

Ωt

ż

Ωt,1

. . .

ż

Ωt,m´1

|Dmnxipsq| ds dt1,1 . . . dtm,n´1(2.2)

“
1

ppn´ 1q!qm

ż

Ωt

m
ź

j“1

ptj ´ sjq
n´1|Dmnxipsq| ds,
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for t P Ωc, i “ 1, . . . , p. Hence Dmnyiptq “ |D
mnxiptq| and yiptq ≥ |xiptq|. It

is easy to conclude that for each l “ 0, . . . , n´ 1, we have Djlyiptq ≥ 0 and
nondecreasing on Ωc (i“1, . . . , p and j“1, . . . ,m). From Djlyiptq|tj“aj “0,
it follows

yiptq ≤
pvolΩcq

n´1

ppn´ 1q!qm
Dmpn´1qyiptq, t P Ωc,

and also

yiptq ≤
pvolΩqn´1

ppn´ 1q!qm
Dmpn´1qyiptq, t P Ωc.

Define

uiptq “
pvolΩqn´1

ppn´ 1q!qm
Dmpn´1qyiptq,

for t P Ωc and i “ 1, . . . , p. Since Dif are nonnegative, continuous and
nondecreasing on r0,8qp, we have

(2.3)
ż

Ωc

”

p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mnxiptq|

ı

dt

≤
ż

Ωc

”

p
ÿ

i“1

Dif py1ptq, . . . , ypptqqD
mnyiptq

ı

dt.

Consequently,
ż

Ωc

”

p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mnxiptq|

ı

dt(2.4)

≤
ż

Ωc

„ p
ÿ

i“1

Dif

ˆ

pvolΩcq
n´1

ppn´1q!qm
Dmpn´1qy1ptq, . . . ,

pvolΩcq
n´1

ppn´1q!qm
Dmpn´1qypptq

˙

Dmnyiptq



dt

≤
ż

Ωt

”

p
ÿ

i“1

Dif pu1pt1, c2, . . . , cmq, . . . , uppt1, c2, . . . , cmqqD
mnyiptq

ı

dt

“

ż c1

a1

„ p
ÿ

i“1

Dif pu1pt1, c2, . . . , cmq, . . . , uppt1, c2, . . . , cmqq

ż

Ω1c

Dmnyiptq dt
1



dt1
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≤
ż c1

a1

„ p
ÿ

i“1

Dif pu1pt1, c2, . . . , cmq, . . . , uppt1, c2, . . . , cmqq

ppn´1q!qm

pvolpΩcqq
n´1

D1uipt1, c2 . . . , cmq



dt1

“
ppn´1q!qm

pvolpΩcqq
n´1

ż c1

a1

d

dt1
rf pu1pt1, c2, . . . , cmq, . . . , uppt1, c2, . . . , cmqqs dt1

“
ppn´1q!qm

pvolpΩcqq
n´1

f pu1pc1, c2, . . . , cmq, . . . , uppc1, c2, . . . , cmqq

“
ppn´1q!qm

pvolpΩcqq
n´1

f

ˆ

pvolpΩqqn´1

ppn´1q!qm

ż

Ωc

|Dmnx1ptq| dt, . . . ,

pvolpΩqqn´1

ppn´1q!qm

ż

Ωc

|Dmnxpptq| dt

˙

.

For t P Ω̄c and i “ 1 . . . , p, we have

yiptq “

ż

Ω̄t

ż

Ω̄t,1

. . .

ż

Ω̄t,m´1

|Dmnxipsq| ds dt1,1 . . . dtm,n´1(2.5)

“
1

ppn´1q!qm

ż

Ω̄t

m
ź

j“1

psj´tjq
n´1|Dmnxipsq| ds,

from which analogously, we obtain

(2.6)
ż

Ω̄c

”

p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mnxiptq|

ı

dt

≤ ppn´ 1q!qm

pvolpΩqqn´1
f

ˆ

pvolpΩqqn´1

ppn´ 1q!qm

ż

Ω̄c

|Dmnx1ptq| dt, . . . ,

pvolpΩqqn´1

ppn´ 1q!qm

ż

Ω̄c

|Dmnxpptq| dt

˙

.

Let c P Ω be such that for every i “ 1, . . . , p

(2.7)
ż

Ωc

|Dmnxiptq| dt “

ż

Ω̄c

|Dmnxiptq| dt “
1

2

ż

Ω

|Dmnxiptq| dt.

Now from (2.4), (2.6) and (2.7), it follows p2.1q.

Remark 2.2. For n “ 1, the inequality p2.4q becomes the inequality p1.4q,
requiring boundary conditions only on aj , j “ 1, . . . ,m.
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Next, we follow with inequality for convex function f .

Theorem 2.3. Let m,n, p P N. Let f be a convex and differentiable func-
tion on r0,8qp with fp0, . . . , 0q “ 0. Further for i “ 1, . . . , p, let xi P ACmnΩ
be such that Djlxiptq|tj“aj “ Djlxiptq|tj“bj “ 0, where j “ 1, . . . ,m and
l “ 0, . . . , n´ 1. Then the following inequality holds

(2.8)
ż

Ω

´

p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mnxiptq|

¯

dt

≤ 2 ppn´ 1q!qm

pvolpΩqqn

ż

Ω

f

ˆ

pvolpΩqqn

2 ppn´ 1q!qm
|Dmnx1ptq| , . . . ,

pvolpΩqqn

2 ppn´ 1q!qm
|Dmnxpptq|

˙

dt.

Proof. As in the proof of the previous theorem, we obtain p2.1q with the
difference of applying Lemma 1.4 in p2.3q since f is a convex function. Then,
from Jensen’s inequality [7, page 51], we have

ż

Ω

”

p
ÿ

i“1

Dif p|x1ptq| , . . . , |xpptq|q |D
mnxiptq|

ı

dt

≤ 2 ppn´ 1q!qm

pvolpΩqqn´1
f

ˆ

pvolpΩqqn´1

2 ppn´ 1q!qm

ż

Ω

|Dmnx1ptq| dt, . . . ,

pvolpΩqqn´1

2 ppn´ 1q!qm

ż

Ω

|Dmnxpptq| dt

˙

“
2 ppn´ 1q!qm

pvolpΩqqn´1
f

ˆ

1

volpΩq

ż

Ω

pvolpΩqqn

2 ppn´ 1q!qm
|Dmnx1ptq| dt, . . . ,

1

volpΩq

ż

Ω

pvolpΩqqn

2 ppn´ 1q!qm
|Dmnxpptq| dt

˙

≤ 2 ppn´ 1q!qm

pvolpΩqqn

ż

Ω

f

ˆ

pvolpΩqqn

2 ppn´ 1q!qm
|Dmnx1ptq| , . . . ,

pvolpΩqqn

2 ppn´ 1q!qm
|Dmnxpptq|

˙

dt.

Remark 2.4. As a special case for p “ 1 and m “ 1, Theorem 1.1 is
reobtained.

Next theorem is a generalization of Theorem 1.2 for several independent
variables.
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Theorem 2.5. Let m,n, p P N. Let f be a convex and differentiable func-
tion on r0,8qp with fp0, . . . , 0q “ 0. Let gi be convex, nonnegative and
increasing on r0,8q for i “ 1, . . . , p. For i “ 1, . . . , p, let hi : Ω Ñ r0,8q
be such that Dmhi is nonnegative with Dj´1hiptq|tj“aj “ 0, j “ 1, . . . ,m.
Further for i “ 1, . . . , p, let xi P ACmnΩ be such that Djlxiptq|tj“aj “ 0,
where j “ 1, . . . ,m and l “ 0, . . . , n´ 1. Then the following inequality holds

(2.9)
ż

Ω

ˆ p
ÿ

i“1

Dif

ˆ

h1ptqg1

ˆ

|x1ptq|

h1ptq

˙

, . . . , hpptqgp

ˆ

|xpptq|

hpptq

˙˙

ˆDmhiptqgi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnxiptq|

Dmhiptq

˙˙

dt

≤ 1

volpΩq

ż

Ω

f

ˆ

volpΩqDmh1ptq g1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnx1ptq|

Dmh1ptq

˙

, . . . ,

volpΩqDmhpptq gp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnxpptq|

Dmhpptq

˙˙

dt.

Proof. As in the proof of Theorem 2.1, for i “ 1, . . . , p, t P Ω we have
Dmnyiptq “ |D

mnxiptq|, yiptq ≥ |xiptq| and

yiptq ≤
pvolΩqn´1

ppn´ 1q!qm
Dmpn´1qyiptq.

From Jensen’s inequality, monotonicity and convexity of each gi pi“1, . . . , pq,
we have

gi

ˆ

|xiptq|

hiptq

˙

≤ gi

ˆ

yiptq

hiptq

˙

≤ gi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmpn´1qyiptq

hiptq

˙

“ gi

¨

˝

pvolpΩqqn´1

ppn´1q!qm
ş

Ωt
Dmhipsq

|Dmnxipsq|
Dmhipsq

ds
ş

Ωt
Dmhipsqds

˛

‚

≤ 1

hiptq

ż

Ωt

Dmhipsqgi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmnyipsq

Dmhipsq

˙

ds.

Define

Uipsq “ Dmhipsqgi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmnyipsq

Dmhipsq

˙

,

for t P Ω and i “ 1, . . . , p. Hence,
ż

Ω

„ p
ÿ

i“1

Dif

ˆ

h1ptqg1

ˆ

|x1ptq|

h1ptq

˙

, . . . , hpptqgp

ˆ

|xpptq|

hpptq

˙˙

(2.10)

ˆDmhiptqgi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmn|xiptq|

Dmhiptq

˙

dt
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≤
ż

Ω

„ p
ÿ

i“1

Dif

ˆ
ż

Ωt

Dmh1psqg1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmny1psq

Dmh1psq

˙

ds, . . . ,

ż

Ωt

Dmhppsqgp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmnyppsq

Dmhppsq

˙

ds

˙

ˆDmhiptqgi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmnyiptq

Dmhiptq

˙

dt

“

ż

Ω

„ p
ÿ

i“1

Dif

ˆ
ż

Ωt

U1psq ds, . . . ,

ż

Ωt

Uppsq ds

˙

Uiptq



dt

“ f

ˆ
ż

Ω
U1ptq dt, . . . ,

ż

Ω
Upptq dt

˙

“ f

ˆ
ż

Ω
Dmh1ptqg1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmny1ptq

Dmh1ptq

˙

dt, . . . ,

ż

Ω
Dmhpptqgp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmnypptq

Dmhpptq

˙

dt

˙

“ f

ˆ
ż

Ω
Dmh1ptqg1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnx1ptq|

Dmh1ptq

˙

dt, . . . ,

ż

Ω
Dmhpptqgp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnxpptq|

Dmhpptq

˙

dt

˙

.

Finally, by Jensen’s inequality, we obtain
ż

Ω

„ p
ÿ

i“1

Dif

ˆ

h1ptqg1

ˆ

|x1ptq|

h1ptq

˙

, . . . , hpptqgp

ˆ

|xpptq|

hpptq

˙˙

ˆDmhiptqgi

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
Dmn|xiptq|

Dmhiptq

˙

dt

≤ f

ˆ
ż

Ω
Dmh1ptqg1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnx1ptq|

Dmh1ptq

˙

dt, . . . ,

ż

Ω
Dmhpptqgp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnxpptq|

Dmhpptq

˙

dt

˙

“ f

ˆ

1

volpΩq

ż

Ω
volpΩqDmh1ptq g1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnx1ptq|

Dmh1ptq

˙

dt, . . . ,

1

volpΩq

ż

Ω
volpΩqDmhpptq gp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnxpptq|

Dmhpptq

˙

dt

˙

≤ 1

volpΩq

ż

Ω
f

ˆ

volpΩqDmh1ptq g1

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnx1ptq|

Dmh1ptq

˙

, . . . ,

volpΩqDmhpptq gp

ˆ

pvolpΩqqn´1

ppn´ 1q!qm
|Dmnxpptq|

Dmhpptq

˙˙

dt.
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Remark 2.6. Theorem 1.2 follows for p “ 1 and m “ 1. Also, the inequal-
ity p2.10q is an extension of the inequality given in [3, Theorem 1].
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