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SOLUTIONS TO THE QUASISTATIC PROBLEM FROM
THE THEORY OF INELASTIC DEFORMATIONS WITH
LINEAR GROWTH CONDITION

Abstract. This paper refers to standard models in the theory of inelastic deformations.
We assume that non-linear inelastic constitutive function is of monotone type, that the
growth condition holds and that the model is quasistatic. Initial, generic problem is
transformed into an evolution equation in a maximal monotone field. Then we find
solutions with very low regularity requirements of the forces acting on a body.

1. Problem formulation

Suppose we have a body represented by U < R™, made of a solid material,
and some forces act on the body. For any point at any time, the material
is of the same density p > 0. Let u(t,x) denote the displacement of the
point x € U of the body at the time ¢ > 0. We focus on the symmetric
part of the gradient of u: € = e(u) = 5(Vu + (Vu)T), which is called the
linear strain tensor in the case of the small deformations. Moreover €? is a
plastic strain tensor which is also symmetric. We assume the the body is
made of a viscoplastic material. It implies that a deformation of the body
is decomposed to an elastic part and an inelastic part i.e. €. The inelastic
part is controlled by the following constitutive equation:

e = M(e(u), ),

where M is the non-linear operator with the domain Dom M < R™*® x R**™,
The function M is called the constitutive function or the inelastic constitutive
function. The value of the function M is a parameter of a given material
and it is established through engineering experiments. For details on the
constitutive functions and models in the theory of inelastic deformations we
refer to [1].
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We define T'(t, z), stress tensor, using the elastic constitutive equation:
T = D(G(U) - €p)7

where D is a linear operator with constant coefficients, D is symmetric and
positive definite.

The law of conservation of momentum holds:
P Uit = divT + f,

where f represents the exterior forces acting on the body.

Coupling it together with the initial and boundary conditions, we obtain
the initial model:

puy =divT + f,
T = D(e(u) — €P),
ef = M(e(u), €”),
{ uloy = 0,
u(0,z) = vV (2)
u (0, 2) = u®(2)
L ’(0,x) = P(0) (x),

9

Y

where u(M), u?, () are the given initial data.

In engineering applications, the dimension n = 1,2,3 are considered,
where the notions used in the above model have physical meaning. The
methods used in this paper do not require such assumption, hence we assume
just n > 1.

We consider this as a quasistatic problem i.e. we assume that puy is
very small and can be neglected. Consequently, the law of conservation of

momentum is replaced by the balance of forces (the sign is ignored):
divT = f.

We assume that D is an identity. By combining the balance of forces with
the elastic constitutive equation, we get the simple elliptic equation:

div(e(u) — ) = f.

We consider the model to be of the monotone type. We say that model is
of the monotone type if the inelastic constitutive function M is a maximal
monotone operator and depends only on the stress tensor T'. For details on
the monotone type of models, we refer to [1].
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Having the above assumptions, we can state the main problem:

le(G(U)(t, $) - ep(tv ‘T)) = f(ta .'IZ‘),
Ef(ta .CL‘) = M(E(U)(t, 1") - Ep(tv CC)),
u(t,z) =0 if  xzedl,
& (x,0) = O (),
U c R" is the open bounded set with smooth boundary,
M : R™" - R™™ is a maximal monotone vector field, additionally we
assume that M(0) = 0,
?0) . U — R™ ™ is the given initial value,
(0,T) is the time interval, T is given,
f:(0,T) x U - R"™ is given,
u: (0, 7)xU - R™and € :(0,7) x U - R™™ are unknown.
Although the resulting model is quite simplified, its behaviour and con-
tained problems are very similar to the initial model. Understanding the
problems in the resulting model, helps to understand the problems in the
initial model. Methods presented in this paper can be used to find solutions
to similar models in the theory of inelastic deformations.
We need a growth condition also known as the sublinear growth condition.

(MP)

DEeFINITION. M fulfils a growth condition if there exists a constant C such
that for all x € R™, |[M(z)| < C(1 + |z|) holds.

The aim is to prove the following theorem.
THEOREM 1. Assume M satisfies the growth condition i.e. there exists the
constant C' > 0 such that
M(2)| < C(1 + [z
holds for every x € R™. Then for any
fe L0, T; L*(U)), ¢ e L2(U)
there exists the unique solution to the problem (MP) such that
P e HY(0,T; L*(U)), ue L*(0,T; H:(U)).

REMARK. We do not need the initial value of u. It could be derived from
() and f if the function f would have better regularity with respect to
time.

The growth condition seems to be quite strong assumption. In the litera-
ture, it is common to consider weaker conditions. In [5] and [6], a polynomial
growth condition was used. 8] assumes the gradient structure of the inelastic
constitutive function. In [7] and [9], the constitutive function satisfies a
coercive condition is controlled by some N-function and the solutions are
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found using Orlicz spaces. Methods used in this paper differ from those
presented in the above works and are comparable to the manners presented
in [2], where classical Yosida approximation is used. Weaker assumptions
for the constitutive function cause more assumptions on data. Usually, a
higher regularity is assumed with respect to time. The problem becomes
even simpler if data functions, representing external forces and boundary
conditions, (some or all) are equal to zero. This approach was presented
in [6] and [7]. [8] and [9] introduce the save load condition as a way to
control troublesome time-dependent data functions. Even though we do
assume homogeneous boundary values, similar results are expected in the
non-homogeneous cases.

Thanks to the growth condition, many problems considered in the works
mentioned above do not apply here. In addition, we can operate easily in
L? Hilbert space and we do not assume existence of time derivatives of data
functions of any order, as it is assumed in [5], [8] and [9] or as in [6] and [7],
where static process is considered. This way, the process of solving the model
can take a form of a functional operator acting on the proper spaces, as shown
in Theorem 3. This operator is not only continuous, but Theorem 3 states
that the growth condition property of the inelastic constitutive function is
carried over and dependency of the solutions on the data functions has also
the growth condition property.

2. Solution to abstract problem

The Theorem 1 is not proved directly. Instead, we solve a derived problem
and show how to obtain solutions to the problem (MP) having solutions to
the derived problem.

The equations above are transformed into a more useful differential
equation in a Hilbert space. This points out the functional structure of the
problem.

Let - denote the scalar product in L?(U) throughout this work. More-
over, let |_| denote the norm in L*(U) and || _|1s(«) denote the norm in
Lr(0,T; LY(U)).

Let us consider €(t) = €(t, ) e L*(U) and u(t) = u(t, ) € HL(U)
spaces. We use € and u instead of €(t) and wu(t) unless it is needed.

Let us define the subspace Lg:

L*(U) o Lo = {e(v): € HY(U)}.

We can see that Lg is closed in the norm topology of L?(U).
Now we can state that ¢? = 20+ 21, where 2° € Ly and 2! € Lg. Obviously
there exists zZ € Hg(U) such that 20 = €(2).
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Considering the equation div(e(u) — €?) = 0, we have for all v € H}(U):

0 =€) (e(u) — ) = e(v) - (e(u) — €(Z) — 2') = €(v) - e(u — 7).
Then u = Z since €(v) -e(u—7%) = 0 for v = u—Z gives e(u—2) - e(u—z) = 0,
what implies €(u) = €(Z), and the assumption u|sy = Z|sy = 0 holds.
Therefore

cu)—eP =e(z) =20 =2t =20 -0 — = 2l = —mrL€e

where 7 is the usual orthogonal projection onto a linear subspace in a Hilbert
space.

In the general case div(e(u) —€P) = f we proceed as follows. The operator
div e(u) is an elliptic operator. Let @ € H}(U) be a solution to dive(u) = f,
then:

div(e(u) — ) = f = dive(n),
div(e(u —w) — €”) = 0.

It follows that z = u —u € H}(U) and u = 7 + .
We introduce two denominations:

1. Let us define w : [0,T] — L?(U) and g : [0,T] — L*(U) as w(t) =
—mpLe (t) e Lg and g(t) = €(W)(t) € Lo, respectively. Then the expression
€(u) — € takes the following form:

e(u) —P =e(@) +e@) —2" -2 =2 +e@=w+g.

2. Let us define A : L*(U) — L*(U), where DomA < L*(U) provided by
A(w)(z) = M(v(zx)) for all z € R™. A is simply the pointwise operator M
raised to the L2(U) level.

REMARK. If the growth condition holds for M then it also holds for the
operator A:

JA@)] —\/f M (v |2dx<\/f C2(1 + u(x))2da
< o\/f 124 + c\/f (@) 2dz = C(/T] + o).
U U

REMARK. It is important that if the growth condition holds then DomA =
L3(U).

The operator A is obviously monotone and from the above Remark it
follows that the operator A is a maximal monotone operator.
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Now we can transform the main problem as follows:
ef = M(e(u) — €),
mpael =~y M(e(w) — ),
w = —WLOLA(UJ +g).

With €?(9) we can calculate the initial value wy = w(0).
Thus our final problem takes the form:

(FP) { wp = —mpLA(w + g),
w(0) = wo.
We are going to solve the problem in the form stated above.
Before proceeding, let us present the following lemma. It is required to
provide the approximation step in the Yosida approximation. Lemma is
stated in an arbitrary Hilbert space.

LEMMA. Let H be a Hilbert space with the norm | |g, B : H — H a
Lipschitzean operator with constant «y, such that B(0) = 0, [0,T] be the given
time interval, xo € H be the initial point, h € L*(0,T; H) be the perturbation.
Then there exists € H(0,T; H) n L®(0,T; H) satisfying:

zi(t) = B(x(t) + h(t)),
x(0) = xo.
This lemma is a result from classical theory of differential equations.

Proofs of similar results can be found in [10].
Now we start to analyse the solvability of the problem (FP).

THEOREM 2. Assume g€ L?(0,T; Lg), wo € L and a mazimal monotone
operator A : DomA — L? fulfilling the growth condition i.e. there exists the
constant C' > 0 such that

Al < C + Clo|
holds for every v e L?>(U). Then there exists the unique solution
we HY0,T; LE) n L*(0,T; L)
to the problem:
{wm — —yy Alw(t) + g(0),
w(0) = wo.
Proof. a) We prove that wg — w(_) is a contraction.

Let w! and w? be solutions to the problem with initial values wg and wg,
respectively. It is enough to calculate:
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St — WP = 0t —w?) - (] )
= —(w' + g —w?—g) 7 (A(w' +g) — A(w® + g))
= —(w' +g—w’ —g)- (A(w' + g) — A(w” + g))
<0.
Therefore:
- Jw! = w?| < wy — wi

lw! = w?| g2y < Jlwg — wi

implies the uniqueness.

b) We prove that the solution is consisted in the desired spaces: w and
wy are bounded and the bound depends only on ¢, wg and the constant C
from the growth condition.

2
d dm_ 1glwl®  w-w < lwll - [we]

2wl = /Tl = _ v
aill = G N el
< mp AGw + g)] < [A(w + g)]| < C(1+ ] + [g]).

Thus
t
Jw] < [wole®” + e + €tho lgll < Jwolle®™ + T + e“Tlglp1r2)

and w e L°(0,T; L?(U)). The calculation below shows that w; is bounded
in L2(0,T; L*(U)) since w is bounded:
Jwel| < JA(w + g)| < C(A + [wlree(z2) + 9]
¢) We prove that there exist solutions w? to approximated problem.
We denote Ay the Yosida approximation of A and we consider the ap-

proximated problem:
wp = =7 Ax(w + g),

w?(0) = w.
An operator Lg 3 v — _WLéAA(U) is Lipschitzean with the constant %

since Ay is a Lipschitzean operator with the constant % There exists the
unique solution w* to the approximated problem according to the lemma

presented above.
We have wg € Lg, w} € L§ and

¢
w(t) = wo + fwi‘(T) dr,
0

thus w? € LOL.
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d) We show that w” is a Cauchy sequence. According to the growth
condition, all solutions w* are uniformly bounded in L*(0,T; L?(U)):

Ly = L fjupe - Ll
dt dt 2.\/[w 2
A A A A
W wp ] ] ;
— < 143w + )]
T

<A@ + g)| < O+ ] + [g]),

as seen above |[w?| < [wole€T + €T + eCTHgHU(Lz) and so w” is bounded
in L°(0,T; L*(U)) and the bound does not depend on A. An inequality
|Ax(w? + ¢)|| < |A(w? + g)| comes from the Yosida theorem.

The functions w; are uniformly bounded in L?(0,T; L?(U)) since g €
L%(0,T; L*(U)) and w* are uniformly bounded:

[} = || =7 Ax(w + g)| < C(L+ [w[ + [ g])-
In the same way, we show the following estimate:
[Ax(w* + g)| < C(1 + || + |g),

which yields that Ay(w* + g) are uniformly bounded in L?(0,T; L?(U)) and
the bound does not depend on A.

With properties of the Yosida approximations, the convergence of w? in
L*(0,T; L?(U)) is achieved by the calculation:

1
5““’/\ - w“HZ

I
|
~
B
>
|
g
=
=
=
g
>
+
s
|
e
=
g
=
_l_
S
=
\]

I
|
~
B
>
+
Q
|
g
=
|
S
=
=
g
+
\L.i/
|
e
=
g
=
+
S
=
\]

t
- fo (AAx(w + g) — pAu(wh + g)) - (Ay(w + g) — Au(wh + g))dr

t
- fo (I + 9) — Tu(wh + ) - (Ax(w + g) — A (w? + g))dr
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< - JO (AAx(w + g) — pAu(w” + g)) - (Ax(w + g) — Au(wh + g))dr

_ fo MW+ g) - Au(w” + g)) + pAu(w” + g)) - Ax(w* + g)

= MA@ + )P = ulAu(w” + g)|Pdr
< [N + 97 + JhAuw + )+ A + g
+ %HAA(U)A +9)I” = Al Ax(w* + 9)[* — pll Au(w + g)|*dr
< 1 [ Nt + 9 + mias? + g
< TN + ) a(zz) + Al Au(0* + )3z
This yields the convergence in L®(0,T; L2(U)) since | Ax(w* + 9 r2(r2) are

uniformly bounded. Let w = limw® with A — 07.
For the next step, we need to show also that:

J,\(wA +9) —r2(r2) W+ g.
The above convergence follows by:
[ + g = In(w* + g)| = A Ax(w* + g)].

e) Finally, we prove that w is the solution. Since wg\ and Ay (w* + g) are
bounded in L?(0,T; L?(U)) then there exists a sequence \,, such that:

w" —r2(L2) W, wp —r2(r2) Wi, Ay, (w* + g) —L2(L2) U-

Therefore, we have wy = —7p1u.

Let A be the operator on L?(0,T; L?(U)) defined as:

A(v)(t) = A(v(?)).
A is a maximal monotone operator as proved in [2|. Moreover, we have:
Ax()(t) = Ax(v(t)),  Ta(v)(t) = Ja(v(?)),

where Ay, Ay, J», Jy are respectively the Yosida approximations and resol-
vents of A and A.

Since Jy(w* + g) —r2(72) w + g and A(Jy, (W + g)) 3 Ay, (W + g)
then (w + g,u) € GraphA. Hence w; = *WLOLA(U] +g). m

As stated in Theorem 2, to a given data g we can assign the solution w.
We treat this assignment as the solving operator. The next theorem says
that properties of the operator A are carried over onto this solving operator.
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THEOREM 3. The solving operator, which assigns a solution
we LP0,T; L*(U))

to a given data

ge L*(0,T; L*(U)),

is the continuous operator L*(0,T; L?(U)) — L*(0,T; L*(U)) satisfying the
growth condition i.e. there exists the constant C > 0 that

lw| o2y < C+ Clg|r2(r2)-
Proof. Firstly, we prove that the growth condition holds:

|
ik
&

I

w-wg = = Aw + g) - w < O+ [w] + g]) - |w]
C c
< Clw| + Clwl® + S wl* + 3 lgl®

C c
< C+ Clwl® + Clwl* + 2wl + 3 g
Hence, using the Gronwall inequality:
2
Jw]* < T luwol® + €5CT5 + CMg|72(2y.

Thus the growth condition holds.
Now we show continuity of the solving operator. Let w', w? be solutions
for given ¢!, ¢°.

—w?? = (w' = w?) - (wp —wf)

thH
= —(Aw' +¢") — AW’ + ¢°)) - (w' - )
= —(Aw! + ¢") — AWw® + ¢) - (w' + ¢' —w? — ¢*> — ¢* + ¢?)
(A(w" +¢") = A(w? + ¢%)) - (9" = ¢°).
1

plot =0l < [+ g - Aw? + ) (g~ P

Let g" — g converges in L2(0,T; L?(U)) and w™, w be associated solutions.
Thus ¢g", g are bounded in L?(0,T; L?>(U)) and w™ + g™, w + g are bounded
in L2(0,T; L?>(U)) provided by the just proved growth condition property.
A(w™ + g"), A(w + g) are also bounded in L?(0,T; L?(U)) since A satisfies
the growth condition. Finally:

plu” =l = [+ 4") = A(w+ 9)) - 0"~ )it 0,

This completes the proof of continuity. m

<~ (A(w! +gh) — A(w® + %)) - (w' —w?)

IN
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3. Solution to the main problem

Proof of Theorem 1. To find solutions e? and u to the problem (MP),
firstly we transform it to the problem (FP). We recall that f € L?(0,T; L*(U))
if and only if g € L?(0,T; L?(U)). The solution w to the problem (FP) is
provided by Theorem 2. Having w, we can obtain € and u. For €P holds:

e(u) — e’ =w+ g,
e = M(e(u) — €’) = A(w + g).
Applying the growth condition, we have ¢/ € L2(0,T; L?(U)). Integrating e/
with respect to time and the initial value ¢”(¥) implies e’ € H'(0,T; L*(U))
and the value €?(0) is well defined.
For u holds:

div(e(u) — €”) = f,
ulory =0,

what implies that u is unique and u € L?(0, T; H}(U)) since
feL*0,T;L*(U)).

4. Regularity of solutions

Now we show how to improve the regularity of the solutions, both in
time and space. If f € HY(0,T; L?>(U)) then g € H'(0,T; L?>(U)). It follows
that e(u) € H'(0,T; L*(U)). Moreover, the value of €/ is bounded in L*(U)
because

bl = 1M (e(w) — ) < C(1+ [[e(u) — €”]))

and €(u) — €? is bounded in L?(U). It follows that ¢ € Wh*(0,T; L?(U)).
Now we employ techniques of space regularity improvement. Firstly, we
adopt an approach known in the theory of inelastic deformations, see [4] for
instance.
Let W, V be open sets in R™ such that U > W > W o> V. Let £ be a
smooth function defined as follows: 0 < ¢ <1, £ =1on V and £ =0 on
U\W. Finally, let us denote differential quotient as

w(x + heg) —w(x)
- :

D,}jw =

We have:

1d

5 g7 1€Dk(e(w) = )[* = J(éDZ(G(Ut) —€)) - (€D (e(u) — ")) do
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~ [(€Dletw)) - (€DR(e(w) ) do— [ (€DR(E)-(€Dh(elu) ~ ) da

< [(e(Du)-(@Dl(etw ) o

~ [(€Dkue)- (€D} divietw M) do+ 2 [(V60 D) (€DR(e(w) — ) da
~ [(€Dtun)- (€D} 1) do+2 [ (V€@ Dfun) - (€DL(ew) ~ ) da

1 1
< SlEDRu|* + S 16D £I* + | VE® Dur|[* + € D5 (e(u) — €)1
< Cllée(ur)|* + ClEDS|? + CIVE®e(ur)|* + |€D (e(u) — ).

We could use the Gronwall inequality and estimate [|€D}(e(u) — €?)],
uniform bound independent of h would imply ||e(u) — €?| € HL (U). But we
have to know that the right hand side of the above calculation is properly
defined e.g. |e(uy)|| and |Df| exist. This leads us to the following result:

THEOREM 4. Let u and €’ be the solution to the problem (MP) and f €
HY0,T; HL (U)) and #© € HL (U). Then
e(u) — " € L*(0,T; HE (U)). m
Note that the growth condition is not used in the above Theorem.
The model considered in this paper controls only e(u) — €, it does not
control €(u). The so called self-controlling models, which control e(u), are

considered in [4], [11]. We cannot employ techniques presented there to
improve regularity of e(u). Instead we use the growth condition.

THEOREM 5. Let u and €P be the solution to the problem (MP) and f €
HY0,T;HL (U)) and ?© € HE (U). Assume that DM satisfies the growth

loc
condition i.e. there exists the constant C' > 0 such that

[DM ()] < C(1 + |z])
holds for every x € R™. Then
e € H'(0,T; Hioe(U)) and  e(u) € L*(0,T; Hy,(U)).

Proof. It suffices to show that e’ € H(0,T; H} (U)). Actually it is enough
to show that €/ € L2(0,T; HL (U)). Since €] = M(e(u) — €?), we prove that
M(e(u) —€?) € L*(0,T; HL (U)).
Let W,V and £ be given as previously. We have
D&e} = DEQ € + EDM (e(u) — €') D(e(u) — €),
| D&l = [ DER €| + DM (e(u) — €)] - [€D(e(u) — )],

| Detlrzvy < IDEJ - el + C(1 + le(u) — €]) - [§D(e(u) — €”)].
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Since €/, e(u) — €” € L*(0,T; L*(U)) and e(u) — €? € L*(0,T; H} .(U)), we
conclude that € € L?(0,T; H} (U)). u

loc
Notice that the assumption that DM satisfies the growth condition, as
stated in the above Theorem, is weaker than the assumption that the function
M is Lipschitz continuous.
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