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UNIQUE COMMON FIXED POINT THEOREMS FOR
PAIRS OF HYBRID MAPS UNDER A NEW CONDITION
IN PARTIAL METRIC SPACES

Abstract. In this paper, we introduce a new condition namely, ‘condition (W.C.C)’
and obtain two unique common fixed point theorems for pairs of hybrid mappings on a
partial Hausdorff metric space without using any continuity and commutativity of the
mappings.

1. Introduction and preliminaries

In 1969, Nadler [20] initiated the development of the geometric fixed point
theory for multivalued mappings. He used the concept of the Hausdorff metric
to establish the multivalued contraction principle containing the Banach
contraction principle as a special case. Indeed, the fixed point theorems
for multivalued mappings are quite useful in control theory and have been
frequently used in solving many problems of economics, game theory, convex
optimization and differential equations.

Here, we recall that a Hausdorff metric H induced by a metric d on a set
X is given by

H(A,B) = max{sup d(z, B),supd(y, A)},
zeA yeB
for every A, B € CB(X), where d(z, B) = inf{d(z,y) : y € B} and CB(X)
is the collection of the closed and bounded subsets of X.

THEOREM 1.1. [20]| Let (X,d) be a complete metric space and T : X —
CB(X) be a mapping satisfying H(Tx,Ty) < kd(x,y), where k € [0,1) then
there exists x € X such that v € Tx.
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In the last decades, a number of fixed point results (see, for example,
[1, 2, 8, 14, 15, 17, 18, 19]) have been obtained in attempts to generalize
Theorem 1.1.

The other basic notion for the development of our work is the concept
of the partial metric space, that was introduced by Matthews [21] as a part
of the study of denotational semantics of data flow networks. He presented
a modified version of the Banach contraction principle, more suitable in
this context, see also [3, 6]. In fact, the partial metric spaces constitute a
suitable framework to model several distinguished examples of the theory
of computation and also to model metric spaces via domain theory, see
[4, 5, 7,10, 11, 12, 13, 16, 21, 22|. In this direction, Aydi et al. [9] introduced
the concept of a partial Hausdorff metric and extended Nadler’s fixed point
theorem in the setting of partial metric spaces.

In view of the above considerations, the aim of this paper is to introduce a
new condition namely, ‘condition (W.C.C)’ and obtain unique common fixed
point theorems for pairs of hybrid mappings in a partial Hausdorff metric
space without using any continuity and commutativity of the mappings. The
presented results extend and unify some recently obtained comparable results
for multivalued mappings (see 9] and the references therein).

Consistent with [9, 10, 21|, the following definitions and results will be
needed in the sequel.

DEFINITION 1.2. [21] A partial metric on a nonempty set X is a function
p: X x X - R* such that for all z,y, z € X:

(p1) ==y < px,z) =p(x,9) =Y, Y),
(p2) p(z,x) <p(z,y)
(p3) p(z,y) = (y, ),
(p4> ( ) < (‘Tﬂz) +p(z,y) —p(Z,Z).

In this case (X, p) is called a partial metric space.

)

It is clear that |p(x,y) — p(y, 2)| < p(x, 2) Vx,y,z € X. It is also clear
that p(x,y) = 0 implies x = y from (p;) and (p2). But if x = y, p(z,y)
may not be zero. A basic example of a partial metric space is the pair
(R*,p), where p(x,y) = max{x,y} for all x,y € RT. Each partial metric
p on X generates 19 topology 7, on X which has as a base the family of
open p - balls {B,(z,¢) | z € X, ¢ > 0} for all x € X and € > 0, where
By(xz,e) = {y € X | p(z,y) < p(z,x) + €} for all z € X and € > 0. If p
is a partial metric on X, then the function p* : X x X — R™, given by
p*(z,y) = 2p(z,y) — p(z,z) — p(y,y), is a metric on X.

DEFINITION 1.3. [21] Let (X, p) be a partial metric space.
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(i) A sequence {z,} in (X,p) is said to converge to a point x € X if and
only if p(z,z) = lirrolop(x,xn).
n—
(ii) A sequence {x,} in (X,p) is said to be Cauchy sequence if

lim p(xy,y,) exists and is finite.
n,m—00

(iii) (X,p) is said to be complete if every Cauchy sequence {z,} in X con-
verges, with respect to 7, to a point x € X such that

pla,w) = T p(an, 2m).

LEMMA 1.4. [21]| Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in the metric space (X, p®).

(b) (X,p) is complete iff the metric space (X, p®) is complete. Further more,
Jgrgops(xn,:n) =0 if and only if

plz,x) = lim p(zn, z) = n}gg (T, ).

LEMMA 1.5. [10] Let (X, p) be a partial metric space and A any nonempty
set in (X,p), then a € A if and only if p(a, A) = p(a,a), where A denotes
the closure of A with respect to the partial metric p.

Consistent with [9], let (X, p) be a partial metric space and let C'BP(X) be
the family of all non-empty, closed and bounded subsets of the partial metric
space (X, p), induced by the partial metric p. Note that the closedness is taken
from (X, 7,) (7, is the topology induced by p) and the boundedness is given as
follows: A is a bounded subset in (X, p) if there exist 29 € X and M > 0 such
that for all a € A, we have a € B,(x¢, M), that is, p(xo, a) < p(zo, zo) + M.
For A,Be CBP(X),z€ X, d,: CBP(X) x CBP(X) — R define

pla, A) = inf {p(z,a),a € A}, b,(A, B) =sup {p(a, B) : a € A},
6P(B7 A) = Sup {p(ba A) :be B} ’ HP(A’ B) = max {5P(Aa B)> 5P(Ba A)} .
The mapping H, : CBP(X) x CBP(X) — R* is called the partial Haus-

dorff metric induced by partial metric p. Every Hausdorff metric is a partial
Hausdorff metric but the converse is not true, see Example 2.6 in [9].

LEMMA 1.6. [9] Let (X,p) be a partial metric space. For any A, B,C €
CBP(X), we have

(1) 0p(A, A) = sup {p(a,a) : a € A},
(ii) 6,(A, A) < 6,(4,B),
(iii) 6,(A, B) = 0 implies that A < B,
(iv) 6p(A, B) < 0p(A,C) + 6,(C, B) — ggép(c, c).



Unique common fixed point theorems for pairs of hybrid maps. . . 717

LEMMA 1.7. [9] Let (X,p) be a partial metric space. For any A, B,C €
CBP(X), we have

(i) Hp(A,A) < Hy(A, B),

p(4,
(i) Hy(A, B) = Hy(B, A),
(iii) H. (A B) < H,(A,C)+ Hy(C,B) - 1nfp(c c).

LEMMA 1.8. [9] Let (X,p) be a partial metric space. For any A,B €
CBP(X) the following holds: H,(A, B) = 0 implies that A = B.
In [9], they also show that by an example, Hy,(A, A) need not be zero.

LEMMA 1.9. [9] Let (X,p) be a partial metric space, A, B € CBP(X) and
h > 1. For any a € A, there exists b€ B such that p(a,b) < hHy(A, B).

THEOREM 1.10. [9] Let (X,p) be a complete partial metric space and
T:X — CBP(X) is a multi-valued mapping such that for all x,y € X, we
have H,(Tx,Ty) < k p(x,y), where k € (0,1) then T has a fized point.

We state and prove our main results.

2. Main results
LEMMA 2.1. Let z, — = as n — o0 in a partial metric space (X,p) such

that p(x,z) = 0 then lim p(x,, B) = p(z, B) for any B € CBP(X).
n—a0
Proof. Since x,, — x, we have lingop(xn,a:) = p(z,z) =0.
n—
By using triangular inequality for z,, € X and y € B, we have
P(@n,y) < plan, x) + p(z,y) — plz, ),
which implies that
p(xn, B)
Therefore, we get lim p(x,, B)
n—0o0
On the other hand, we have
p(x,y) < p(@; xn) + p(@n, y) — P(Tn, Tn).
Thus
p(x,y) < p(a, zn) + p(an, y)-
By taking infinimum over y € B, we get
p(iL‘, B) < p(l’, xn) + p(-xm B)
Therefore, we get p(z, B) < lingop(xn, B)....... (ii).
n—
From (i) and (ii), we have lim p(x,, B) = p(z, B). =
n—0oo

Now we introduce the following new condition, namely, the condition
(W.C.C) on mappings which are not necessarily continuous and commutative.
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DEFINITION 2.2. Let (X,p) be a partial metric space. Let f,g: X — X
and S : X — CBP(X) be mappings. Then

(i) the triplet (f,g;S) is said to satisfy the condition (W.C.C) if

p(fx, gy) < ply,Sz), ¥V x,y € X,
(ii) the pair (f;S) is said to satisfy the condition (W.C.C) if

p(fz, fy) < ply,Sz), V z,y e X.
The following example illustrates the condition (W.C.C).

EXAMPLE 2.3. Let X = [0,1] and p(z,y) = max{z,y}, V x,y € X. Let
fig: X > X and S: X —» CBP(X) be defined by fr =0,V z,ye X,

o, ifzelo, 3],

T s, el

and Sz = |0, %], V x,y € X. We consider the following two cases.
Case (a): z € X and y € [0, %] Then p(fx,gy) =0 = p(y, Sx).

Case (b): x€ X and y € (%, 1]. Then p(fz,gy) = 35 <y = p(y, Sx).
Thus (f,g;S) satisfies the condition (W.C.C).

The following example shows that the triplet (f,g;S), satisfying the
condition (W.C.C), need not be continuous even when S is a single-valued
mapping.

EXAMPLE 2.4. Let X = [0,1] and p(z,y) = max{z,y}, Yo,y € X. Let
f,9,5 : X — X be defined by

; {fg if x # 1, {g ifx # 1,
xr = Xr =

o, ifx=1, Loifzr=1,

and

Clearly, all the mappings f, g and S are discontinuous.

Now, we distinguish the following cases to show that (f,g;.S) satisfies the
condition (W.C.C).
Case (i): z # 1 and y # 1.

_ z oyl _1 z | _1
p(fz, gy) = maX{ 3 6} =5 maX{ Q,y} = 6p(y, Sx).

Case (ii): z # 1 and y = 1.

1 1 1
p(fxvgy) = max{lz, 12} < Gmax{l, g} = 6p(y’ S$)
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Case (iii): x =1 and y # 1.
1
p(fz,gy) = maX{M,
Case (iv): z =1 and y = 1.
1 1 1 1
p(fx,gy) = max{ } — < max{l 4} = p(y, Sz).

24712 12
Thus, (f,g;S) satisfies the condition (W.C.C).

=

} - ép(y,sﬂf)-

The following example shows that the triplet (f,g;S) satisfying the
condition (W.C.C), need not be commuting even when S is a single-valued
mapping.

EXAMPLE 2.5. Let a and b be non-negative real numbers such that b < a.
Let X = {a,b} and p(z,y) = max{z,y}, Vx,y € X. Let f,9,5: X — X be
defined by fa = fb =05, ga = b,gb = a and Sa = Sb = a.

Clearly the triplet (f, g;S) satisfies the condition (W.C.C) and the pairs

(f,9), (g,5) and (f, g) are not commuting.

Now, we state and prove our main results.
THEOREM 2.6. Let (X,p) be a complete partial metric space and let
S,T:X — CBP(X) and f,g: X — X be mappings satisfying
p(fz,9y). 3[p(fz,Sz) +plgy, Ty)l, }

slp(fz, Ty) + p(gy, Sx)]
forallx,y e X and a € (0,1),

U Sz < g(X) and | Tz < f(X),

(2.6.1) Hp(Sz,Ty) < amax{

reX reX
(2.6.3) the triplet (f,g;S) or the triplet (f,g9;T) satisfies the condition
(W.C.C).

Then f,qg,S and T have a unique common fized point in X.
Proof. Let zp € X. From (2.6.2), there exist x1, y; € X such that y; =
gxy € Sxg.

From (2.6.2) and Lemma 1.9 with h =
that y9 = fxo € Tz and

T , there exist x2, yo € X such
p(?/l,?ﬁ) >~ \/— (Sl'o,Tl’l)

Again from (2.6.2) and Lemma 1.9, there exist x3, y3 € X such that y3 =
gxs € Sxo and
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Continuing in this way, we get the sequences {x,} and {y,} in X such that
Yon+1 = gT2n+1 € STan, Yon+2 = [Tont2 € Tooni1, n=0,1,2,3,... and

1
p(y2n+17 an) S ﬁHp(SxQTM T:I;Zn—l)7 n = ]-7 27 37 e

1
p(y?n—i—h y2n+2) S ﬁHp(SxQTM T$2n+1), n = 07 17 27 37 v

Now from (2.6.1), we have

1
p(y2n+17 y2n+2) < ﬁHp(Sx%u Tx2n+1)7

< Vamax {p(f:rzn, 9%2041), 3[p(fT2n, Swon) + p(922n+1, T2041)], }

sp(fron, Txon+1) + p(9T2n+1, STan)]

1
< \/amax p(ana yin-‘rl)z §[p(y2nu y2n+1) + p(y2n+1a y2n+2)],
LpWon, vans2) + P(Y2ns1, Y2ns1)]

1
< \/amaX {p(y2m y2n+1)7 i[p(anv y2n+1) + p(92n+1, y2n+2)]}

from (pa).
Thus, we have
(1) P(Y2n+1; Y2nv2) < BP(Y2n, Y2n+1),
where = max{\/a, 1%2} <1
Similarly, we can show that
(2) P(Y2n+1,Y2n) < BP(Y20, Y2n-1)-
From (1) and (2), we have
(3) PWnt1,9n) < Bp(Yn,yn—1),  forall n=1,2,3,...

By continuing in this way, we get

(4) P(Yn+1,Yn) < B (Y1, %0)-
Since # < 1, which in turn yields that

(5) P(Yn+1,yn) > 0 as n — .

For m > n, we have

(6) p(yn’ ym) < p(ym yn+1) + p(yn-i-l’ yn-i—?) +o 4+ p(ym—la ym)a
< (B + 8"+ B ) p(yr, o) from (2)

n

Sﬁﬁp(yl,yo)ﬁo as n — oo.
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Thus {y,} is a Cauchy sequence in X. Hence from Lemma 1.4, {y,} is a
Cauchy sequence in (X, p®).

Since (X, p) is complete and from Lemma 1.4, it follows that (X, p®) is
complete. So {y,} converges to some z € X. That is

lim p*(yn, 2) = 0.

Now from Lemma 1.4 and (6), we have
(7) p(2,2) = lim p(yn,z) = lm p(yn, ym) = 0.
Suppose the triplet (f,g;S) satisfies the condition (W.C.C) then
(8) p(fx,g9y) <p(y,Sx) forall z,yeX.
Let x = w9, and y = z in (8), we have

p(fxan, 92) < p(z, Sz2n) < p(z, gTon+1).
Letting n — o0 , using Lemma 2.1 and (7), we can obtain

p(z,92) <0 sothat gz =z

Now by using (2.6.1), we have

p(ngnJ,_l, TZ) S Hp(SfL'Qna TZ),

< p(f$2nagz)>%[p(fl?nvstn) +p(gz,Tz)],
< amax )
slp(fron, Tz) + p(gz, Swan)]

< {p(fonaZ)a sp(faon, gron+1) +p(2aTZ)]7}
< amax . .
§[p(fx2na TZ) + p(za g$2n+1)]

Letting n — o0, using Lemma 2.1, (7) and (5), we get
p(z,T2) < Sp(z,Tz).

2

Hence p(z,7z) = 0, which in turn yields from Lemma 1.5 and (7) that
z €Tz =Tz Thus

9) gz =z€eTx.
Now from (8), we have

(10) p(fz,2) = p(fz,92) < p(2,S2).
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Using (2.6.1), we have
p(z,Sz) < Hy(Sz,Tz)
P { p(f2.92), §lp(fz.52) + plg=.T2)], }
- 3lp(fz,T2) + p(gz, S2)]
< amax{p(z,Sz),p(z,52),p(z,52)} from (p4g),(10),(9)
= ap(z, Sz),

which in turn yields that p(z, Sz) = 0. From Lemma 1.5 and (7), we have
z€ S8z =5z
Now from (8), we get p(fz,2z) <0 so that fz = z. Thus

(11) fz=z€ 8z

From (9) and (11), it follows that z is a common fixed point of f, ¢, S and T
Suppose 2’ is another common fixed point of f,g,S and T. From (8), we
have

(12) p(z,2") = p(fz,97") <p(2,Sz) < Hy(Sz,T2).

Now

§[ (fszZ ) +p(gz 7SZ)]

< amax Hp(sz’szl)’%[Hp(SzaSZ) + Hy (T, T2")),
L[Hy(S2,T2") + Hy(T%, S2)]

Hy(Sz,T7") §amax{ p(fz, 92)72[ (fz,82) + p(gz', T2, }

from (12)
< aHy(Sz, T from Lemma 1.7 (i) .

Thus H,(Sz,Tz') = 0 so that from (12), z = 2/. Hence z is the unique
common fixed point of f,g,S and T'.

Similarly we can prove the theorem when (f, g;T') satisfies the condition
(W.C.C). m

Proceeding as in Theorem 2.6, one can easily prove the following.

THEOREM 2.7. Let (X,p) be a complete partial metric space and let
S, T:X - CBP(X) and f : X — X be mappings satisfying

(2.7.1) Hp(Sz,Ty) < amax{p(ff?,fy),p(fx,Sx),p(fy,Ty),} for all

alp(fz, Ty) + p(fy, Sz)]
:U,yeX wher60<a<1

) U Szc f(X cmdUTfo( ),

reX
( .7.3) the pair (f;S) or the trzplet (f;T) satisfies the condition (W.C.C).
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Then f,S and T have a unique common fized point in X.
Finally, we give the following.

THEOREM 2.8. Let (X,p) be a complete partial metric space and let
S, T : X — CBP(X) be mappings satisfying

p(x,y), p(z, Sz), p(y, Ty),

1

8 Sz, < amax
(2.8.1) Hp(Sz,Ty) < Lp(z, Ty) + p(y, Sz)]

for all x,y € X,

where 0 < a <1 .

Then S and T have a common fized point in X. Further, if we assume that
p(z,y) < ply,Sz) or p(x,y) < p(y,Tx) for all x,y € X then S and T have
a unique common fixed point in X .
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