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UNIQUE COMMON FIXED POINT THEOREMS FOR
PAIRS OF HYBRID MAPS UNDER A NEW CONDITION

IN PARTIAL METRIC SPACES

Abstract. In this paper, we introduce a new condition namely, ‘condition (W.C.C)’
and obtain two unique common fixed point theorems for pairs of hybrid mappings on a
partial Hausdorff metric space without using any continuity and commutativity of the
mappings.

1. Introduction and preliminaries
In 1969, Nadler [20] initiated the development of the geometric fixed point

theory for multivalued mappings. He used the concept of the Hausdorff metric
to establish the multivalued contraction principle containing the Banach
contraction principle as a special case. Indeed, the fixed point theorems
for multivalued mappings are quite useful in control theory and have been
frequently used in solving many problems of economics, game theory, convex
optimization and differential equations.

Here, we recall that a Hausdorff metric H induced by a metric d on a set
X is given by

HpA,Bq “ max
!

sup
xPA

dpx,Bq, sup
yPB

dpy,Aq
)

,

for every A,B P CBpXq, where dpx,Bq “ inftdpx, yq : y P Bu and CBpXq
is the collection of the closed and bounded subsets of X.

Theorem 1.1. [20] Let pX, dq be a complete metric space and T : X Ñ

CBpXq be a mapping satisfying HpTx, Tyq ≤ kdpx, yq, where k P r0, 1q then
there exists x P X such that x P Tx.
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In the last decades, a number of fixed point results (see, for example,
[1, 2, 8, 14, 15, 17, 18, 19]) have been obtained in attempts to generalize
Theorem 1.1.

The other basic notion for the development of our work is the concept
of the partial metric space, that was introduced by Matthews [21] as a part
of the study of denotational semantics of data flow networks. He presented
a modified version of the Banach contraction principle, more suitable in
this context, see also [3, 6]. In fact, the partial metric spaces constitute a
suitable framework to model several distinguished examples of the theory
of computation and also to model metric spaces via domain theory, see
[4, 5, 7, 10, 11, 12, 13, 16, 21, 22]. In this direction, Aydi et al. [9] introduced
the concept of a partial Hausdorff metric and extended Nadler’s fixed point
theorem in the setting of partial metric spaces.

In view of the above considerations, the aim of this paper is to introduce a
new condition namely, ‘condition (W.C.C)’ and obtain unique common fixed
point theorems for pairs of hybrid mappings in a partial Hausdorff metric
space without using any continuity and commutativity of the mappings. The
presented results extend and unify some recently obtained comparable results
for multivalued mappings (see [9] and the references therein).

Consistent with [9, 10, 21], the following definitions and results will be
needed in the sequel.

Definition 1.2. [21] A partial metric on a nonempty set X is a function
p : X ˆX Ñ R` such that for all x, y, z P X:

(p1) x “ y ô ppx, xq “ ppx, yq “ ppy, yq,
(p2) ppx, xq ≤ ppx, yq,
(p3) ppx, yq “ ppy, xq,
(p4) ppx, yq ≤ ppx, zq ` ppz, yq ´ ppz, zq.

In this case pX, pq is called a partial metric space.

It is clear that |ppx, yq ´ ppy, zq| ≤ ppx, zq @x, y, z P X. It is also clear
that ppx, yq “ 0 implies x “ y from pp1q and pp2q. But if x “ y, ppx, yq
may not be zero. A basic example of a partial metric space is the pair
pR`, pq, where ppx, yq “ maxtx, yu for all x, y P R`. Each partial metric
p on X generates τ0 topology τp on X which has as a base the family of
open p - balls tBppx, εq | x P X, ε ą 0u for all x P X and ε ą 0, where
Bppx, εq “ ty P X | ppx, yq ă ppx, xq ` εu for all x P X and ε ą 0. If p
is a partial metric on X, then the function ps : X ˆ X Ñ R`, given by
pspx, yq “ 2ppx, yq ´ ppx, xq ´ ppy, yq, is a metric on X.

Definition 1.3. [21] Let pX, pq be a partial metric space.
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(i) A sequence txnu in pX, pq is said to converge to a point x P X if and
only if ppx, xq “ lim

nÑ8
ppx, xnq.

(ii) A sequence txnu in pX, pq is said to be Cauchy sequence if
lim

n,mÑ8
ppxn, xmq exists and is finite.

(iii) pX, pq is said to be complete if every Cauchy sequence txnu in X con-
verges, with respect to τp, to a point x P X such that
ppx, xq “ lim

n,mÑ8
ppxn, xmq.

Lemma 1.4. [21] Let pX, pq be a partial metric space.

(a) txnu is a Cauchy sequence in pX, pq if and only if it is a Cauchy sequence
in the metric space pX, psq.

(b) pX, pq is complete iff the metric space pX, psq is complete. Further more,
lim
nÑ8

pspxn, xq “ 0 if and only if

ppx, xq “ lim
nÑ8

ppxn, xq “ lim
n,mÑ8

ppxn, xmq.

Lemma 1.5. [10] Let pX, pq be a partial metric space and A any nonempty
set in pX, pq, then a P A if and only if ppa,Aq “ ppa, aq, where A denotes
the closure of A with respect to the partial metric p.

Consistent with [9], let pX, pq be a partial metric space and let CBppXq be
the family of all non-empty, closed and bounded subsets of the partial metric
space pX, pq, induced by the partial metric p. Note that the closedness is taken
from pX, τpq pτp is the topology induced by p) and the boundedness is given as
follows: A is a bounded subset in pX, pq if there exist x0 P X andM ≥ 0 such
that for all a P A, we have a P Bppx0,Mq, that is, ppx0, aq ă ppx0, x0q `M .
For A,B P CBppXq, x P X, δp : CBppXq ˆ CBppXq Ñ R` define

ppx,Aq “ inf tppx, aq, a P Au , δppA,Bq “ sup tppa,Bq : a P Au ,

δppB,Aq “ sup tppb, Aq : b P Bu , HppA,Bq “ max tδppA,Bq, δppB,Aqu .

The mapping Hp : CB
ppXq ˆ CBppXq Ñ R` is called the partial Haus-

dorff metric induced by partial metric p. Every Hausdorff metric is a partial
Hausdorff metric but the converse is not true, see Example 2.6 in [9].

Lemma 1.6. [9] Let pX, pq be a partial metric space. For any A,B,C P

CBppXq, we have

(i) δppA,Aq = sup tppa, aq : a P Au,
(ii) δppA,Aq ≤ δppA,Bq,
(iii) δppA,Bq = 0 implies that A Ď B,
(iv) δppA,Bq ≤ δppA,Cq ` δppC,Bq ´ inf

cPC
ppc, cq.
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Lemma 1.7. [9] Let pX, pq be a partial metric space. For any A,B,C P

CBppXq, we have

(i) HppA,Aq ≤ HppA,Bq,
(ii) HppA,Bq “ HppB,Aq,
(iii) HppA,Bq ≤ HppA,Cq `HppC,Bq - inf

cPC
ppc, cq.

Lemma 1.8. [9] Let pX, pq be a partial metric space. For any A,B P

CBppXq the following holds: HppA,Bq “ 0 implies that A “ B.

In [9], they also show that by an example, HppA,Aq need not be zero.

Lemma 1.9. [9] Let pX, pq be a partial metric space, A,B P CBppXq and
h ą 1. For any a P A, there exists b P B such that ppa, bq ≤ hHppA,Bq.

Theorem 1.10. [9] Let pX, pq be a complete partial metric space and
T : X Ñ CBppXq is a multi-valued mapping such that for all x, y P X, we
have HppTx, Tyq ≤ k ppx, yq, where k P p0, 1q then T has a fixed point.

We state and prove our main results.

2. Main results
Lemma 2.1. Let xn Ñ x as n Ñ 8 in a partial metric space pX, pq such
that ppx, xq “ 0 then lim

nÑ8
ppxn, Bq “ ppx,Bq for any B P CBppXq.

Proof. Since xn Ñ x, we have lim
nÑ8

ppxn, xq “ ppx, xq “ 0.
By using triangular inequality for xn P X and y P B, we have

ppxn, yq ≤ ppxn, xq ` ppx, yq ´ ppx, xq,

which implies that

ppxn, Bq ≤ ppxn, xq ` ppx,Bq.

Therefore, we get lim
nÑ8

ppxn, Bq ≤ ppx,Bq.......(i).
On the other hand, we have

ppx, yq ≤ ppx, xnq ` ppxn, yq ´ ppxn, xnq.

Thus
ppx, yq ≤ ppx, xnq ` ppxn, yq.

By taking infinimum over y P B, we get

ppx,Bq ≤ ppx, xnq ` ppxn, Bq.

Therefore, we get ppx,Bq ≤ lim
nÑ8

ppxn, Bq.......(ii).
From (i) and (ii), we have lim

nÑ8
ppxn, Bq “ ppx,Bq.

Now we introduce the following new condition, namely, the condition
(W.C.C) on mappings which are not necessarily continuous and commutative.
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Definition 2.2. Let pX, pq be a partial metric space. Let f, g : X Ñ X
and S : X Ñ CBppXq be mappings. Then

(i) the triplet pf, g;Sq is said to satisfy the condition pW.C.Cq if

ppfx, gyq ≤ ppy, Sxq, @ x, y P X,

(ii) the pair pf ;Sq is said to satisfy the condition pW.C.Cq if

ppfx, fyq ≤ ppy, Sxq, @ x, y P X.

The following example illustrates the condition (W.C.C).

Example 2.3. Let X “ r0, 1s and ppx, yq “ maxtx, yu, @ x, y P X. Let
f, g : X Ñ X and S : X Ñ CBppXq be defined by fx “ 0, @ x, y P X,

gx “

#

0, if x P r0, 12 s,
x
32 , if x P p12 , 1s,

and Sx “ r0, 14 s, @ x, y P X. We consider the following two cases.

Case (a): x P X and y P r0, 12 s. Then ppfx, gyq “ 0 “ ppy, Sxq.
Case (b): x P X and y P p12 , 1s. Then ppfx, gyq “

y
32 ă y “ ppy, Sxq.

Thus pf, g;Sq satisfies the condition pW.C.Cq.

The following example shows that the triplet pf, g;Sq, satisfying the
condition (W.C.C), need not be continuous even when S is a single-valued
mapping.

Example 2.4. Let X “ r0, 1s and ppx, yq “ maxtx, yu, @x, y P X. Let
f, g, S : X Ñ X be defined by

fx “

#

x
12 , if x ‰ 1,
1
24 , if x “ 1,

x “

#

x
6 if x ‰ 1,
1
12 if x “ 1,

and

Sx “

#

x
2 , if x ‰ 1,
1
4 , if x “ 1.

Clearly, all the mappings f, g and S are discontinuous.
Now, we distinguish the following cases to show that pf, g;Sq satisfies the

condition pW.C.Cq.
Case (i): x ‰ 1 and y ‰ 1.

ppfx, gyq “ max

"

x

12
,
y

6

*

“
1

6
max

"

x

2
, y

*

“
1

6
ppy, Sxq.

Case (ii): x ‰ 1 and y “ 1.

ppfx, gyq “ max

"

x

12
,
1

12

*

ă
1

6
max

"

1,
x

2

*

“
1

6
ppy, Sxq.
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Case (iii): x “ 1 and y ‰ 1.

ppfx, gyq “ max

"

1

24
,
y

6

*

“
1

6
ppy, Sxq.

Case (iv): x “ 1 and y “ 1.

ppfx, gyq “ max

"

1

24
,
1

12

*

“
1

12
ă max

"

1,
1

4

*

“ ppy, Sxq.

Thus, pf, g;Sq satisfies the condition (W.C.C).

The following example shows that the triplet pf, g;Sq satisfying the
condition (W.C.C), need not be commuting even when S is a single-valued
mapping.

Example 2.5. Let a and b be non-negative real numbers such that b ă a.
Let X “ ta, bu and ppx, yq “ maxtx, yu, @x, y P X. Let f, g, S : X Ñ X be
defined by fa “ fb “ b, ga “ b, gb “ a and Sa “ Sb “ a.

Clearly the triplet pf, g;Sq satisfies the condition pW.C.Cq and the pairs
pf, Sq, pg, Sq and pf, gq are not commuting.

Now, we state and prove our main results.

Theorem 2.6. Let pX, pq be a complete partial metric space and let
S, T : X Ñ CBppXq and f, g : X Ñ X be mappings satisfying

p2.6.1q HppSx, Tyq ≤ αmax

#

ppfx, gyq, 1
2 rppfx, Sxq ` ppgy, Tyqs,

1
2 rppfx, Tyq ` ppgy, Sxqs

+

for all x, y P X and α P p0, 1q,
p2.6.2q

Ť

xPX

Sx Ď gpXq and
Ť

xPX

Tx Ď fpXq,

p2.6.3q the triplet pf, g;Sq or the triplet pf, g;T q satisfies the condition
pW.C.Cq.

Then f, g, S and T have a unique common fixed point in X.

Proof. Let x0 P X. From p2.6.2q, there exist x1, y1 P X such that y1 “
gx1 P Sx0.

From p2.6.2q and Lemma 1.9 with h “ 1?
α
, there exist x2, y2 P X such

that y2 “ fx2 P Tx1 and

ppy1, y2q ≤
1
?
α
HppSx0, Tx1q.

Again from p2.6.2q and Lemma 1.9, there exist x3, y3 P X such that y3 “
gx3 P Sx2 and

ppy2, y3q ≤
1
?
α
HppSx2, Tx1q.



720 K. P. R. Rao, K. R. K. Rao

Continuing in this way, we get the sequences txnu and tynu in X such that
y2n`1 “ gx2n`1 P Sx2n, y2n`2 “ fx2n`2 P Tx2n`1, n “ 0, 1, 2, 3, . . . and

ppy2n`1, y2nq ≤
1
?
α
HppSx2n, Tx2n´1q, n “ 1, 2, 3, . . .

ppy2n`1, y2n`2q ≤
1
?
α
HppSx2n, Tx2n`1q, n “ 0, 1, 2, 3, . . .

Now from p2.6.1q, we have

ppy2n`1, y2n`2q ≤
1
?
α
HppSx2n, Tx2n`1q,

≤
?
αmax

#

ppfx2n, gx2n`1q,
1
2 rppfx2n, Sx2nq ` ppgx2n`1, Tx2n`1qs,

1
2 rppfx2n, Tx2n`1q ` ppgx2n`1, Sx2nqs

+

≤
?
αmax

#

ppy2n, y2n`1q,
1
2 rppy2n, y2n`1q ` ppy2n`1, y2n`2qs,

1
2 rppy2n, y2n`2q ` ppy2n`1, y2n`1qs

+

≤
?
αmax

"

ppy2n, y2n`1q,
1

2
rppy2n, y2n`1q ` ppy2n`1, y2n`2qs

*

from pp4q.

Thus, we have

(1) ppy2n`1, y2n`2q ≤ βppy2n, y2n`1q,

where β “ max
!?

α,
?
α{2

1´
?
α{2

)

ă 1.
Similarly, we can show that

(2) ppy2n`1, y2nq ≤ βppy2n, y2n´1q.

From p1q and p2q, we have

(3) ppyn`1, ynq ≤ βppyn, yn´1q, for all n “ 1, 2, 3, . . .

By continuing in this way, we get

(4) ppyn`1, ynq ≤ βnppy1, y0q.

Since β ă 1, which in turn yields that

(5) ppyn`1, ynq Ñ 0 as nÑ8.

For m ą n, we have

ppyn, ymq ≤ ppyn, yn`1q ` ppyn`1, yn`2q ` ¨ ¨ ¨ ` ppym´1, ymq,(6)

≤
`

βn ` βn`1 ` ¨ ¨ ¨ ` βm´1
˘

ppy1, y0q from p2q

≤ βn

1´ β
ppy1, y0q Ñ 0 as nÑ8.
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Thus tynu is a Cauchy sequence in X. Hence from Lemma 1.4, tynu is a
Cauchy sequence in pX, psq.

Since pX, pq is complete and from Lemma 1.4, it follows that pX, psq is
complete. So tynu converges to some z P X. That is

lim
nÑ8

pspyn, zq “ 0.

Now from Lemma 1.4 and (6), we have

(7) ppz, zq “ lim
nÑ8

ppyn, zq “ lim
nÑ8

ppyn, ymq “ 0.

Suppose the triplet pf, g;Sq satisfies the condition (W.C.C) then

(8) ppfx, gyq ≤ ppy, Sxq for all x, y P X.

Let x “ x2n and y “ z in (8), we have

ppfx2n, gzq ≤ ppz, Sx2nq ≤ ppz, gx2n`1q.

Letting nÑ8 , using Lemma 2.1 and (7), we can obtain

ppz, gzq ≤ 0 so that gz “ z.

Now by using p2.6.1q, we have

ppgx2n`1, T zq ≤ HppSx2n, T zq,

≤ αmax

#

ppfx2n, gzq,
1
2 rppfx2n, Sx2nq ` ppgz, Tzqs,

1
2 rppfx2n, T zq ` ppgz, Sx2nqs

+

≤ αmax

#

ppfx2n, zq,
1
2 rppfx2n, gx2n`1q ` ppz, Tzqs,

1
2 rppfx2n, T zq ` ppz, gx2n`1qs

+

.

Letting nÑ8, using Lemma 2.1, (7) and (5), we get

ppz, Tzq ≤ α

2
ppz, Tzq.

Hence ppz, Tzq “ 0, which in turn yields from Lemma 1.5 and (7) that
z P Tz “ Tz. Thus

(9) gz “ z P Tz.

Now from (8), we have

(10) ppfz, zq “ ppfz, gzq ≤ ppz, Szq.
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Using p2.6.1q, we have

ppz, Szq ≤ HppSz, Tzq

≤ αmax

#

ppfz, gzq, 12 rppfz, Szq ` ppgz, Tzqs,
1
2 rppfz, Tzq ` ppgz, Szqs

+

≤ αmax tppz, Szq, ppz, Szq, ppz, Szqu from pp4q, p10q, p9q

“ αppz, Szq,

which in turn yields that ppz, Szq “ 0. From Lemma 1.5 and (7), we have
z P Sz “ Sz.

Now from (8), we get ppfz, zq ≤ 0 so that fz “ z. Thus

(11) fz “ z P Sz.

From (9) and (11), it follows that z is a common fixed point of f, g, S and T .
Suppose z1 is another common fixed point of f, g, S and T . From (8), we

have

(12) ppz, z1q “ ppfz, gz1q ≤ ppz1, Szq ≤ HppSz, Tz
1q.

Now

HppSz, Tz
1q ≤ αmax

#

ppfz, gz1q, 12 rppfz, Szq ` ppgz
1, T z1qs,

1
2 rppfz, Tz

1q ` ppgz1, Szqs

+

≤ αmax

#

HppSz, Tz
1q, 12 rHppSz, Szq `HppTz

1, T z1qs,
1
2 rHppSz, Tz

1q `HppTz
1, Szqs

+

from (12)
≤ αHppSz, Tz

1q from Lemma 1.7 (i) .

Thus HppSz, Tz
1q “ 0 so that from (12), z “ z1. Hence z is the unique

common fixed point of f, g, S and T .
Similarly we can prove the theorem when pf, g;T q satisfies the condition

(W.C.C).

Proceeding as in Theorem 2.6, one can easily prove the following.

Theorem 2.7. Let pX, pq be a complete partial metric space and let
S, T : X Ñ CBppXq and f : X Ñ X be mappings satisfying

p2.7.1q HppSx, Tyq ≤ αmax

#

ppfx, fyq, ppfx, Sxq, ppfy, Tyq,
1
2 rppfx, Tyq ` ppfy, Sxqs

+

for all

x, y P X where 0 ≤ α ă 1,
p2.7.2q

Ť

xPX

Sx Ď fpXq and
Ť

xPX

Tx Ď fpXq,

p2.7.3q the pair pf ;Sq or the triplet pf ;T q satisfies the condition pW.C.Cq.



Unique common fixed point theorems for pairs of hybrid maps. . . 723

Then f, S and T have a unique common fixed point in X.

Finally, we give the following.

Theorem 2.8. Let pX, pq be a complete partial metric space and let
S, T : X Ñ CBppXq be mappings satisfying

p2.8.1q HppSx, Tyq ≤ αmax

#

ppx, yq, ppx, Sxq, ppy, Tyq,
1
2 rppx, Tyq ` ppy, Sxqs

+

for all x, y P X,

where 0 ≤ α ă 1 .

Then S and T have a common fixed point in X. Further, if we assume that
ppx, yq ≤ ppy, Sxq or ppx, yq ≤ ppy, Txq for all x, y P X then S and T have
a unique common fixed point in X.
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