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ON LACUNARY p-ABSOLUTELY SUMMABLE FUZZY
REAL-VALUED DOUBLE SEQUENCE SPACE

Abstract. In this article, we introduce the class of p-absolutely summable fuzzy
real valued double sequence p2`pq

F
θ . We have studied some algebraic properties like solid,

symmetric, convergence free, sequence algebra. Further, we establish some relation with
the class of p-Cesàro summable double sequences and some other important inclusion
results.

1. Introduction
A lacunary is an increasing sequence θ “ pkrqpr “ 0, 1, 2, 3, ..q of positive

integers such that hr “ kr ´ kr´1 Ñ8 as r Ñ8 with k0 “ 0. The interval
determined by θ is given by Ir “ pkr´1, krs and the ratio kr

kr´1
is denoted

by qr.
By a double lacunary we mean an increasing sequence θr,s “ tpkr, `squ of

positive integers such that

kr ´ kr´1p“ hrq Ñ 8 as r Ñ8 with k0 “ 0,

and
`s ´ `s´1p“ h́sq Ñ 8 as sÑ8 with `0 “ 0.

The interval determined by θr,s is represented by Ir,s “ tpk, `q : kr´1 ă

k ≤ kr; `s´1 ă ` ≤ `su and kr,s “ kr`s, hr,s “ hrh́s. The ratios kr
kr´1

, `s
`s´1

are denoted by qr, q́s, respectively and qr q́s “ qr,s.
Different classes of lacunary sequences have been studied by some re-

nowned researchers in the recent past. Altin [1], Gokhan et. al. [4], Savas
([7], [8]) and Savas and Patterson [9], Savas and Mursaleen [10], Subramanian
and Esi [11], Esi [3], Tripathy and Dutta [16], Tripathy and Baruah [18],
Tripathy and Mahanta [17] are some of them.
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A fuzzy real number X is a fuzzy set on R, more precisely a mapping
X : R Ñ Ip“ r0, 1sq, associating each real number t, with its grade of
membership Xptq which satisfies the following properties.

(i) X is normal i.e. there exists t0 P R such that Xpt0q “ 1.
(ii) X is upper-semi-continuous i.e. for each ε ą 0 and for all a P

I, X´1pr0, a` εqq is open in the usual topology of R.
(iii) X is convex i.e. Xptq ≥ Xpsq ^ Xprq “ minpXpsq, Xprqq, where s ă

t ă r.
(iv) The closure of tt P R : Xptq ą 0u is compact.

The class of all upper-semi-continuous, normal, convex fuzzy real numbers
is denoted by RpIq.

The absolute value of X P RpIq is defined by

|X|ptq “

"

maxtXptq, Xp´tqu, for t ≥ 0,
0, otherwise.

The set R of all real numbers can be embedded in RpIq. For r P R, r̄ P
RpIq is defined by

r̄ptq “

"

1, for t “ r,

0, for t ‰ r.
We denote the additive identity and multiplicative identity of RpIq by 0̄

and 1̄, respectively.
For any X,Y, Z P RpIq, the linear structure of RpIq induces addition

X ` Y and scalar multiplication λX, λ P R in terms of α-level set, defined as
rX ` Y sα “ rXsα ` rY sα and rλXsα “ λrXsα, for each α P r0, 1s. A subset
E of RpIq is said to be bounded above if there exists a fuzzy real number µ
such that X ≤ µ for every X P E. We call µ an upper bound of E and it is
called the least upper bounds if µ ≤ µ˚ for all upper bound µ˚ of E. A lower
bound and greatest lower bound can be defined similarly. The set E is said
to be bounded if it is both bounded above and bounded below.

Let D be the set of all closed and bounded intervals X “ rXL, XRs. We
define a metric on D by

dpX,Y q “ maxp|XL ´ Y L|, |XR ´ Y R|q.

It is straightforward that pD, dq is a complete metric space.
Define d̄ : RpIq ˆRpIq Ñ R by

dpX,Y q “ sup
0≤α≤1

dpXα, Y αq, for X,Y P RpIq.

It is well established that pRpIq, d̄q is a complete metric space.
The aim of this article is to introduce the concept of lacunary p-absolutely

summable double sequence of fuzzy real numbers and make an effort to study
some algebraic properties as well as some inclusion relation.
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2. Preliminaries and background
In this part, we recall some fundamental notions, which are closely related

to the article.
A fuzzy real-valued sequence is denoted by pXkq, where Xk P RpIq, for

all k P N .
A sequence pXkq of fuzzy real numbers is said to be convergent to the

fuzzy real number X0, if for every ε ą 0, there exists k0 P N such that
d̄pXk, X0q ă ε, for all k ≥ k0.

Let EF be the class of sequences of fuzzy real numbers, the linearity of
EF can be understood as follows.

For pXkq, pYkq P E
F and r P R,

pXkq ` pYkq “ pXk ` Ykq P E
F ,(i)

rpXkq “ prXkq P E
F ,(ii)

where

rpXkqptq “

"

Xkpr
´1tq, if r ‰ 0,

0̄, if r “ 0.
A fuzzy real-valued double sequence is a double infinite array of fuzzy

real numbers. We denote it by pXnkq, where Xnk are fuzzy real numbers for
each n, k P N . We denote the class of all fuzzy real-valued double sequences
by 2wF .

Definition 1. A fuzzy real-valued double sequence pXnkq is said to be
convergent in Pringsheim’s sense to the fuzzy real number X, if for every
ε ą 0, there exist n0 “ n0pεq, k0 “ k0pεq, such that d̄pXnk, Xq ă ε for all
n ≥ n0 and k ≥ k0.

Definition 2. A fuzzy real-valued double sequence pXnkq is said to be
bounded if sup

n,k d̄pXnk, 0̄q ă 8, equivalently, if there exist R˚pIq such that
|Xnk| ≤ µ for all n, k P N , where R˚pIq denotes the set of all positive fuzzy
real numbers.

Definition 3. A fuzzy real valued double sequence space 2wF is said to
be solid if pYnkq P 2wF , whenever pXnkq P 2wF and |Ynk| ≤ |Xnk|, for all
n, k P N .

Definition 4. A fuzzy real valued double sequence space 2wF is said
to be symmetric if pXπpnkqq P 2wF , whenever pXnkq P 2wF , where π is a
permutation on N ˆN .

Definition 5. A fuzzy real valued double sequence space 2wF is said to
be convergence free if pYnkq P 2wF , whenever pXnkq P 2wF and Xnk “ 0̄
implies Ynk “ 0̄.
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Definition 6. A fuzzy real valued double sequence space 2wF is said to
be sequence algebra if pXnkq

Â

pYnkq P 2wF , whenever pXnkq, pYnkq P 2wF .

Tripathy and Dutta [12] introduced the notion of Cesàro summable and
strongly p-Cesàro summable double sequences of fuzzy real numbers as
follows:
Definition 7. A fuzzy real valued double sequence pXnkq is said to be
Cesàro summable to a fuzzy real number L if

d̄

ˆ

1

uv

u
ÿ

n“1

v
ÿ

k“1

Xnk, L

˙

Ñ 0 as u, v Ñ8.

Definition 8. A fuzzy real-valued double sequence pXnkq is said to be
strongly p-Cesàro summable to a fuzzy real number L, if

1

uv

ˆ u
ÿ

n“1

v
ÿ

k“1

rd̄pXnk, Lqs
p
¯

Ñ 0 as u, v Ñ8.

We denote it by Ces2ppq.
Some important classes of sequences of fuzzy real numbers have been

introduced and studied by Kwon [5], Savas and Patterson [6], Talo and Basar
[12], Tripathy and Dutta ([13], [15]) and some others.

The class of fuzzy real-valued double sequences 2`
p
F was introduced by

Tripathy and Dutta [14] as follows:

2`
p
F “

!

X “ pXnkq :
8
ÿ

n“1

8
ÿ

k“1

“

d̄pXnk, 0̄q
‰p
ă 8

)

, 1 ≤ p ă 8.

Dutta [2] introduced the class of lacunary p-absolutely summable fuzzy
real-valued sequences p`pqFθ as follows:

p`pq
F
θ “

"

X “ pXnq :
8
ÿ

r“1

ˆ

1

hr

ÿ

nPIr

d̄pXn, 0̄q

˙p

ă 8

*

, 1 ≤ p ă 8.

We introduce the class of fuzzy real-valued double sequences p2`pqFθ as
follows:

p2`pq
p
θ “

"

X “ pXnkq :

8,8
ÿ

r,s“1

ˆ

1

hrs

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p

ă 8

*

, 1 ≤ p ă 8.

3. Main results

Theorem 1. The class of sequences p2`pqFθ is closed under addition and
scalar multiplication.
Proof. Let θr,s “ tkr, `su be a double lacunary sequence and pXnkq P p2`pq

F
θ .

Since d̄pcXα
k , cY

α
k q “ |c|d̄pX

α
k , Y

α
k q, we have d̄pcX, cY q “ |c|d̄pX,Y q, for any
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c P R. This gives
8,8
ÿ

r,s“1,1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pcXnk, 0̄q

˙p

“

8,8
ÿ

r,s“1,1

ˆ

1

hr,s

ÿ

n,kPIr,s

|c|d̄pXnk, 0̄q

˙p

“ |c|p
8,8
ÿ

r,s“1,1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p

ă 8.

This shows that pcXnkq P p2`pq
F
θ .

Next we suppose that pXnkq, pYnkq P p2`pq
F
θ and we notice that

dpXα
k ` Y

α
k , X

α
0 ` Y

α
0 q ≤ dpXα

k , X
α
0 q ` dpY

α
k , Y

α
0 q.

Thus we have
8,8
ÿ

r,s“1,1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄ tpXnk ` Ynkq, 0̄u

˙p

≤
8,8
ÿ

r,s“1,1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p

`

8,8
ÿ

r,s“1,1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pYnk, 0̄q

˙p

ă 8.

Thus pXnk ` Ynkq P p2`pq
F
θ . This completes the proof.

Theorem 2. Let θr,s “ tkr, `su be a double lacunary sequence and lim inf qr
ą 1, and lim inf q́s ą 1, then for 0 ă p ă 1, Ces2ppq Ă p2`pq

F
θ .

Proof. Suppose lim inf qr ą 1, and lim inf q́s ą 1 then there exists δ ą 0
such that qr ą 1` δ and q́s ą 1` δ. This implies
kr
hr
“

kr
kr ´ kr´1

“
qr

qr ´ 1
≤ 1` δ

δ
and

`s

h́s
“

`s
`s ´ `s´1

“
q́s

q́s ´ 1
≤ 1` δ

δ
.

Let pXnkq P Ces2ppq, then we can write

piq

8,8
ÿ

r,s“1,1

"

1

kr`s

kr,`s
ÿ

n“1,k“1

d̄pXnk, 0̄q

*p

ă 8.

We have
8,8
ÿ

r,s“1,1

„

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

p

“

8,8
ÿ

r,s“1,1

„

1

hr,s

kr,`s
ÿ

n“1,k“1

d̄pXnk, 0̄q ´
1

hr,s

kr´1,`s´1
ÿ

n“1,k“1

d̄pXnk, 0̄q

p

≤
8,8
ÿ

r,s“1,1

„

1

hr,s

kr,`s
ÿ

n“1,k“1

d̄pXnk, 0̄q

p

´

8,8
ÿ

r,s“1,1

„

1

hr,s

kr´1,`s´1
ÿ

n“1,k“1

d̄pXnk, 0̄q

p
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“

8,8
ÿ

r,s“1,1

„

1

hrh́s

kr,`s
ÿ

n“1,k“1

d̄pXnk, 0̄q

p

´

8,8
ÿ

r,s“1,1

„

1

hrh́s

kr´1,`s´1
ÿ

n“1,k“1

d̄pXnk, 0̄q

p

“

8,8
ÿ

r,s“1,1

1

kr`s

„

kr
hr

`s

h́s

kr,`s
ÿ

n“1,k“1

d̄pXnk, 0̄q

p

´

8,8
ÿ

r,s“1,1

1

kr´1`s´1

„

kr´1
hr

`s´1

h́s

kr´1,`s´1
ÿ

n“1,k“1

d̄pXnk, 0̄q

p

≤
ˆ

1` δ

δ

˙2 8,8
ÿ

r,s“1,1

1

kr`s

”

kr,`s
ÿ

n“1,k“1

d̄pXnk, 0̄q
ıp

´

ˆ

1

δ

˙2 8,8
ÿ

r,s“1,1

1

kr´1`s´1

”

kr´1,`s´1
ÿ

n“1,k“1

d̄pXnk, 0̄q
ıp
.

Using (i) we have
8,8
ÿ

r,s“1,1

„

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

p

ă 8.

This completes the proof.

Theorem 3. Let θr,s “ tkr, `su be a double lacunary sequence and lim sup qr
ă 8 and lim sup q́s ă 8 then for 0 ă p ă 1, p2`pq

F
θ Ă Ces2ppq.

Proof. Let lim sup qr ă 8 and lim sup q́s ă 8. Then there exists M ą 0
such that qr ăM and q́s ăM for all r, s. Let pXnkq P p2`pq

F
θ and ε ą 0 be

given, then there exist r0 ą 0, s0 ą 0 such that

Aij “
1

hr,s

ÿ

n,kPIr,s

rd̄pXnk, 0̄qs
p ă ε, for every i ą r0 and j ą s0.

Let K “ maxtAij : 1 ≤ r ≤ r0; 1 ≤ s ≤ s0u and choose m and p such
that kr´1 ă m ≤ kr and `s´1 ă p ≤ `s. Then we have

1

mp

m,p
ÿ

n“1,k“1

rd̄pXnk, 0̄qs
p ≤ 1

kr´1`s´1

kr,`s
ÿ

n“1,k“1

rd̄pXnk, 0̄qs
p

≤ 1

kr´1`s´1

r,s
ÿ

u“1,v“1

!

ÿ

n,kPIu,v

rd̄pXnk, 0̄qs
p
)

“
1

kr´1`s´1

r0,s0
ÿ

u“1,v“1

hu,vAu,v `
1

kr´1`s´1

ÿ

pr0ăuărqYps0ăvăsq

hu,vAu,v
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≤ K

kr´1`s´1

r0,s0
ÿ

u“1,v“1

hu,v `
1

kr´1`s´1

ÿ

pr0ăuărqYps0ăvăsq

hu,vAu,v

≤ Knr0ks0r0s0
kr´1`s´1

`
1

kr´1`s´1

ÿ

pr0ăuărqYps0ăvăsq

hu,vAu,v

≤ Knr0ks0r0s0
kr´1`s´1

` sup
puąr0qYpvąs0q

pAu,vq.
1

kr´1`s´1

ÿ

pr0ăuărqYps0ăvăsq

hu,v

≤ Knr0ks0r0s0
kr´1`s´1

`
1

kr´1`s´1
ε

ÿ

pr0ăuărqYps0ăvăsq

hu,v

≤ Knr0ks0r0s0
kr´1`s´1

` εM2.

We observe that kr and `s will tend to infinity as m, pÑ8, thereby

1

mp

m,p
ÿ

n“1,k“1

rd̄pXnk, 0̄qs
p Ñ8.

Thus pXnkq P Ces2ppq. This completes the proof.

Combining Theorem 2 and Theorem 3, we have the following theorem.

Theorem 4. Let θr,s “ tkr, `su be a double lacunary sequence. If
1 ă lim inf qr ă lim sup qr ă 8 and 1 ă lim inf q́s ă lim sup q́s ă
8 then p2`pqFθ “ Ces2ppq, for 0 ă p ă 1.

Theorem 5. The class of sequences p2`pqFθ is solid.

Proof. Let θr,s “ tkr, `su be a double lacunary sequence, consider the double
sequences pXnkq, pYnkq P 2wF such that d̄pYnk, 0̄q ă d̄pXnk, 0̄q for all n, k P N .
Suppose that pXnkq P p2`pq

F
θ , then

8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p

ă 8.

We have
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pYnk, 0̄q

˙p

≤
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p

ă 8.

Thus pYnkq P p2`pqFθ . This completes the proof.

Theorem 6. The class of sequences p2`pqFθ is a sequence algebra.

Proof. Let θr,s “ tkr, `su be a double lacunary sequence and pXnkq, pYnkq
P p2`pq

F
θ .
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We observe that
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk b Ynk, 0̄q

˙p

≤
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄qd̄pYnk, 0̄q

˙p

≤
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p 8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pYnk, 0̄q

˙p

ă 8.

This completes the proof.

Theorem 7. The class of sequences p2`pqFθ is not convergence free in
general.

Proof. We provide the following example in support of the proof.

Example 1. Let θ “ p3r, 3sq be a double lacunary sequence and p “ 1.
Consider the double sequence pXnkq defined by

Xnkptq “

$

’

&

’

%

tpn` kq2t` 1u, for ´1
pn`kq2

≤ t ≤ 0;

t1´ pn` kq2tu, for 0 ≤ t ≤ 1
pn`kq2

;

0, otherwise.

Then we have
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

˙p

“

8,8
ÿ

r“1,s“1

ˆ

1

4.3r`s´2

ÿ

n,kPIr,s

pn` kq´2
˙

ă 8.

Thus pXnkq P p2`pq
F
θ .

Consider the double sequence pYnkq defined by

Ynkptq “

$

’

&

’

%

tt
?
n` k ` 1u, for ´1?

pn`kq
≤ t ≤ 0;

t1´ t
?
n` ku, for 0 ≤ t ≤ 1?

pn`kq
;

0, otherwise.
Then
8,8
ÿ

r“1,s“1

ˆ

1

hr,s

ÿ

n,kPIr,s

d̄pYnk, 0̄q

˙p

“

8,8
ÿ

r“1,s“1

ˆ

1

4.3r`s´2

ÿ

n,kPIr,s

pn` kq´
1
2

˙

“ 8.

This shows that pYnkq R p2`pqFθ .

Theorem 8. p2`pqF Ă p2`pqFθ , if
ř8,8
r“1,s“1

1
hr,s

ă 8.
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Proof. Let pXnkq P p2`pq
F , therefore

ř8,8
r“1,s“1

 

d̄pXnk, 0̄q
(p
ă 8. We can

choose a positive integer n0 such that for all n, k ą n0,
ř

n,kąn0
td̄pXnk, 0̄qu

p

ă 1.
Thus we have

ÿ

r,sąn0

"

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

*p

≤
ÿ

r,sąn0

1

hr,s
ă 8.

This implies
8,8
ÿ

r“1,s“1

"

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

*p

ă 8.

This completes the proof.

Theorem 9. For 0 ă p ă q, p2`pq
F
θ Ă p2`qq

F
θ .

Proof. The proof follows directly from the following inclusion relation:
8,8
ÿ

r“1,s“1

"

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

*p

Ă

8,8
ÿ

r“1,s“1

"

1

hr,s

ÿ

n,kPIr,s

d̄pXnk, 0̄q

*q

.
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