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EXTENSIONS

Abstract. This paper investigates the preservation of hopficity and co-hopficity
on passing to finite-index subsemigroups and extensions. It was already known that
hopficity is not preserved on passing to finite Rees index subsemigroups, even in the finitely
generated case. We give a stronger example to show that it is not preserved even in the
finitely presented case. It was also known that hopficity is not preserved in general on
passing to finite Rees index extensions, but that it is preserved in the finitely generated
case. We show that, in contrast, hopficity is not preserved on passing to finite Green index
extensions, even within the class of finitely presented semigroups. Turning to co-hopficity,
we prove that within the class of finitely generated semigroups, co-hopficity is preserved
on passing to finite Rees index extensions, but is not preserved on passing to finite Rees
index subsemigroups, even in the finitely presented case. Finally, by linking co-hopficity
for graphs to co-hopficity for semigroups, we show that without the hypothesis of finite
generation, co-hopficity is not preserved on passing to finite Rees index extensions.

1. Introduction

An algebraic or relational structure is hopfian if it is not isomorphic to
any proper quotient of itself, or, equivalently, if any surjective endomorphism
of the structure is an automorphism. An algebraic or relational structure
is co-hopfian if it is not isomorphic to any proper substructure of itself, or,
equivalently, if any injective endomorphism of the structure is an automor-
phism.

Hopficity was first introduced by Hopf, who asked if all finitely gen-
erated groups were hopfian [8]. The celebrated Baumslag—Solitar groups
{z,y | ™y = yz™) provide the easiest counterexample: <:E, y| 2%y = yx3> is
finitely generated, and indeed finitely presented, and non-hopfian; see |2,
Theorem 1]. Furthermore, <a:,y | 212y = yx18> is hopfian but contains a
non-hopfian subgroup of finite index |2, Theorem 2|. Hence, hopficity is
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Preserved on passing to finite index

Property Subgroups Extensions
Hopficity N [by f.p. case] ? Qu. 5.3
Hopficity & f.g. N [by f.p. case] Y [7, Co. 2]
Hopficity & f.p. N [2, Th. 2] Y [by f.g. result]
Co-hopficity ?7 Qu. 5.4 ?7 Qu. 54
Co-hopficity & f.g. 7 Qu. 5.4 ?7 Qu. 54
Co-hopficity & f.p. 7 Qu. 5.4 ?7 Qu. 5.4

Table 1. Summary, for groups, of the preservation of hopficity and co-hopficity on passing
to finite index subgroups and extensions. [Key: f.g. = finite generation; f.p. = finite
presentation; Y = property is preserved; N = property is not preserved in general; 7 =
open question. |

not preserved under passing to finite-index subgroups. On the other hand,
a finite extension of a finitely generated hopfian group is also hopfian |7,
Corollary 2|. There seems to have been no study of whether co-hopficity for
groups is preserved on passing to finite-index subgroups or extensions, and it
seems that the questions of the preservation of co-hopficity in each direction
are both open. Table 1 summarizes the state of knowledge about the preser-
vation of hopficity and co-hopficity on passing to finite-index subgroups and
extensions.

There are two useful notions of index for semigroups. For a semigroup S
with a subsemigroup T, the Rees index of T in S is |S—T|+1, and the Green
index of T in S is the number of T-relative H-classes in S — T. Rees index
is more established, and many finiteness properties, such as finite generation
and finite presentability, are known to be preserved on passing to or from
subsemigroups of finite Rees index; see the brief summary in [15, § 11| or the
comprehensive survey [5]. Green index is newer, but has the advantage that
finite Green index is a common generalization of finite Rees index and finite
group index, and some progress has been made in proving the preservation
of finiteness properties on passing to or from subsemigroups of finite Green
index; see [4, 6].

The second author and Ruskuc proved that a finite Rees index extension
of a finitely generated hopfian semigroup is itself hopfian [13, Theorem 3.1],
and gave an example to show that this no longer holds without the hypothesis
of finite generation [13, § 2]. They also gave an example showing that hopfic-
ity is not preserved on passing to finite Rees index subsemigroups, even in the
finitely generated case [13, § 5]. In this paper, we give an example showing
that it is not preserved even in the finitely presented case (Example 3.1). We
also give an example showing that, again even in the finitely presented case,
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a finite Green index extension of a hopfian semigroup need not be hopfian
(Example 3.2), showing that the result of the second author and Ruskuc does
not generalize to finite Green index.

Next we turn to co-hopficity. We prove that a finite Rees index extension
of a finitely generated co-hopfian semigroup is itself co-hopfian (Theorem
4.2), and construct an example showing that this does not hold without
the hypothesis of finite generation (Example 4.7). We also give an example
of a non-co-hopfian finite Rees index subsemigroup of a finitely presented
co-hopfian semigroup (Example 4.1).

Table 2 summarizes the state of knowledge for semigroups about the
preservation of hopficity and co-hopficity on passing to finite Rees and Green
index subsemigroups and extensions.

2. Preliminaries

2.1. Presentations and rewriting systems. The group presentation
with (group) generators A and defining relations R (which may involve in-
verses of elements of A) is denoted Gp(A | R). The semigroup presentation
with (semigroup) generators from A and defining relations R is denoted
Sg(A | R). For a semigroup S presented by Sg(A | R) and words u,v € A*,
write u = v to indicate that v and v are equal as words, and write u =g v
to indicate they represent the same element of S.

A string rewriting system, or simply a rewriting system, is a pair (A, R),
where A is a finite alphabet and R is a set of pairs (¢, ), often written £ — r,
known as rewriting rules, drawn from A* x A*. The single reduction relation
— is defined as follows: u — v (where u,v € A*) if there exists a rewriting
rule (¢,r) € R and words z,y € A* such that u = zly and v = zry. The
reduction relation —* is the reflexive and transitive closure of —. A word
w € A* is reducible if it contains a subword ¢ that forms the left-hand side
of a rewriting rule in R; it is otherwise called érreducible.

The string rewriting system (A, R) is Noetherian if there is no infinite
sequence uq, Uz, ... € A* such that u; — wu;41 for all i € N. The rewriting
system (A, R) is confluent if, for any words u, ', u” € A* with u —* «’ and
u —* u”, there exists a word v € A* such that ' —* v and v" —* v. A

rewriting system is complete if it is both confluent and Noetherian.

Let (A, R) be a complete rewriting system. Then for any word u € A*,
there is a unique irreducible word v € A* with u —* v [3, Theorem 1.1.12].
The irreducible words are said to be in normal form. The semigroup pre-
sented by Sg{A | R) may be identified with the set of normal form words
under the operation of ‘concatenation plus reduction to normal form’.
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2.2. Indices. Let S be a semigroup and let T" be a subsemigroup of S. The
Rees index of T in S is defined to be |S — T| + 1. If T is an ideal of S,
then the Rees index of T' in S is cardinality of the Rees factor semigroup
S/T = (S—-T)u {0}

To define the Green index of T in .S, we must first define the T-relative
Green’s relations on S. As usual, S' denotes the semigroup S with an
identity element adjoined. Extend this notation to subsets of S: that is,
X! = X U {1} for X € S. Define the T-relative Green’s relations R, LT,
and HT on the semigroup S by

Ry 2T =yTY,  a2LTyoeTla=TYy, HI =RT~LT.
Each of these relations is an equivalence relation on S. When T = S, they
coincide with the standard Green’s relations on S. Furthermore, these rela-
tions respect T, in the sense that each R7-, £T-, and HT-class lies either
wholly in 7" or wholly in S — T'. Following [6], define the Green index of T
in S to be one more than the number of #”-classes in S — 7. If S and T are
groups, then T has finite group index in S if and only if it has finite Green
index in S |6, Proposition 8§].

3. Hopficity

It is known that the hopficity is not preserved on passing to finite Rees
index subsemigroups, even for finitely generated semigroups [13, § 5|]. The
following example shows that within the class of finitely presented semi-
groups, and even within the class of semigroups presented by finite complete
rewriting systems, hopficity is not preserved on passing to finite Rees sub-
semigroups. This example has already appeared in the second author’s Ph.D.
thesis [12, Examples 5.6.1 & 5.6.2].

EXAMPLE 3.1. Let
(3.1) T = Sgla,b | abab*ab = b).
Notice that
abab® =7 abab®(abab*ab) = (abab®ab)ab*ab =7 babab.

It is easy to check that the rewriting system ({a,b}, {abab®ab — b, abab® —
bab%ab}) is confluent and Noetherian. Clearly, T is also presented by

Sgla,b | (abab’ab,b), (abab®, bab*ab)).
Define an endomorphism
¢o:T—>T; a— a, b — bab.

This endomorphism is well defined since the words on the two sides of the
defining relation in the presentation (3.1) for 7" are mapped by ¢ to the same



796 A. J. Cain, V. Maltcev

element of T
(abab*ab)p =1 a bab a (bab)? a bab
= abab abab’ab abab

— abab’ab ab

— bab
= bo.
Since a¢ = a and
(3.2) (ab®)¢ =1 a(bab)? =1 abab’ab — b,
the endomorphism ¢ is surjective. Furthermore, applying (3.2) shows that
(ab®a®b?)p =7 (ab® a ab®)¢ =7 bab =1 be.

But both ab?a?b? and b are irreducible and so ab®a®b? #7 b. Hence ¢ is not
bijective and so not an automorphism. This proves that 7" is not hopfian.
Let

S = Sgla,b, f | abab®ab = b, fa = ba,af = ab, fb=bf = f2 = b*).

Notice that S = T u {f} since all products of two or more generators (re-
gardless of whether they include generators f) must lie in 7. So T is a finite
Rees index subsemigroup of S. Notice further that since T' is presented by
a finite complete rewriting system, so is S [16, Theorem 1|.

Let ¢ : § — S be a surjective endomorphism. Since a and f are the only
indecomposable elements of S, we have {a, f}v = {a, f}. Let ¥ = ¢?; then
¥ is a surjective endomorphism of S with a¥ = a and fo = f.

If b9 = f then f =g b =g (abab’ab)y =5 afafaf =5 abab’ab =g b,
which is a contradiction. Hence by = w € T'. Then

ab =g af = (a9)(f9) =5 (af)V =s (ab)d = (a?)(bV) = aw.

Now, ab and aw lie in the subsemigroup 7" and so ab =7 aw. But T is
left-cancellative by Adjan’s theorem [1]; hence b =7 w and so b =g w. That
is, b} = w =g b. Since a®¥ = a and f} = f, the endomorphism ¢ must be
the identity mapping on .S and so bijective. Hence 1 is bijective and so an
automorphism. This proves that S is hopfian.

Therefore S is a hopfian semigroup, finitely presented by a complete
rewriting system, with a non-hopfian subsemigroup 7' of finite Rees index,
which is also finitely presented by a finite complete rewriting system.

We now give an example to show that a finite Green index extension of
a finitely generated (and, indeed, finitely presented) hopfian semigroup is
not necessarily hopfian, in contrast to the situation for finite Rees index [13,
Theorem 3.1].
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EXAMPLE 3.2. Let G and H be the groups presented by
G = Gpla,b,c | a"tba = b?, be = cb),
H =Gpld.,v,d | d Wd =20 =V,
Va7 Y T d Y T T T Y d T = 1).
These groups were defined by Neumann [14, p. 543-4|, except that he used
redundant generators b}, = a'b'a’~! and d' = b '¢"'b) ¢ to shorten the

presentation of H; we have removed the redundant generators to clarify the
reasoning that follows. Let

A:G— H; a\ =ad, bA =1V, ch = c;
uw:H— G; ap=a, V= a tba, du=c.
The map A is obviously a well-defined surjective homomorphism; Neumann
[14, p. 544| showed that p is also a well-defined surjective homomorphism,
and that neither A nor u is injective. That is, G and H are proper homo-
morphic images of each other under the surjective homomorphisms A and
p. [Neumann defined b’y = b?, but since a=1ba = b* by the defining rela-
tions of G, our modified definition is equivalent.| Furthermore, G and H are
non-isomorphic [14, Theorem on p. 544].
Let ¥ = Ao pu. Then 9 : G — G is a surjective endomorphism of G that
is not an isomorphism. Notice that

a¥ = a, b = a” 'ba, c¥ = c.
Let F be the free group with basis {x,y, z}. Define a homomorphism
¢: F — G, xo = a, yop = b, zp = c.

Partially order {F,G} by F' > G. Let S be the Clifford semigroup formed
from the groups F' and G with the order > and the homomorphism ¢. [See
[9, § 4.2] for the definition of Clifford semigroups.]

Clearly F' is a subsemigroup of S. Since the homomorphism ¢ is surjec-
tive, any element of G can be right-multiplied (in S) by an element of F'
to give any other element of G; thus all elements of G are related by RY.
Similarly, all elements of G are £F-related and so H' -related. Therefore G
is the unique H -class in S — F and so F has finite Green index in S.

Define an endomorphism

Y5 —5; Y =, yp =z lyz, 2 = z,
ay = a, b = a ba, c) = c.
It is easy to see that v is a homomorphism as a consequence of ¥|g =

¥ : G — G being a homomorphism. Since 9| = 9 is surjective, we have
G € im. Since {z,y, 2} = {x,r lyx, 2} generates F (as a group), we see
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that F' < im. So % is surjective. However, since 9|¢ = ¥ is not injective,
1) is not injective. Hence S is not hopfian.

Finally, note that the finitely generated free group F' is hopfian [11, Propo-
sition 1.3.5], and that S is finitely presented [10, Theorem 5.1|. Therefore,
F' is a finitely presented hopfian semigroup with a finitely presented non-
hopfian extension S of finite Green index.

4. Co-hopficity

The following example exhibits a finitely generated co-hopfian semigroup
S with a non-co-hopfian subsemigroup 7' of finite Rees index, showing that
co-hopficity is not preserved on passing to finite Rees index subsemigroups,
even in the finitely generated (and, indeed, finitely presented) case:

EXAMPLE 4.1. Let T be the free semigroup with basis . Then any map
x — ¥ extends to an injective endomorphism from T to itself; for k > 2
this endomorphism is not bijective and so not an automorphism. Thus T is
not co-hopfian.
Let
S =Sglx,y | y* = zy = yz = 27%).

Notice that S = T U {y} since all products of two or more generators must
lie in T. So T is a finite Rees index subsemigroup of S. It is easy to check
that the rewriting system ({z,y}, {y?> — 22, vy — 22, yz — 2%}) is confluent
and Noetherian. Identify S with the set of irreducible words with respect to
this rewriting system. The Cayley graph of S with respect to {z,y} is shown

in Figure 1.
v
N

1132 \_axg \_ax4 ZZZs

// Y Yy Y
Y
€T

Fig. 1. The Cayley graph of the semigroup S from Example 4.1 with respect to the
generating set {x,y}.

Let ¢ : S — S be an injective endomorphism. Suppose for reductio ad
absurdum that x¢ = 2¥ with k > 2. Then (y¢)? = (y*)¢ = (2%)¢ = 22,
and so y¢ = z¥ = x¢ since the unique square root of z2* in S is =¥, which
contradicts the injectivity of ¢. Hence either x¢p = x or x¢p = y. In the
former case, 2‘¢ = z¢ for all £ € N and so y¢ = y by the injectivity of ¢;
hence ¢ is surjective. In the latter case, ¢ = y* —* zf for all £ > 2 and so
y¢ = x by the injectivity of ¢; hence ¢ is surjective. In either case, ¢ is a
bijection and so an automorphism. Hence, S is co-hopfian.
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Therefore, S is a co-hopfian semigroup presented by a finite complete
rewriting system, with a non-co-hopfian subsemigroup 7" of finite Rees index,
which is also finitely presented by a finite complete rewriting system (since
it is free).

We have a positive result for passing to finite Rees index extensions in
the finitely generated case:

THEOREM 4.2. Let S be a semigroup and T a subsemigroup of S of finite
Rees index. Suppose T is finitely generated and co-hopfian. Then S is co-
hopfian.

Notice that, in Theorem 4.2, S is also finitely generated.

Proof. Let X be a finite generating set for T and let ¢ : S — S be an
injective endomorphism. Let ¢t € T. Consider the images t¢, t¢?, .... If
t¢t =t for i < j, then the injectivity of ¢ forces t¢?~* = ¢ and so t¢*—1 e
T for all £ € N. On the other hand, if the elements t¢, t¢?, ... are all
distinct, then since S — T is finite, t¢* € T for all sufficiently large ¢. In
either case, there exist some k;,m¢ € N such that t¢*™ e T for all £ > k.
Let £ = max{k; : t € X} and m = lem{m; : t € X}; both k and m exist
because X is finite. Then X¢*™ < T', and so T¢*™ < T since X generates 7.

Since ¢ : S — S is an injective endomorphism, so is ¢*™ : S — S. Hence
®*™|7 is an injective endomorphism from T to 7. Since T is co-hopfian,
®F™|p : T — T is a bijection. Therefore, ¢*™|g_r must be an injective map
from S — T to S — T, and hence a bijection since S — T is finite. Thus
¢*™ . S — S is a bijection, and hence so is ¢.

Therefore, any injective endomorphism from S to itself is bijective and
so an automorphism. Thus S is co-hopfian. =

We will shortly exhibit an example showing that Theorem 4.2 does not
hold without the hypothesis of finite generation. First, we need to define
a construction that builds a semigroup from a simple graph and establish
some of its properties.

DEFINITION 4.3. Let ' be a simple graph. Let V' be the set of vertices of
I'. Let Sp = V U {e,n,0}. Define a multiplication on Sr by

e if there is an edge between v; and vs in T,
V1V = for vi,v2 € V,

n if there is no edge between vy and v9 in T,
ve =ev=uvn=nv =0, forveV,
en =ne =e?> =n? =0,
Ox =20 =0, for x € Sr.
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Notice that all products of two elements of Sr lie in {e,n,0} and all products
of three elements are equal to 0. Thus this multiplication is associative and
Sr is a semigroup.

We emphasize that Definition 4.3 only applies to simple graphs.

LEMMA 4.4. Let I' be a graph and let A be an induced subgraph of I'. Then
the vertex set of A is cofinite in the vertex set of I' if and only if SA is a
finite Rees index subsemigroup of Sr.

Proof. Suppose I' has the vertex set V and A has the vertex set W. The
result is immediate from the fact that Sp — Sa = (V u {e,n,0}) — (W u
{e,n,0}) =V —W.n

The following two lemmata relate the co-hopficity of a graph I' and the
semigroup Sr. A homomorphism of graphs ¢ : I' — I' is a mapping from
the vertex set of I' to the vertex set of IV that preserves edges: that is, for
all vertices v; and vy of I, if (v1,v2) is an edge of I', then (vi¢,v2¢) is an
edge of IV. Note, however, that the converse is not required to hold: it is
possible that (v1,v2) is not an edge of T, but (v1¢, v2¢) is an edge of I”. As
with other types of relational or algebraic structure, a graph is co-hopfian if
every injective endomorphism is an automorphism.

LEMMA 4.5. If the graph I is co-hopfian, the semigroup St is co-hopfian.

Proof. Let V be the vertex set of I and let X = {e, n,0}, so that Sp = VU X.

Suppose I' is co-hopfian; the aim is to show that Sr is co-hopfian. Let
¢ : St — ST be an injective endomorphism. Since X is the unique three-
element null subsemigroup of St, we have X¢ = X and so V¢ € V since
¢ is injective. Furthermore, 0¢ = €?¢ = (e¢)? = 0. Let v € V; note that
vp € Vo < V. Since I' is simple, there are no loops at v or v¢, and so we
have v? = n and (v¢)? = n. Hence ng = v?¢ = (v¢)? = n. Therefore, since
X¢ = X, it follows that ep = e. Let v1,v2 € V. Then

there is an edge between v; and v in I’
= vivg=e
= (v112)p = ed
= (v19)(v29) =€
<= there is an edge between v1¢ and ve¢ in T.

Hence ¢|y : V — V is an injective endomorphism of I". Since I is co-hopfian,
¢|v is a bijection. Since ¢|x is a bijection, it follows that ¢ : Sp — Sr is a
bijection. This proves that St is co-hopfian. m

LEMMA 4.6. IfT" is a tree and the semigroup St is co-hopfian, the graph T’
is co-hopfian.
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Proof. Let V be the vertex set of I and let X = {e, n, 0}, so that Sp = VU X.

Let I' be a tree and suppose that Sp is co-hopfian; the aim is to show
that I' is co-hopfian. Let ¢ : I' — I' be an injective endomorphism. Extend ¢
to a map qg : Sr — St by defining ngZA) =n, qu = e, and OgZA) = (. Notice that
qg is injective since ¢ is injective. We now have to check the homomorphism
condition for é in various cases. Let vi,vo € V. Then either vivs = € or
v1ve = n; we consider these cases separately:

e If v1v9 = e, then there is an edge between v; and vy in I', and so, since
¢ is an endomorphism of I, there is an edge between v1¢ and vo¢ in T,
and thus (v1¢)(v2¢) = e. Therefore vivy = e implies (v1v2)d = ed = e =
(v10)(v20) = (116) (v2).

e If vyuo = n, then there is no edge between vy and wve. Since I' is a tree
and thus connected, there is a path 7 = (v = x1,29,...,2, = v2) from
v1 to we. Since there is no edge between vy and wvo, we have n > 3.
Since ¢ is an injective endomorphism of I', there is a path 7¢ = (v1¢ =
T10, X230, . .., Tpnd = v2¢) from v1¢ to ve@. In particular, injectivity means
that v1¢ and vo¢ are not among the intermediate vertices x2¢, ..., xp—1¢.
Now, if there were an edge between v1¢ and vy¢, then this edge and the
path w¢ would form a non-trivial cycle, contradicting the fact that I' is a
tree. Hence there is no edge between vi¢ and ve¢p. Therefore vivy = n

implies (v102)6 = nd — n — (116)(v20) = (116)(129).
Since any product where at least one of the element is not from V is equal
to 0, it is easy to see that the endomorphism condition holds in these cases.
Hence ¢ : Sp — Sr is an injective endomorphism. Since St is co-hopfian, ¢ is
a bijection, and so ¢ = ¢|y is a bijection. This proves that I" is co-hopfian. =
We can now present the example showing that Theorem 4.2 no longer
holds without the hypothesis of finite generation:

EXAMPLE 4.7. Define a graph I' as follows. The vertex set is
V=A{z;,yi:ieZ}u{z:jeN}
and there are edges between x; and y; for all 7 € Z, between y; and z; for
all j € N, and between x; and x;41 for all i € Z. The graph I' is as shown in
Figure 2. Let A be the subgraph induced by W =V — {yo}; the graph A is
as shown in Figure 3. Note that I' and A are trees and in particular simple.
Define a map
¢V -V Ti — Tit1, for all i € Z,
Yi = Yi+1, for all i € Z,

Zi > Zit1, for all ¢ € N.
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Z21 z2 z3

Y-3 Y-2 Y-1 Yo 1 Y2 Y3

- T3 — 22— T ] — Lo — Tl — T2 — X3 ---

Fig. 2. The graph I' from Example 4.7.

Z1 Z9 z3

I

Y-3 Y-2 Y-1 Y1 Y2 Y3
Tr_3 Tr_9 r—1 — X9 il ) r3 ---

Fig. 3. The cofinite subgraph A of the graph I' from Example 4.7.

It is easy to see that ¢ is an injective endomorphism of I'. However, ¢ is not
a bijection since z1 ¢ im ¢. Thus, the graph I' is not co-hopfian.

Suppose ¢ : W — W is an injective endomorphism of A. Clearly,
must preserve adjacency in A. So the bi-infinite path through the vertices
x; must be mapped into itself. The preservation of adjacency requires that
this path is mapped onto itself. All vertices on this path have degree 3
except xg. Hence xgip = xg. The preservation of adjacency requires that
either z;» = x_; or x;30 = x; for all i € Z. The former case is impossible
since it would force y;1 = y_; for all i € Z, but y; has degree 2 and y_1 has
degree 1. Hence, the latter case holds, which forces y;1) = y; for all i € Z,
and then z;19 = z; for all j € N. Hence 1 is the identity map and so bijective.
Thus the subgraph A is co-hopfian.

By Lemma 4.4, Sa is a finite Rees index subsemigroup of Sr. By Lemma
4.5, Sa is co-hopfian. By Lemma 4.6, St is not co-hopfian.

5. Open questions
For semigroups, the main open problem in this area seem to be whether
Theorem 4.2 generalizes to finite Green index extensions:

QUESTION 5.1. Let S be a semigroup and T a subsemigroup of finite
Green index. Suppose T is finitely generated (or even finitely presented), so
that S is finitely generated [4, Theorem 4.3]. If T is co-hopfian, must S be
co-hopfian?

Notice that because finite Green index generalizes finite group index, this
question subsumes the corresponding question for group extensions.

Since relative finiteness and finite presentability are not preserved on
passing to finite Green index extensions unless the relative Schiitzenberger
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groups of the relative H-classes in the complement have the relevant property
(see |6, Theorem 20| and |4, Example 6.5]), it is natural to ask the following
question:

QUESTION 5.2. Let S be a semigroup and T a subsemigroup of finite
Green index. Suppose T is finitely generated, so that S is finitely generated
[4, Theorem 4.3] and the T-relative Schiitzenberger groups of the H”-classes
in S — T are finitely generated [4, Theorem 5.1]. If T' is hopfian, and the
T-relative Schiitzenberger groups of the H'-classes in S — T are hopfian,
must S be hopfian?

If the answer to Question 5.1 is ‘no’, then the question from the previous
paragraph should be asked for co-hopficity: if T is co-hopfian, and the T-
relative Schiitzenberger groups of the H!-classes in S — T are co-hopfian,
must S be co-hopfian?

For groups, the following question still seems to be open:

QUESTION 5.3. Is hopficity for groups preserved under passing to finite in-
dex extensions? (That is, does Hirshon’s result |7, Corollary 2| hold without
the hypothesis of finite generation?)

Finally, none of the relevant questions on co-hopficity for groups have
been studied:

QUESTION 5.4. Is co-hopficity for groups preserved under passing to finite
index subgroups and extensions? What about within the classes of finitely
generated or finitely presented groups?

Acknowledgements

The first author’s research was funded by the European Regional Devel-
opment Fund through the programme COMPETE and by the Portuguese
Government through the FCT (Fundagao para a Ciéncia e a Tecnologia) un-
der the project PEsT-C/MAT/UI0144/2011 and through an FCT Ciéncia
2008 fellowship. Some of the work described in this paper, was carried out
while the first author was visiting Sultan Qaboos University and the authors
thank the University for its support.

The authors thank the anonymous referee for pointing out an error in
one proof and for valuable comments and suggestions.

References

[1] S. 1. Adjan, Defining relations and algorithmic problems for groups and semigroups,
Trudy Mat. Inst. Steklov. 85 (1966), 123.

[2] G. Baumslag, D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull.
Amer. Math. Soc. 68 (1962), 199-201. doi:10.1090/S0002-9904-1962-10745-9


http://dx.doi.org/10.1090/S0002-9904-1962-10745-9

804

3]
(4]

(5]
(6]
(7]
(8]
9]

[10]
11]
12]
113]
[14]
115]

[16]

A.J.

A. J. Cain, V. Maltcev

R. V. Book, F. Otto, String-Rewriting Systems, Texts and Monographs in Computer
Science, Springer-Verlag, New York, 1993.

A. J. Cain, R. Gray, N. Ruskuc, Green index in semigroup theory: generators,
presentations, and automatic structures, Semigroup Forum 85(3) (2012), 448-476.
d0i:10.1007/s00233-012-9406-2

A. J. Cain, V. Maltcev, For a few elements more: A survey of finite Rees index.
arXiv:1307.8259

R. Gray, N. Ruskuc, Green index and finiteness conditions for semigroups, J. Algebra
320(8) (2008), 3145-3164. doi:10.1016/j.jalgebra.2008.07.008

R. Hirshon, Some theorems on hopficity, Trans. Amer. Math. Soc. 141 (1969), 229-244.
doi:S0002-9947-1969-0258939-3

H. Hopf, Beitrige zur klassifizierung der flachenabbildungen, J. Reine. Angew. Math.
165 (1931), 225-236. doi:10.1515/crll.1931.165.225

J. M. Howie, Fundamentals of Semigroup Theory, volume 12 of London Mathematical
Society Monographs (New Series), Clarendon Press, Oxford University Press, New
York, 1995.

J. M. Howie, N. Ruskuc, Constructions and presentations for monoids, Comm.
Algebra 22(15) (1994), 6209-6224. doi:10.1080/00927879408825184

R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Volume 89 of Ergebnisse
der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1977.

V. Maltcev, Topics in Combinatorial Semigroup Theory, Ph.D. Thesis, University of
St Andrews, 2012. URL: hdl.handle.net/10023/3226

V. Maltcev, N. Ruskuc, On hopfian cofinite subsemigroups, 2012. Submitted.
arXiv:1307.6929

B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans.
Roy. Soc. London Ser. A 246 (1954), 503-554. URL:www. jstor.org/stable/91573
N. Ruskuc, On large subsemigroups and finiteness conditions of semigroups, Proc.
London Math. Soc. (3) 76(2) (1998), 383-405. doi:10.1112/50024611598000124

J. Wang, Finite complete rewriting systems and finite derivation type for small
extensions of monoids, J. Algebra 204(2) (1998), 493-503. doi:10.1006/jabr.1997.
7388

Cain

CENTRO DE MATEMATICA
FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO
RUA DO CAMPO ALEGRE 687
4169-007 PORTO, PORTUGAL
E-mail: ajcain@fc.up.pt

V. Maltcev

MATHEMATICS DEPARTMENT

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
HAIFA 32000, ISRAEL

E-mail: victor.maltcev@gmail.com

Received June 3, 2013; revised version January 7, 2014.

Communicated by A. Romanowska.


http://dx.doi.org/10.1007/s00233-012-9406-2
http://arxiv.org/abs/1307.8259
http://dx.doi.org/10.1016/j.jalgebra.2008.07.008
http://dx.doi.org/10.1090/S0002-9947-1969-0258939-3
http://dx.doi.org/10.1515/crll.1931.165.225
http://dx.doi.org/10.1080/00927879408825184
hdl.handle.net/10023/3226
http://arxiv.org/abs/1307.6929
http://www.jstor.org/stable/91573
http://dx.doi.org/10.1112/S0024611598000124
http://dx.doi.org/10.1006/jabr.1997.7388
http://dx.doi.org/10.1006/jabr.1997.7388

