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SOLUTIONS TO THE QUASISTATIC PROBLEM FROM
THE THEORY OF INELASTIC DEFORMATIONS WITH

LINEAR GROWTH CONDITION

Abstract. This paper refers to standard models in the theory of inelastic deformations.
We assume that non-linear inelastic constitutive function is of monotone type, that the
growth condition holds and that the model is quasistatic. Initial, generic problem is
transformed into an evolution equation in a maximal monotone field. Then we find
solutions with very low regularity requirements of the forces acting on a body.

1. Problem formulation
Suppose we have a body represented by U Ă Rn, made of a solid material,

and some forces act on the body. For any point at any time, the material
is of the same density ρ ą 0. Let upt, xq denote the displacement of the
point x P U of the body at the time t ≥ 0. We focus on the symmetric
part of the gradient of u: ε “ εpuq “ 1

2p∇u ` p∇uq
T q, which is called the

linear strain tensor in the case of the small deformations. Moreover εp is a
plastic strain tensor which is also symmetric. We assume the the body is
made of a viscoplastic material. It implies that a deformation of the body
is decomposed to an elastic part and an inelastic part i.e. εp. The inelastic
part is controlled by the following constitutive equation:

εpt “Mpεpuq, εpq,

whereM is the non-linear operator with the domainDom M Ă RnˆnˆRnˆn.
The functionM is called the constitutive function or the inelastic constitutive
function. The value of the function M is a parameter of a given material
and it is established through engineering experiments. For details on the
constitutive functions and models in the theory of inelastic deformations we
refer to [1].
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We define T pt, xq, stress tensor, using the elastic constitutive equation:

T “ Dpεpuq ´ εpq,

where D is a linear operator with constant coefficients, D is symmetric and
positive definite.

The law of conservation of momentum holds:

ρ utt “ div T ` f,

where f represents the exterior forces acting on the body.
Coupling it together with the initial and boundary conditions, we obtain

the initial model:
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ρ utt “ div T ` f,

T “ Dpεpuq ´ εpq,
εpt “Mpεpuq, εpq,

u|BU “ 0,

up0, xq “ up1qpxq,

utp0, xq “ up2qpxq,

εpp0, xq “ εpp0qpxq,

where up1q, up2q, εpp0q are the given initial data.
In engineering applications, the dimension n “ 1, 2, 3 are considered,

where the notions used in the above model have physical meaning. The
methods used in this paper do not require such assumption, hence we assume
just n ≥ 1.

We consider this as a quasistatic problem i.e. we assume that ρutt is
very small and can be neglected. Consequently, the law of conservation of
momentum is replaced by the balance of forces (the sign is ignored):

div T “ f.

We assume that D is an identity. By combining the balance of forces with
the elastic constitutive equation, we get the simple elliptic equation:

divpεpuq ´ εpq “ f.

We consider the model to be of the monotone type. We say that model is
of the monotone type if the inelastic constitutive function M is a maximal
monotone operator and depends only on the stress tensor T . For details on
the monotone type of models, we refer to [1].
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Having the above assumptions, we can state the main problem:

pMP q
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divpεpuqpt, xq ´ εppt, xqq “ fpt, xq,

εpt pt, xq “Mpεpuqpt, xq ´ εppt, xqq,

upt, xq “ 0 if x P BU,

εppx, 0q “ εpp0qpxq,

U Ă Rn is the open bounded set with smooth boundary,
M : Rnˆn Ñ Rnˆn is a maximal monotone vector field, additionally we

assume that Mp0q “ 0,
εpp0q : U Ñ Rnˆn is the given initial value,
p0, T q is the time interval, T is given,
f : p0, T q ˆ U Ñ Rn is given,
u : p0, T q ˆ U Ñ Rn and εp : p0, T q ˆ U Ñ Rnˆn are unknown.
Although the resulting model is quite simplified, its behaviour and con-

tained problems are very similar to the initial model. Understanding the
problems in the resulting model, helps to understand the problems in the
initial model. Methods presented in this paper can be used to find solutions
to similar models in the theory of inelastic deformations.

We need a growth condition also known as the sublinear growth condition.

Definition. M fulfils a growth condition if there exists a constant C such
that for all x P Rn, |Mpxq| ≤ Cp1` |x|q holds.

The aim is to prove the following theorem.

Theorem 1. Assume M satisfies the growth condition i.e. there exists the
constant C ą 0 such that

|Mpxq| ≤ Cp1` |x|q
holds for every x P Rn. Then for any

f P L2p0, T ;L2pUqq, εpp0q P L2pUq

there exists the unique solution to the problem (MP) such that

εp P H1p0, T ;L2pUqq, u P L2p0, T ;H1
0 pUqq.

Remark. We do not need the initial value of u. It could be derived from
εpp0q and f if the function f would have better regularity with respect to
time.

The growth condition seems to be quite strong assumption. In the litera-
ture, it is common to consider weaker conditions. In [5] and [6], a polynomial
growth condition was used. [8] assumes the gradient structure of the inelastic
constitutive function. In [7] and [9], the constitutive function satisfies a
coercive condition is controlled by some N -function and the solutions are
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found using Orlicz spaces. Methods used in this paper differ from those
presented in the above works and are comparable to the manners presented
in [2], where classical Yosida approximation is used. Weaker assumptions
for the constitutive function cause more assumptions on data. Usually, a
higher regularity is assumed with respect to time. The problem becomes
even simpler if data functions, representing external forces and boundary
conditions, (some or all) are equal to zero. This approach was presented
in [6] and [7]. [8] and [9] introduce the save load condition as a way to
control troublesome time-dependent data functions. Even though we do
assume homogeneous boundary values, similar results are expected in the
non-homogeneous cases.

Thanks to the growth condition, many problems considered in the works
mentioned above do not apply here. In addition, we can operate easily in
L2 Hilbert space and we do not assume existence of time derivatives of data
functions of any order, as it is assumed in [5], [8] and [9] or as in [6] and [7],
where static process is considered. This way, the process of solving the model
can take a form of a functional operator acting on the proper spaces, as shown
in Theorem 3. This operator is not only continuous, but Theorem 3 states
that the growth condition property of the inelastic constitutive function is
carried over and dependency of the solutions on the data functions has also
the growth condition property.

2. Solution to abstract problem
The Theorem 1 is not proved directly. Instead, we solve a derived problem

and show how to obtain solutions to the problem (MP) having solutions to
the derived problem.

The equations above are transformed into a more useful differential
equation in a Hilbert space. This points out the functional structure of the
problem.

Let ¨ denote the scalar product in L2pUq throughout this work. More-
over, let }_} denote the norm in L2pUq and }_}LppLqq denote the norm in
Lpp0, T ;LqpUqq.

Let us consider εpptq “ εppt,_q P L2pUq and uptq “ upt,_q P H1
0 pUq

spaces. We use εp and u instead of εpptq and uptq unless it is needed.
Let us define the subspace L0:

L2pUq Ą L0 “ tεpvq : P H
1
0 pUqu.

We can see that L0 is closed in the norm topology of L2pUq.
Now we can state that εp “ z0`z1, where z0 P L0 and z1 P LK0 . Obviously

there exists z P H1
0 pUq such that z0 “ εpzq.
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Considering the equation divpεpuq ´ εpq “ 0, we have for all v P H1
0 pUq:

0 “ εpvq ¨ pεpuq ´ εpq “ εpvq ¨ pεpuq ´ εpzq ´ z1q “ εpvq ¨ εpu´ zq.

Then u “ z since εpvq ¨ εpu´ zq “ 0 for v “ u´ z gives εpu´ zq ¨ εpu´ zq “ 0,
what implies εpuq “ εpzq, and the assumption u|BU “ z|BU “ 0 holds.
Therefore

εpuq ´ εp “ εpzq ´ z0 ´ z1 “ z0 ´ z0 ´ z1 “ ´z1 “ ´πLK
0
εp,

where π is the usual orthogonal projection onto a linear subspace in a Hilbert
space.

In the general case divpεpuq´εpq “ f we proceed as follows. The operator
div εpuq is an elliptic operator. Let u P H1

0 pUq be a solution to div εpuq “ f ,
then:

divpεpuq ´ εpq “ f “ div εpuq,

divpεpu´ uq ´ εpq “ 0.

It follows that z “ u´ u P H1
0 pUq and u “ z ` u.

We introduce two denominations:

1. Let us define w : r0, T s Ñ L2pUq and g : r0, T s Ñ L2pUq as wptq “
´πLK

0
εpptq P LK0 and gptq “ εpuqptq P L0, respectively. Then the expression

εpuq ´ εp takes the following form:

εpuq ´ εp “ εpzq ` εpuq ´ z0 ´ z1 “ ´z1 ` εpuq “ w ` g.

2. Let us define A : L2pUq Ñ L2pUq, where DomA Ă L2pUq provided by
Apvqpxq “Mpvpxqq for all x P Rn. A is simply the pointwise operator M
raised to the L2pUq level.

Remark. If the growth condition holds for M then it also holds for the
operator A:

}Apvq} “

d

ż

U
|Mpvpxqq|2dx ≤

d

ż

U
C2p1` |vpxq|q2dx

≤ C

d

ż

U
12dx` C

d

ż

U
|vpxq|2dx “ Cp

a

|U | ` }v}q.

Remark. It is important that if the growth condition holds then DomA “
L2pUq.

The operator A is obviously monotone and from the above Remark it
follows that the operator A is a maximal monotone operator.
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Now we can transform the main problem as follows:

εpt “Mpεpuq ´ εpq,

´πLK
0
εpt “ ´πLK

0
Mpεpuq ´ εpq,

wt “ ´πLK
0
Apw ` gq.

With εpp0q we can calculate the initial value w0 “ wp0q.
Thus our final problem takes the form:

pFP q

#

wt “ ´πLK
0
Apw ` gq,

wp0q “ w0.

We are going to solve the problem in the form stated above.
Before proceeding, let us present the following lemma. It is required to

provide the approximation step in the Yosida approximation. Lemma is
stated in an arbitrary Hilbert space.

Lemma. Let H be a Hilbert space with the norm }_}H , B : H Ñ H a
Lipschitzean operator with constant γ, such that Bp0q “ 0, r0, T s be the given
time interval, x0 P H be the initial point, h P L2p0, T ;Hq be the perturbation.
Then there exists x P H1p0, T ;Hq X L8p0, T ;Hq satisfying:

#

xtptq “ Bpxptq ` hptqq,

xp0q “ x0.

This lemma is a result from classical theory of differential equations.
Proofs of similar results can be found in [10].

Now we start to analyse the solvability of the problem (FP).

Theorem 2. Assume g P L2p0, T ;L0q, w0 P L
K
0 and a maximal monotone

operator A : DomAÑ L2 fulfilling the growth condition i.e. there exists the
constant C ą 0 such that

}A} ≤ C ` C}v}
holds for every v P L2pUq. Then there exists the unique solution

w P H1p0, T ;LK0 q X L
8p0, T ;LK0 q

to the problem:
#

wtptq “ ´πLK
0
Apwptq ` gptqq,

wp0q “ w0.

Proof. a) We prove that w0 ÞÑ wp_q is a contraction.
Let w1 and w2 be solutions to the problem with initial values w1

0 and w2
0,

respectively. It is enough to calculate:
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1

2

d

dt
}w1 ´ w2}2 “ pw1 ´ w2q ¨ pw1

t ´ w
2
t q

“ ´pw1 ` g ´ w2 ´ gq ¨ πLK
0
pApw1 ` gq ´Apw2 ` gqq

“ ´pw1 ` g ´ w2 ´ gq ¨ pApw1 ` gq ´Apw2 ` gqq

≤ 0.

Therefore:
}w1 ´ w2} ≤ }w1

0 ´ w
2
0}

and
}w1 ´ w2}L8pL2q ≤ }w1

0 ´ w
2
0}

implies the uniqueness.
b) We prove that the solution is consisted in the desired spaces: w and

wt are bounded and the bound depends only on g, w0 and the constant C
from the growth condition.

d

dt
}w} “

d

dt

a

}w}2 “
1

2

d
dt}w}

2

a

}w}2
“
w ¨ wt
}w}

≤ }w} ¨ }wt}
}w}

≤ }πLK
0
Apw ` gq} ≤ }Apw ` gq} ≤ Cp1` }w} ` }g}q.

Thus

}w} ≤ }w0}e
Ct ` eCt ` eCt

ż t

0
}g} ≤ }w0}e

CT ` eCT ` eCT }g}L1pL2q

and w P L8p0, T ;L2pUqq. The calculation below shows that wt is bounded
in L2p0, T ;L2pUqq since w is bounded:

}wt} ≤ }Apw ` gq} ≤ Cp1` }w}L8pL2q ` }g}q.

c) We prove that there exist solutions wλ to approximated problem.
We denote Aλ the Yosida approximation of A and we consider the ap-

proximated problem:
#

wλt “ ´πLK
0
Aλpw

λ ` gq,

wλp0q “ w0.

An operator LK0 Q v ÞÑ ´πLK
0
Aλpvq is Lipschitzean with the constant 1

λ

since Aλ is a Lipschitzean operator with the constant 1
λ . There exists the

unique solution wλ to the approximated problem according to the lemma
presented above.

We have w0 P L
K
0 , wλt P LK0 and

wλptq “ w0 `

t
ż

0

wλt pτq dτ,

thus wλ P LK0 .
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d) We show that wλ is a Cauchy sequence. According to the growth
condition, all solutions wλ are uniformly bounded in L8p0, T ;L2pUqq:

d

dt
}wλ} “

d

dt

b

}wλ}2 “
1

2

d
dt}w

λ}2

a

}wλ}2

“
wλ ¨ wλt
}wλ}

≤ }w
λ} ¨ }wλt }

}wλ}
≤ }Aλpwλ ` gq}

≤ }Apwλ ` gq} ≤ Cp1` }wλ} ` }g}q,
as seen above }wλ} ≤ }w0}e

CT ` eCT ` eCT }g}L1pL2q and so wλ is bounded
in L8p0, T ;L2pUqq and the bound does not depend on λ. An inequality
}Aλpw

λ ` gq} ≤ }Apwλ ` gq} comes from the Yosida theorem.
The functions wλt are uniformly bounded in L2p0, T ;L2pUqq since g P

L2p0, T ;L2pUqq and wλ are uniformly bounded:

}wλt } “ } ´ πLK
0
Aλpw ` gq} ≤ Cp1` }wλ} ` }g}q.

In the same way, we show the following estimate:

}Aλpw
λ ` gq} ≤ Cp1` }wλ} ` }g}q,

which yields that Aλpwλ ` gq are uniformly bounded in L2p0, T ;L2pUqq and
the bound does not depend on λ.

With properties of the Yosida approximations, the convergence of wλ in
L8p0, T ;L2pUqq is achieved by the calculation:

1

2
}wλ ´ wµ}2

“

ż t

0

1

2

d

dt
}wλ ´ wµ}2dτ

“

ż t

0
pwλ ´ wµq ¨ pwλt ´ w

µ
t qdτ

“ ´

ż t

0
pwλ ´ wµq ¨ πLK

0
pAλpw

λ ` gq ´Aµpw
µ ` gqqdτ

“ ´

ż t

0
pwλ ´ wµq ¨ pAλpw

λ ` gq ´Aµpw
µ ` gqqdτ

“ ´

ż t

0
pwλ ` g ´ wµ ´ gq ¨ pAλpw

λ ` gq ´Aµpw
µ ` gqqdτ

“ ´

ż t

0
pλAλpw

λ ` gq ´ µAµpw
µ ` gqq ¨ pAλpw

λ ` gq ´Aµpw
µ ` gqqdτ

´

ż t

0
pJλpw

λ ` gq ´ Jµpw
µ ` gqq ¨ pAλpw

λ ` gq ´Aµpw
µ ` gqqdτ
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≤ ´
ż t

0
pλAλpw

λ ` gq ´ µAµpw
µ ` gqq ¨ pAλpw

λ ` gq ´Aµpw
µ ` gqqdτ

“

ż t

0
λAλpw

λ ` gq ¨Aµpw
µ ` gqq ` µAµpw

µ ` gqq ¨Aλpw
λ ` gq

´ λ}Aλpw
λ ` gq}2 ´ µ}Aµpw

µ ` gq}2dτ

≤
ż t

0
λ}Aλpw

λ ` gq}2 `
λ

4
}Aµpw

µ ` gqq}2 ` µ}Aµpw
µ ` gqq}2

`
µ

4
}Aλpw

λ ` gq}2 ´ λ}Aλpw
λ ` gq}2 ´ µ}Aµpw

µ ` gq}2dτ

≤ 1

4

ż t

0
λ}Aµpw

µ ` gq}2 ` µ}Aλpw
λ ` gq}2dτ

≤ 1

4
pµ}Aλpw

λ ` gq}2L2pL2q ` λ}Aµpw
µ ` gq}2L2pL2qq.

This yields the convergence in L8p0, T ;L2pUqq since }Aλpwλ ` gq}L2pL2q are
uniformly bounded. Let w “ limwλ with λÑ 0`.

For the next step, we need to show also that:

Jλpw
λ ` gq ÑL2pL2q w ` g.

The above convergence follows by:

}wλ ` g ´ Jλpw
λ ` gq} “ λ}Aλpw

λ ` gq}.

e) Finally, we prove that w is the solution. Since wλt and Aλpwλ ` gq are
bounded in L2p0, T ;L2pUqq then there exists a sequence λn such that:

wλn ÑL2pL2q w, w
λn
t áL2pL2q wt, Aλnpw

λn ` gq áL2pL2q u.

Therefore, we have wt “ ´πLK
0
u.

Let A be the operator on L2p0, T ;L2pUqq defined as:

Apvqptq “ Apvptqq.

A is a maximal monotone operator as proved in [2]. Moreover, we have:

Aλpvqptq “ Aλpvptqq, Jλpvqptq “ Jλpvptqq,

where Aλ, Aλ, Jλ, Jλ are respectively the Yosida approximations and resol-
vents of A and A.

Since Jλpwλ ` gq ÑL2pL2q w ` g and ApJλnpwλn ` gqq Q Aλnpwλn ` gq
then pw ` g, uq P GraphA. Hence wt “ ´πLK

0
Apw ` gq.

As stated in Theorem 2, to a given data g we can assign the solution w.
We treat this assignment as the solving operator. The next theorem says
that properties of the operator A are carried over onto this solving operator.
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Theorem 3. The solving operator, which assigns a solution

w P L8p0, T ;L2pUqq

to a given data
g P L2p0, T ;L2pUqq,

is the continuous operator L2p0, T ;L2pUqq Ñ L8p0, T ;L2pUqq satisfying the
growth condition i.e. there exists the constant C ą 0 that

}w}L8pL2q ≤ C ` C}g}L2pL2q.

Proof. Firstly, we prove that the growth condition holds:
1

2

d

dt
}w}2 “ w ¨ wt “ ´πLK

0
Apw ` gq ¨ w ≤ Cp1` }w} ` }g}q ¨ }w}

≤ C}w} ` C}w}2 ` C

2
}w}2 `

C

2
}g}2

≤ C ` C}w}2 ` C}w}2 ` C

2
}w}2 `

C

2
}g}2.

Hence, using the Gronwall inequality:

}w}2 ≤ e5CT }w0}
2 ` e5CT

2

5
` Ce5CT }g}2L2pL2q.

Thus the growth condition holds.
Now we show continuity of the solving operator. Let w1, w2 be solutions

for given g1, g2.

1

2

d

dt
}w1 ´ w2}2 “ pw1 ´ w2q ¨ pw1

t ´ w
2
t q

≤ ´πLK
0
pApw1 ` g1q ´Apw2 ` g2qq ¨ pw1 ´ w2q

“ ´pApw1 ` g1q ´Apw2 ` g2qq ¨ pw1 ´ w2q

“ ´pApw1 ` g1q ´Apw2 ` g2qq ¨ pw1 ` g1 ´ w2 ´ g2 ´ g1 ` g2q

≤ pApw1 ` g1q ´Apw2 ` g2qq ¨ pg1 ´ g2q.

1

2
}w1 ´ w2}2 ≤

ż

pApw1 ` g1q ´Apw2 ` g2qq ¨ pg1 ´ g2qdt.

Let gn Ñ g converges in L2p0, T ;L2pUqq and wn, w be associated solutions.
Thus gn, g are bounded in L2p0, T ;L2pUqq and wn ` gn, w ` g are bounded
in L2p0, T ;L2pUqq provided by the just proved growth condition property.
Apwn ` gnq, Apw ` gq are also bounded in L2p0, T ;L2pUqq since A satisfies
the growth condition. Finally:

1

2
}wn ´ w}2 “

ż

pApwn ` gnq ´Apw ` gqq ¨ pgn ´ gqdtÑ 0.

This completes the proof of continuity.
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3. Solution to the main problem

Proof of Theorem 1. To find solutions εp and u to the problem (MP),
firstly we transform it to the problem (FP). We recall that f P L2p0, T ;L2pUqq
if and only if g P L2p0, T ;L2pUqq. The solution w to the problem (FP) is
provided by Theorem 2. Having w, we can obtain εp and u. For εp holds:

εpuq ´ εp “ w ` g,

εpt “Mpεpuq ´ εpq “ Apw ` gq.

Applying the growth condition, we have εpt P L2p0, T ;L2pUqq. Integrating εpt
with respect to time and the initial value εpp0q implies εp P H1p0, T ;L2pUqq
and the value εpp0q is well defined.

For u holds:

divpεpuq ´ εpq “ f,

u|BU “ 0,

what implies that u is unique and u P L2p0, T ;H1
0 pUqq since

f P L2p0, T ;L2pUqq.

4. Regularity of solutions
Now we show how to improve the regularity of the solutions, both in

time and space. If f P H1p0, T ;L2pUqq then g P H1p0, T ;L2pUqq. It follows
that εpuq P H1p0, T ;L2pUqq. Moreover, the value of εpt is bounded in L2pUq
because

}εpt } “ }Mpεpuq ´ ε
pq} ≤ Cp1` }εpuq ´ εp}q

and εpuq ´ εp is bounded in L2pUq. It follows that εp PW 1,8p0, T ;L2pUqq.
Now we employ techniques of space regularity improvement. Firstly, we

adopt an approach known in the theory of inelastic deformations, see [4] for
instance.

Let W , V be open sets in Rn such that U Ą W Ą W Ą V . Let ξ be a
smooth function defined as follows: 0 ≤ ξ ≤ 1, ξ “ 1 on V and ξ “ 0 on
UzW . Finally, let us denote differential quotient as

Dh
kw “

wpx` h ekq ´ wpxq

h
.

We have:

1

2

d

dt
}ξDh

kpεpuq ´ ε
pq}2 “

ż

pξDh
kpεputq ´ ε

p
t qq ¨ pξD

h
kpεpuq ´ ε

pqq dx
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“

ż

pξDh
kpεputqqq ¨ pξD

h
kpεpuq´ε

pqq dx´

ż

pξDh
kpε

p
t qq ¨ pξD

h
kpεpuq´ε

pqq dx

≤
ż

pεpDh
kutqq ¨ pξ

2Dh
kpεpuq´ε

pqq dx

“

ż

pξDh
kutq ¨ pξD

h
k divpεpuq´εpqq dx`2

ż

p∇ξbDh
kutq ¨ pξD

h
kpεpuq´ε

pqq dx

“

ż

pξDh
kutq ¨ pξD

h
k fq dx`2

ż

p∇ξbDh
kutq ¨ pξD

h
kpεpuq´ε

pqq dx

≤ 1

2
}ξDh

kut}
2`

1

2
}ξDh

k f}
2`}∇ξbDh

kut}
2`}ξDh

kpεpuq´ε
pq}2

≤ C}ξεputq}2`C}ξDf}2`C}∇ξbεputq}2`}ξDh
kpεpuq´ε

pq}2.

We could use the Gronwall inequality and estimate }ξDh
kpεpuq ´ εpq},

uniform bound independent of h would imply }εpuq ´ εp} P H1
locpUq. But we

have to know that the right hand side of the above calculation is properly
defined e.g. }εputq} and }Df} exist. This leads us to the following result:

Theorem 4. Let u and εp be the solution to the problem (MP) and f P
H1p0, T ;H1

locpUqq and ε
pp0q P H1

locpUq. Then

εpuq ´ εp P L2p0, T ;H1
locpUqq.

Note that the growth condition is not used in the above Theorem.
The model considered in this paper controls only εpuq ´ εp, it does not

control εpuq. The so called self-controlling models, which control εpuq, are
considered in [4], [11]. We cannot employ techniques presented there to
improve regularity of εpuq. Instead we use the growth condition.

Theorem 5. Let u and εp be the solution to the problem (MP) and f P
H1p0, T ;H1

locpUqq and ε
pp0q P H1

locpUq. Assume that DM satisfies the growth
condition i.e. there exists the constant C ą 0 such that

|DMpxq| ≤ Cp1` |x|q
holds for every x P Rn. Then

εp P H1p0, T ;H1
locpUqq and εpuq P L2p0, T ;H1

locpUqq.

Proof. It suffices to show that εp P H1p0, T ;H1
locpUqq. Actually it is enough

to show that εpt P L2p0, T ;H1
locpUqq. Since ε

p
t “Mpεpuq ´ εpq, we prove that

Mpεpuq ´ εpq P L2p0, T ;H1
locpUqq.

Let W,V and ξ be given as previously. We have

Dξεpt “ Dξ b εpt ` ξDMpεpuq ´ ε
pqDpεpuq ´ εpq,

}Dξεpt } “ }Dξ b ε
p
t } ` }DMpεpuq ´ ε

pq} ¨ }ξDpεpuq ´ εpq},

}Dεpt }L2pV q ≤ }Dξ} ¨ }ε
p
t } ` Cp1` }εpuq ´ ε

p}q ¨ }ξDpεpuq ´ εpq}.



Solutions to the quasistatic problem. . . 775

Since εpt , εpuq ´ εp P L8p0, T ;L2pUqq and εpuq ´ εp P L2p0, T ;H1
locpUqq, we

conclude that εpt P L2p0, T ;H1
locpUqq.

Notice that the assumption that DM satisfies the growth condition, as
stated in the above Theorem, is weaker than the assumption that the function
M is Lipschitz continuous.
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