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ON LACUNARY p-ABSOLUTELY SUMMABLE FUZZY
REAL-VALUED DOUBLE SEQUENCE SPACE

Abstract. In this article, we introduce the class of p-absolutely summable fuzzy
real valued double sequence (2£,)5. We have studied some algebraic properties like solid,
symmetric, convergence free, sequence algebra. Further, we establish some relation with
the class of p-Cesaro summable double sequences and some other important inclusion
results.

1. Introduction

A lacunary is an increasing sequence 6 = (k,)(r = 0,1,2,3,..) of positive
integers such that h, = k, — k,—1 — 00 as r — o0 with k9 = 0. The interval
determined by 6 is given by I, = (k,_1,k,| and the ratio kf—il is denoted
by g.

By a double lacunary we mean an increasing sequence 6, s = {(ky,¢s)} of
positive integers such that

ky — ky—1(= hy) > 0 as r — o with ky = 0,

and
by —Lls_1(= hg) — o0 as s — o0 with £y = 0.

The interval determined by 6, s is represented by I, s = {(k,?) : k,—1 <

k< kpilsy < €< 6} and kg = kpls, hys = heh. The ratios 2, Ao

are denoted by ¢, ¢s, respectively and g¢,ds = g s.

Different classes of lacunary sequences have been studied by some re-
nowned researchers in the recent past. Altin [1], Gokhan et. al. [4], Savas
([7], [8]) and Savas and Patterson [9], Savas and Mursaleen [10], Subramanian
and Esi [11], Esi [3|, Tripathy and Dutta [16], Tripathy and Baruah [18],
Tripathy and Mahanta [17| are some of them.
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A fuzzy real number X is a fuzzy set on R, more precisely a mapping
X : R — I(= [0,1]), associating each real number ¢, with its grade of
membership X (¢) which satisfies the following properties.

(i) X is normal i.e. there exists tp € R such that X (tp) = 1.
(ii) X is upper-semi-continuous i.e. for each ¢ > 0 and for all a €
I, X71([0,a + €)) is open in the usual topology of R.
(ili) X is convex i.e. X(t) > X(s) A X(r) = min(X(s), X(r)), where s <
t<r.
(iv) The closure of {t € R: X (t) > 0} is compact.

The class of all upper-semi-continuous, normal, convex fuzzy real numbers
is denoted by R([).
The absolute value of X € R(I) is defined by

max{X(t), X (—t)}, fort>0,
X0 - { |
0, otherwise.
The set R of all real numbers can be embedded in R([). For re R, 7€
R(I) is defined by i 1 fort=r
r(t) =

0, fort #r.

We denote the additive identity and multiplicative identity of R(I) by 0
and 1, respectively.

For any X,Y,Z € R(I), the linear structure of R(I) induces addition
X +Y and scalar multiplication AX, A € R in terms of a-level set, defined as
[X +Y]* = [X]*+ [YV]* and [AX]* = A[X]?, for each o € [0,1]. A subset
E of R(I) is said to be bounded above if there exists a fuzzy real number p
such that X < p for every X € E. We call . an upper bound of F and it is
called the least upper bounds if u < p* for all upper bound p* of E. A lower
bound and greatest lower bound can be defined similarly. The set F is said
to be bounded if it is both bounded above and bounded below.

Let D be the set of all closed and bounded intervals X = [X1, Xf]. We
define a metric on D by

d(X,Y) = max(| Xt - YE|, | XB - VE).

It is straightforward that (D, d) is a complete metric space.
Define d : R(I) x R(I) — R by

d(X,Y) = sup d(X*Y?), for X,Y € R(I).
0<a<l1
It is well established that (R(I),d) is a complete metric space.
The aim of this article is to introduce the concept of lacunary p-absolutely
summable double sequence of fuzzy real numbers and make an effort to study
some algebraic properties as well as some inclusion relation.
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2. Preliminaries and background

In this part, we recall some fundamental notions, which are closely related
to the article.

A fuzzy real-valued sequence is denoted by (Xj), where X € R(I), for
all ke N.

A sequence (X}) of fuzzy real numbers is said to be convergent to the
fuzzy real number Xy, if for every € > 0, there exists kg € N such that
d(Xg, Xo) < &, for all k > k.

Let EF be the class of sequences of fuzzy real numbers, the linearity of
EF can be understood as follows.

For (X}), (Yx) € EF and r € R,

(i) (Xp) + (Vi) = (X3 + V) € EF,
(ii) r(Xe) = (rXg) € EX,
where

Xp(r=1t), ifr #0,
r(Xe)(t) = {0 ifr=0

A fuzzy real-valued double sequence is a double infinite array of fuzzy
real numbers. We denote it by (X,,x), where X1, are fuzzy real numbers for
each n,k € N. We denote the class of all fuzzy real-valued double sequences
by swp.

DEFINITION 1. A fuzzy real-valued double sequence (X) is said to be
convergent in Pringsheim’s sense to the fuzzy real number X, if for every
e > 0, there exist ng = no(e), ko = ko(), such that d(X,, X) < ¢ for all
n > ng and k > k.

DEFINITION 2. A fuzzy real-valued double sequence (Xj) is said to be
bounded if *"Pd(X,;,0) < o0, equivalently, if there exist R*(I) such that
| Xnk] < p for all n,k € N, where R*(I) denotes the set of all positive fuzzy
real numbers.

DEFINITION 3. A fuzzy real valued double sequence space cwp is said to
be solid if (Y,x) € 2wp, whenever (X,1) € 2wp and |Yyx| < |X,x|, for all
n,ke N.

DEFINITION 4. A fuzzy real valued double sequence space swp is said
to be symmetric if (X (1)) € 2wr, whenever (X,;) € 2wp, where 7 is a
permutation on N x N.

DEFINITION 5. A fuzzy real valued double sequence space cwp is said to
be convergence free if (V) € swp, whenever (X,x) € 2wp and X, = 0
implies Y, = 0.
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DEFINITION 6. A fuzzy real valued double sequence space cwp is said to
be sequence algebra if (X,x) ®(Ynx) € 2wp, whenever (X,x), (Yor) € 2wp.

Tripathy and Dutta [12] introduced the notion of Cesaro summable and
strongly p-Cesaro summable double sequences of fuzzy real numbers as
follows:

DEFINITION 7. A fuzzy real valued double sequence (X,;) is said to be
Cesaro summable to a fuzzy real number L if

<UUZZX"’“ >—>0asu,v—>oo.

n=1k=1
DEFINITION 8. A fuzzy real-valued double sequence (X,) is said to be
strongly p-Cesaro summable to a fuzzy real number L, if

M}(ZZ Xk, L )—>Oasu,v—>oo.

n=1k=1
We denote it by Cesa(p).

Some important classes of sequences of fuzzy real numbers have been
introduced and studied by Kwon [5], Savas and Patterson [6], Talo and Basar
[12], Tripathy and Dutta ([13], [15]) and some others.

The class of fuzzy real-valued double sequences 9%, was introduced by
Tripathy and Dutta [14] as follows:

25102{ — 22 Xk, 0 },1§p<00.

n=1k=1

Dutta [2]| introduced the class of lacunary p-absolutely summable fuzzy
real-valued sequences (£,)5 as follows:

(ép)gz{X:( 2( Zan,O> <oo},1§p<oo.

r=1 " nel,

We introduce the class of fuzzy real-valued double sequences (2£,)] as
follows:

00,00

) 1 _ _ P

= {x = s X (G 8 @) <ol 1<p<
T‘,Sil s nakEI'r,s

3. Main results

THEOREM 1. The class of sequences (2£y)} is closed under addition and
scalar multiplication.

Proof. Let 6,.s = {k;, (s} be a double lacunary sequence and (X,;) € (20,)5 -
Since d(cXp, cY®) = |c|d(Xy, V), we have d(cX,cY) = |c|d(X,Y), for any
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c € R. This gives

Oio( 1 (X, 0) ) = Oof (hl > ]c|d(Xnk,(_))>p

r,s

r,s=1,1 n,kel, s r,s=1,1 LEL kel s
00,00
S < S d(X, 0 > <
r,s=1,1 r,s n,kel, s

This shows that (cXnk) € (26p)5 -
Next we suppose that (Xnx), (Yar) € (2£,)) and we notice that
d(XE + Y Xg + Y5 < d(Xy, X)) + d(Yi', Yo').

Thus we have

T7§71< s D d{(Xnk + Yor), })P

n,kelr s

00,00 00,00

< 3 (i X o)+ 3 (5
n,kel, s r,s=1,1

r,s=1,1

T‘,S T‘,S

Z dnk,><oo.

n,kel, s

Thus (X, + Yar) € (26p)5 . This completes the proof. =

THEOREM 2. Let 0, s = {ky,{s} be a double lacunary sequence and lim inf g,
> 1, and lim inf 4s > 1, then for 0 < p < 1, Cesa(p) = (2£,)}.

Proof. Suppose lim inf ¢, > 1, and lim inf ¢; > 1 then there exists § > 0
such that ¢, > 14 6 and ¢s > 1 + §. This implies

k. k. qr 1456 O L s 146
— = = < and —— = = - < .
hr kr - kr—l qr — 1 d hs es - gs—l qs — 1 0
Let (X,x) € Cesa(p), then we can write
00,00 1 kr,ls B Y
(i) {k 7 (Xnk,O)} < 0.
ris=1,1 % T8 n=1 k=1
We have
00,00 1 N P
Y e ¥ e
r,s=1,1 LA n,kel, s
00,00 1 kr s - B 1 kr—1,€s—1 D
) D1 d(Xuk,0) d(Xnk, 0)
hr s hr s
r,s=1,1 n=1,k=1 7 n=1k=1

00,00 1 ks ~ D 00,00 1 kr—1,0s—1 - P
< [h ) d(Xnk,O)] - [h d(Xnk,m]

r,s=1,1
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00,00 kr,ls 00,00 1 kr—1,0s—1
{hh 2, X ”k’]_z[hﬁ 2, X ”k]

r,8 S n=1,k=1 r,s=1,1 TS n=1,k=1
00,00 kr bl
) 1 kr gs TytSs _ _ p
- A D1 (X, 0)
r,s=1,1 TS LT hs n=1k=1
o0

ZOO 1 |:k'r'—l Es 1 e 12 d . :|
—1,1 kr—lfs—l hr hs 1k=1

r,8 n=

2 00,00 kr s
<1§6> ke[ 2, X0 ]

<
r,s=1,1 n=1,k=1
kr—1,0s—1
DY Y o]
— | = —_— d(Xnk,O)].
<5 "',8:1,1 k’/‘—les—l ’n:l,k'zl

Using (i) we have

Oof [ ! > J(Xnk,())]p<oo.

r.s=1,1 8 n,kely s

This completes the proof. m

THEOREM 3. Let 6, s = {ky,{s} be a double lacunary sequence and lim sup gy,
< o0 and lim sup ¢; < o then for 0 <p <1, (gﬁp)g c Cesa(p).

Proof. Let lim sup q, < o0 and lim sup ¢s < 0. Then there exists M > 0
such that ¢, < M and ¢s < M for all r,s. Let (Xy,x) € (26p)} and € > 0 be
given, then there exist rg > 0, sg > 0 such that
1
A s

ij = h
"8 kel s

[d(Xn1,0)]P < ¢, for every i > rg and j > sp.

Let K = max{A;; : 1 <r <rg;1 < s < 59} and choose m and p such
that k.1 <m <k, and ¢;_1 < p < {,. Then we have

kr s

Loy [J(Xnk,c‘»]f’smj&l 2 X0

Y Y or)

ky— 153 Lu=tv=1 "nkelyo
1 70,50 1
r=1%s—1 ., T u=1 rits—l (ro<u<r)u(sg<v<s)
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Z hu,quu,v

ro<u<r)u(sp<v<s)

70,50 1

K
< —F hyy + 7—F5—
T k151 u:;v:l ' kr_1€s—1 (

Kn,,ks,m050 N 1
a kr—lfs—l kr—lgs—l

hu,v Au,v

(ro<u<r)u(so<v<s)

Kny ks 7050 1
< e su Ayy)——— Puw
- kr—lgs—l (u>r0)u1()v>so)( 7 ) kT—l[S—l Z

)

(ro<u<r)u(sg<v<s)

Kn, ks 1050 1
< L + 5 h
o krflfsfl krflgsfl Z “r

(ro<u<r)u(so<v<s)
Kn,yks,m050
- krflfsfl
We observe that k, and £, will tend to infinity as m, p — o0, thereby
1

— > [d( Xk, 0)]P — 0.

mp n=1,k=1

+eM?.

Thus (X,x) € Cesa(p). This completes the proof. m
Combining Theorem 2 and Theorem 3, we have the following theorem.

THEOREM 4. Let 60, = {k,,{s} be a double lacunary sequence. If
1 < liminfqg- < limsupg, < o0 and 1 < liminfds < limsupds <
0 then (26p)} = Cesa(p), for 0 <p < 1.

THEOREM 5. The class of sequences (2,)5 is solid.

Proof. Let 0, s = {k;,{s} be a double lacunary sequence, consider the double
sequences (X ), (Yor) € 2wp such that d(YV,x,0) < d(Xpx,0) for alln, k € N.
Suppose that (Xpi) € (26p)5 , then

OOZEO (1 > J(Xnk,0)>p<oo.

r=1,s=1 758 n,kely s
We have
00,00 1 B C\P 00,00 1 B _\?P
r=1,s=1 T8 n,kel, s r=1,s=1 LEN n,kel, s

Thus (Yox) € (26p)5 . This completes the proof. =
THEOREM 6. The class of sequences (2£p>9F s a sequence algebra.

Proof. Let 0, s = {k,,{s} be a double lacunary sequence and (X,x), (Ynr)
€ (261))5
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We observe that

00,00 1 ~ \P
r=l,s=1 N "% nkel,
0,% D
Z < Z d TLk7 nk70)>
=1

’I"S

= , n k'EIT s
00,00 1 B p 00,00 1 B P
< (h > axgmm> (h do@mov < .
r=l,s=1 "% nkel, , r=l,s=1 N "% n kel,

This completes the proof. m

THEOREM 7. The class of sequences (gfp)g s not convergence free in
general.

Proof. We provide the following example in support of the proof.

EXAMPLE 1. Let 6 = (3",3°) be a double lacunary sequence and p = 1.
Consider the double sequence (X,,;) defined by

{(n+ k)%t +1}, for T _1) <t<0

Xok(t) =3 {1 —(n+k)*t}, for0<t<

0, otherwise.

(n +k)2’

Then we have
00,00 00,00 1
-2
Z < Z d(Xnk, 0 > = Z <4 Sris 2 Z (n+k) ) < 0.
r=1,s=1 n,kelr s r=1,s=1 ' n,kelr s

Thus (Xnk:) € (26}9)9 .
Consider the double sequence (Y,,) defined by

{tvn+k+1}, for

T‘,S

<t<Q

VZ +h) T T
Yo (t) = — D S
k(1) {1—tvn+k}, for0<t< \/( st

0, otherwise.
Then
00,00 00,00 )
% (i 8 a0w0) = % (g X oenE)=o
r=1,s=1 ’”vsnkeus r=1,s=1 n,kelr s

This shows that (V) ¢ (20,)5 -

THEOREM 8. (20,)" < (24,)F, if 3727 1,s= 1h1 < ©.
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Proof. Let (X,x) € (2£,)F, therefore Z:O:’Cfszl {d( Xk, 0)} < 0. We can

choose a positive integer ng such that for all n,k > ng, >, k>n0{d(Xnk, 0)}P
< 1.

Thus we have

S ¥ dwo) < ¥ o<

r,8>n0 7,8 n,kelr s

This implies

ZO:O {hnl"s > J(Xnk,o)}p<oo.

r=1,s=1 n,kel, s

This completes the proof. m

THEOREM 9. For 0 <p <gq, (20p)} < (249)} -

Proof. The proof follows directly from the following inclusion relation:

(1]
2
(3]

[4

]

6

[7

(8]

9

[10]

[11]

oof]o {hl > d(Xnk,w}pc Og {hl 2 d<X”’“’0)}q"

r=1,s=1 T8 n,kely s r=1,s=1 T8 n,kelr s
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