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ROUGH Z-CONVERGENCE

Abstract. In this work, using the concept of Z-convergence and using the concept of
rough convergence, we introduced the notion of rough Z-convergence and the set of rough
Z-limit points of a sequence and obtained two rough Z-convergence criteria associated
with this set. Later, we proved that this set is closed and convex. Finally, we examined
the relations between the set of Z-cluster points and the set of rough Z-limit points of
a sequence.

1. Background and introduction

The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [4] and Schoen-
berg [15]. A lot of developments have been made in this area after the works
of Aytar [1], Fridy [5], Miller [8] and Salat [14]. In general, statistically
convergent sequences satisfy many of the properties of ordinary convergent
sequences in metric spaces.

The idea of Z-convergence was introduced by Kostyrko et al. [6] as
a generalization of statistical convergence which is based on the structure of
the ideal Z of subset of the set of natural numbers. Nuray and Ruckle [9]
indepedently introduced the same with another name generalized statistical
convergence. Kostyrko et al. [7] studied the idea of Z-convergence and
extremal Z-limit points and Demirci [3] studied the concepts of Z-limit
superior and limit inferior. Salat, Tripathy and Ziman [13] introduced the
notion of cﬁ and mﬁ, the Z-convergence field and bounded Z-convergence
field of an infinite matrix A.

The idea of rough convergence was first introduced by Phu [10] in finite-
dimensional normed spaces. In [10], he showed that the set LI M"z is bounded,
closed, and convex; and he introduced the notion of rough Cauchy sequence.
He also investigated the relations between rough convergence and other
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convergence types and the dependence of LIM"x on the roughness degree r.
In another paper [11] related to this subject, he defined the rough continuity
of linear operators and showed that every linear operator f : X — Y is
r-continuous at every point x € X under the assumption dimY < oo and
r > 0 where X and Y are normed spaces. In [12], he extended the results
given in [10] to infinite-dimensional normed spaces.

In [1], Aytar studied rough statistical convergence and defined the set
of rough statistical limit points of a sequence and obtained two statistical
convergence criteria associated with this set and prove that this set is closed
and convex. Also in [2], Aytar studied that the r-limit set of the sequence
is equal to the intersection of these sets and that r-core of the sequence is
equal to the union of these sets.

In this paper, using the concept of Z-convergence and using the concept of
rough convergence, we introduce the notion of rough Z-convergence. Defining
the set of rough Z-limit points of a sequence, we obtain two Z-convergence
criteria associated with this set. Later, we prove that this set is closed and
convex. Finally, we examine the relations between the set of Z-cluster points
and the set of rough Z-limit points of a sequence. We note that our results
and proof techniques presented in this paper are Z analogues of those in
Phu’s [10] paper and Aytar’ s [1] paper. The actual origin of most of these
results and proof techniques is in those papers. Our theorems and results are
the Z-extension of theorems and results in [1, 10].

Let K be a subset of the set of positive integers N and let us denote the
set K; = {k e K : k <i}. Then the natural density of K is given by

J(K) = lim @,

1—00 1
where |K;| denotes the number of elements in K.
Throughout the paper, N denotes the set of all positive integers, x a-the

characteristic function of A < N, R the set of all real numbers. Recall that a
subset A of N is said to have asymptotic density d(A) if

d(A) = lim % > xa(k).
k=1

1—00

DEFINITION 1.1. [4] A sequence = = (x;)en of real numbers is said to be

statistically convergent to L € R if for any € > 0 we have d(A(e)) = 0, where
A(e) ={ieN:|z; — L| > e}.

Throughout the paper, R™ denotes the real n-dimensional space with the
norm |.|. Consider a sequence xz = (x;) such that z; € R™.
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DEFINITION 1.2. [1] A sequence z = (z;) is said to be statistically conver-
gent to L € R™, written as st-limx = L, provided that the set

{ieN:|zx; — L| > ¢}
has natural density zero for every € > 0. In this case, L is called the statistical

limit of the sequence x.

DEFINITION 1.3. Let X # 0. A class Z of subsets of X is said to be an
ideal in X provided:
i) eZ, ii) A,BeZ implies AuBeZ,iii) AcZ, Bc Aimplies BeZ.
7 is called a nontrivial ideal if X ¢ 7.

DEFINITION 1.4. Let X # (). A non empty class F of subsets of X is said
to be a filter in X provided:

i) ) ¢ F,ii) A,B € F implies An B € F, iii) A € F, A c B implies
BeF.
LEMMA 1.5. [6] If Z is a nontrivial ideal in X, X # 0, then the class

FIZ)={McX:(3AeT)(M =X\A)}

15 a filter on X, called the filter associated with L.

A nontrivial ideal Z in X is called admissible if {x} € Z for each x € X.

EXAMPLE 1.6. ([6], Example 3.1.) Denote by Z; the class of all A ¢ N
with d(A) = 0. Then Z; is non-trivial admissible ideal and Zg-convergence
coincides with the statistical convergence.

Throughout the paper, we take Z as a nontrivial admissible ideal in N.

DEFINITION 1.7. [6] Let (X,p) be a linear metric space and Z < 2N
be a non-trivial ideal. A sequence (z;);en of elements of X is said to be
Z-convergent to £ € X (Z — lim;_,o x; = &) if and only if for each £ > 0 the
set A(e) = {i e N: p(z,£) > ¢} belongs to Z. The element ¢ is called the
Z-limit of the sequence = = (x;)eN.

Note that if Z is an admissible ideal, then usual convergence in X implies
Z-convergence in X.

DEFINITION 1.8. [3] For a sequence x = (x;) of real numbers, the notions
of ideal limit superior and ideal limit inferior are defined as follows:
. sup B, if B, # 0,
Z —limsupzx =
—00, if B, =0,
and
inf A,, if Ay # 0,

Z —liminfx =
+00, if A, =0,
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where A, = {aeR:{ieN:z; <a}¢Z}and B, = {beR: {ieN:
v > b} ¢ T).

Throughout the paper, let  be a nonnegative real number. The sequence
x = (x;) is said to be r-convergent to x,, denoted by z; —" x, provided that

Ve>03iceN:i>i.= |x; —xgf <7 +e
The set
LIM "z := {z, e R" : x; - x4}

is called the 7-limit set of the sequence x = (z;). A sequence x = (x;) is said
to be r-convergent if LIM"z # (). In this case, r is called the convergence
degree of the sequence x = (x;). For r = 0, we get the ordinary convergence.
There are several reasons for this interest (see [10]).

A sequence x = (z;) is said to be Z-convergent to L € R™, written as
Z-limx = L, provided that the set

(i eN: |z — L| > e}

belongs to Z for every € > 0. In this case, L is called the Z-limit of the
sequence .
c € R™ is called a Z-cluster point of a sequence x = (z;) provided that

{ieN:|zx; — || <e} ¢Z,

for every € > 0. We denote the set of all Z-cluster points of the sequence x
by Z(T',).

A sequence x = (x;) is said to be Z-bounded if there exists a positive real
number M such that

{ieN:|z;| >M}eZ.

2. Main results

DEFINITION 2.1. A sequence z = (x;) is said to be rough Z-convergent to

T4, denoted by x; =% x, provided that
{ieN:|x; —zs| =7 +e}
belongs to Z for every € > 0; or equivalently, if the condition

(2.1) Z —limsup |z; — x4l < r

is satisfied. In addition, we can write x; "% 2, iff the inequality |z; — z4| <
r + € holds for every ¢ > 0 and almost all 7.

REMARK 2.2. If 7 is an admissible ideal, then usual rough convergence
implies rough Z-convergence.
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Here r is called the roughness degree. If we take r = 0, then we obtain
the ordinary ideal convergence. In a similar fashion to the idea of classic
rough convergence, the idea of rough Z-convergence of a sequence can be
interpreted as follows.

Assume that a sequence y = (y;) is Z-convergent and cannot be measured
or calculated exactly; one has to do with an approximated (or Z approximated)
sequence x = (x;) satisfying |z; — y;| < r for all ¢ (i.e., {i € N : |z; — yi
> r} € 7). Then the sequence z is not Z-convergent any more, but as the
inclusion

(2.2) {ieN:|lys—y«l| >} 2{ieN: |z; —ys| > 7+ ¢}

holds and we have {i e N: |y; —ys| > e} €T, weget {i e N: |x; —ys| > r+
e} € Z, i.e., the sequence x is rough Z-convergent in the sense of Definition 2.1.

In general, the rough Z-limit of a sequence may not be unique for the
roughness degree r > 0. So we have to consider the so-called rough Z-limit
set of a sequence x = (x;), which is defined by

Z—-LIM"z :={z, e R" : z; = Ty}
A sequence z = (x;) is said to be rough Z-convergent if Z — LIM"x # (). It is
clear that if Z — LIM"x # () for a sequence x = (z;) of real numbers, then we
have

(2.3) Z—-LIM"z = [Z — limsupx — r,Z — liminf x + r].

We know that LIM"z = () for an unbounded sequence x = (x;). But such a
sequence might be rough Z-convergent. For instance, let Z be the Z; of N
and define

(2.4) {COSiﬂ', if i # k*(k e N),
. €Tr; =

i, otherwise
in R!. Because the set {1,4,9,16,...} belongs to Z, we have

0, if r <1,

Z—-LIM"x =
[1—r,r—1], otherwise

and LIM"z = (), for all » > 0.

As can be seen by the example above, the fact that Z — LIM "z # 0
does not imply LIM"z # (). Because Z is a admissible ideal, LIM"z # ()
implies Z — LIM"z # 0, ie., if x = (x;) € LIM"z then, by Remark 2.2
x = (x;) € T — LIM"z, for each sequence x = (x;). Also, if we define all
the rough convergence sequences by LIM" and if we define all the rough
Z-convergence sequences by Z — LIM", then we get LIM" < Z — LIM". This
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obvious fact means
{r>0:LIM"z#0} = {r>0:Z—LIM"x # (0}
in the language of sets and yields immediately
inf{r > 0:LIM"z # 0} > inf{r > 0:Z — LIM"x # 0},
for each x = (x;) sequence. Moreover, it also yields directly
diam(LIM"z) < diam(Z — LIM"z).

As noted above, we cannot say that the rough Z-limit of a sequence is
unique for the roughness degree r > 0. The following result is related to the
this fact.

THEOREM 2.3. Let Z < 2N be an admissible ideal. For a sequence x = (x;),
we have diam(Z —LIM"z) < 2r. In general, diam(Z —LIM"z) has no smaller
bound.

Proof. Assume that diam(Z — LIM"z) > 2r. Then there exist y,z € Z —

LIM"z such that |y — z| > 2r. Take ¢ € (0, w —r). Because y,z €
Z — LIM"z, we have A;(e) € Z and Aa(e) € Z for every € > 0, where

Ai(e) =f{ieN:|z; —y| >r+e}and Ay(e) = {i e N: |z — 2| > r + ¢}
Using the properties of F(Z), we get
(A1(e)° N Aa(e)) € F(T).

Thus, we can write

y—z
byl < s =l + =2l < 204.9) < 20 L EL ) gy,

for all i € Ay(g)® n Aa(e)¢, which is a contradiction.
Now let us prove the second part of the theorem. Consider a sequence
x = (x;) such that Z-limx; = x,. Let € > 0. Then, we can write

{iteN:|x; —zy|| >} .
Thus, we have
lzi =yl < llzi = 2all + e =yl < fwi —2all + 7,
for each y € B(x4) := {y € R" : |y — z4|| < r}. Then, we get
|lzi —y| <7 +e,

for each i € {i e N: ||z; — x| < &}. Because the sequence x is Z-convergent
to x4, we have

{ieN: |z; — x| <e} € F(T).

Therefore, we get y € Z — LIM"z. Consequently, we can write

(2.5) T — LIM"z = By (x4).
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Because diam(B,(x+)) = 2r, this shows that in general, the upper bound 2r
of the diameter of the set Z — LIM"z cannot be decreased anymore. m

By [10, Proposition 2.2|, there exists a nonnegative real number r such
that LIM"z # () for a bounded sequence. Because the fact LIM"z # () implies
Z — LIM"z # (), we have the following result.

RESULT 2.1. Let Z < 2N be an admissible ideal. If a sequence x = (x;) is
bounded, then there exists a nonnegative real number r such that T — LIM" x
# 0.

The converse implication of the above result is not valid. If we take the
sequence as Z-bounded, then the converse of Result 2.1 holds. Thus we have
the following theorem.

THEOREM 2.4. Let T < 2V be an admissible ideal. A sequence x = (x;) is
Z-bounded if and only if there exists a nonnegative real number r such that
Z—1LIM"z # 0. And also, for all r > 0, an Z-bounded sequence x = (z;)

always contains a subsequence (x;;) with T — LIM(xij)’rxij # (.

Proof. Because the sequence z is Z-bounded, there exists a positive real
number M such that {i € N: |z;| > M} € Z. Define 1’ := sup{|xz;| : i € K},
where K = {i € N : |z > M}. Then the set Z — LIM" 2 contains the origin
of R™. So we have T — LIM" z # 0.

If Z—LIM"z # 0 for some r > 0, then there exists x4 such that z, €
Z—LIM"x, i.e.,

{ieN:|x; —zs| >r+e}el,

for each € > 0. Then we say that almost all z;’ s are contained in some ball
with any radius greater than r. So the sequence x is Z-bounded.

As (z;) is a Z-bounded sequence in a finite-dimensional normed space, it
certainly contains a Z-convergent subsequence (z;;). Let x4 be its Z-limit

point, then 7 — LIM"z;; = B, (z4) and, for r > 0,
LMY, % 0. w
Also, we have the following theorem.

THEOREM 2.5. Let Z < 2V be an admissible ideal. If (x;,) is a subsequence
of (x;), then

T - LIM'z; € T — LIM"z,.
Proof. The proof is trivial (see [10], Proposition 2.3). m

Now we give the topological and geometrical properties of the rough
Z-limit set of a sequence.
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THEOREM 2.6. Let 7 < 2V be an admissible ideal. The rough T-limit set of
a sequence x = (x;) is closed.

Proof. If Z — LIM"z = (), then there is nothing to prove. Assume that
Z — LIM"x # (). Then we can choose a sequence (y;) € Z — LIM"x such that
y; — Yy« for ¢ — oo. If we show that y, € Z — LIM"x, then the proof will be
complete.

Let € > 0 be given. Because y; — v, there exists i% € N such that

Mrww<; for alli>i:.

Now choose an iy € N such that ig > 2'%. Then we can write

g
Mm—mH<5

On the other hand, because (y;) € Z — LIM"z, we have y;, € Z — LIM"x,
namely,

(2.6) A(g):{z‘eN:Hxi—yiOHZTJrg}eI.

Now let us show that the inclusion

(2.7) AC(%) < A(e)

holds, where A(e) = {i e N : |x; — y«|| > r +&}. Take j € A°(5). Then we

have

g
o — il <7+ 5

and hence
lzj =yl < g = wiol + g0 — el <7 + &,
that is, j € A°(e), which proves (2.7). So, we have

A(e) © A(i).

Because A(5) € Z by (2.6), we get A(e) € T (i.e., y« € T — LIM"x), which
completes the proof. =

THEOREM 2.7. Let T < 2V be an admissible ideal. The rough I-limit set of
a sequence x = (x;) is convex.

Proof. Assume that yp,y1 € Z — LIM"z for the sequence x = (x;) and let
€ > 0 be given. Define

Ai(e) ={ieN:|z; —yo| >r+e} and As(e) = {i e N: ||w; —y1| > r + €}.
Because yp,y1 € Z — LIM"x, we have A;(¢) € Z and As(¢) € Z. Thus we have
lzi = [(1 = Nyo + Ayl = [(1 = A (i — yo) + Alzi —y1)| <7 +¢,
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for each i € A{(e) N AS(e) and each A € [0, 1]. Because (A{(e)nAS(e)) € F(I)
by definition F(Z), we get

{ieN:|z;—[(1=XNyo+ ]| >r+e} el

that is,
[(1—=Nyo+ Ay1] € Z —LIM "z,

which proves the convexity of the set Z — LIM"z. =

THEOREM 2.8. Let T < 2N be an admissible ideal. Suppose r > 0. Then
a sequence x = (x;) is rough T-convergent to x if and only if there exists a
sequence y = (y;) such that

(2.8) Z—-limy =z, and |z; —yil| <r, for eachieN.

Proof. Assume that x = (x;) is rough Z-convergent to z,. Then, by (2.1)
we have

(2.9) Z —limsup |z; — x| < r.
Now, define
i = {x*, o if |z; - Tkl <1,
T; + rm, otherwise.

Then, we have
0, if |o; —as <,
lyi =z« = { |x; — x| — 7, otherwise,
and by definition of y;,
(2.10) s =il < 7,
for all i € N. By (2.9) and the definition of y;, we get
Z — limsup |ly; — x«| =0,

which implies that 7 — lim y; = x.
Assume that (2.8) holds. Because Z — limy = z, we have

A(e) ={ieN: |y, —z4| > +e} €T,
for each € > 0. Now, define the set
B(e) ={ieN: |z — x| >r+e}.
It is easy to see that the inclusion
B(e) < A(e)

holds. Since A(e) € Z, we get B(e) € Z. Hence, x = (x;) is rough Z-convergent
to T4. =
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If we replace the condition "||z; — y;| < r for all ¢ € N" in the hypothesis
of the above theorem with the condition “{i € N : |x; — y;|| > r} € Z” then
the theorem will also be valid.

Now we give an important property of the set of rough Z-limit points of
a sequence.

LEMMA 2.9. Let Z < 2V be an admissible ideal. For an arbitrary c € Z(T,)
of a sequence x = (x;), we have

|z —c| <7 for all z, € T — LIM"x.

Proof. Assume on the contrary that there exist a point ¢ € Z(I';) and

x4 € Z — LIM"z such that |z, — ¢| > r. Define ¢ := w Then we can
write
(2.11) {ieN:|z; —c| <e} S {ieN:|x;— x| >r+e}.

Since ¢ € Z(T'y), we have

{ieN:|z; —c| <e} ¢T.
But from definition of Z-convergence, since

{ieN:|x; —zs| >r+e}el,

so by (2.11) we have

{ieN:|z; —c| <e}eZ,
which contradicts the fact ¢ € Z(I';). On the other hand, if ¢ € Z(I';) (i.e.,
{ieN:|z; —c|| <e} ¢7T) then

{ieN:|ax;—zy| >r+e}
must not belong to Z, which contradicts the fact x, € Z — LIM"z. This

completed the proof of theorem. m

Now we give two Z-convergence criteria associated with the rough Z-limit
set.

THEOREM 2.10. Let T < 2N be an admissible ideal. A sequence x = (z;)
Z-converges to x, if and only if

T —LIM"x = B,(w4).

Proof. Since = = (z;) Z-converges to z,, we have Z — LIM"z = B, () by
the proof of the Theorem 2.3.

Let Z — LIM"x = B,(x4) # 0. Then from Theorem 2.4, we have that the
sequence = = (x;) is Z-bounded. Assume on the contrary that the sequence
x has another Z-cluster point 2, different from z,. Then the point

r /
[EFErA

E* = Ty +
H * *
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satisfies
=l = (g 1) bow =l = o =t =
Since 2, is an Z-cluster point of the sequence z, by Lemma 2.9 this inequality
implies that
Ty ¢ T — LIM z.
This contradicts with the fact that |ZTx — 24| = r and Z — LIM"z = B,(7).
Hence, x4 is the unique Z-cluster point of the sequence z as a bounded
sequence (by Theorem 2.4) in some finite-dimensional normed space. Conse-
quently, we can say that
Xy 7 Ly. N

It is easy to seen that Z — limx = =z, yields the existence of y1,y2 €
7 — LIM"z satisfying |y1 — y2| = 2r. Because LIM"z € Z — LIM"z, using
Phu’s example [10, Example 3.2|, it can be easily shown that the existence of
y1,y2 € Z—LIM"z such that ||y; —y2| = 2r does not imply the Z-convergence

of the sequence x = (x;). The following result is related to the this converse
implication.

THEOREM 2.11. Let T < 2V be an admissible ideal, (R™,|.|) be a strictly
convex space and x = (x;) be a sequence in this space. If there exist y1,ya €
Z — LIM"z such that ||y1 — ya|| = 2r, then this sequence is Z-convergent to

%(yl +y2).

Proof. Let c € Z(T';). Then since y1,y2 € Z — LIM"z, we have
(2.12) lyr — ¢ <7 and fya —c| <,

by Lemma 2.9. On the other hand, we have

(2.13) 2r = ly1 — w2 < llyr — ¢l + lly2 — <.

Therefore, we get |y1 — ¢| = |y2 — ¢| = r by inequalities (2.12) and (2.13).
Since

1 1
(214) G —m) = 5[~y + (2 —e)] and |y — ol =2,
we get |$(y2 — y1)| = 7. By the strict convexity of the space and from the
equality (2.14), we get

1

i(yz—y1)=0—y1=y2—6,

which implies that ¢ = %(yl + y2). Hence c is the unique Z-cluster point of
the sequence z = (x;). On the other hand, the assumption y;,y2 € Z—LIM"x
implies that Z — LIM"z # (). By Theorem 2.4, the sequence z is Z-bounded.
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Consequently, the sequence x = (x;) must Z-convergent to (y1 + y2), i
_ 1
Z—limz = §(y1 +y2). m

THEOREM 2.12. Let Z < 2N be an admissible ideal.

(i) If ce Z(T') then

(2.15) T —LIM"z € B,(c).

(ii)

(216) I—-LIM'z= (] By(c)={zs e R" : I(T;) € Br(zs)}-
ceZ(Ty)

Proof. (i) If ce Z(I'y) then by Lemma 2.9, we have
|zs —c| <r, for all x4, € Z—LIM"z,

otherwise we get
|z —c| =7

3 .
Because ¢ is an Z-cluster point of (z;), this contradicts with the fact that
Ty €L — LIM" 2.

(ii) From (2.15), we have

(2.17) I-LIMzc ()
ceZ(Ty)

{ieN:|x;—zs| >r+e}¢Z, fore:=

Now, let y € (\.cz(r,) Br(c). Then we have

ly = <,

for all c € Z(T',), which is equivalent to Z(T';) € B, (y), i.e.,

(2.18) (1 Brlo) < {aw e R": I(Ty) < Br(wa)}-
ceZ(I'y)
Now, let y ¢ Z — LIM"x. Then, there exists an € > 0 such that
{ieN:|zi—y|2r+e}¢T,

which implies the existence of an Z-cluster point ¢ of the sequence x with
ly —c|| >r+e, ie.,

I(Tz) ¢ Br(y) and y¢ {z, e R":I(Ty) S Bp(w4)}-
Hence, y € Z — LIM"x follows from y € {z, € R" : Z(T';) € B,(z4)}, i.e.,
(2.19) (24 € R" : I(Ty) € By (ws)} © T — LIM .
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Therefore, the inclusions (2.17)—(2.19) ensure that (2.16) holds i.e.,
I-LIM'z= (] Brlc)={z. eR" : I(T;) € By(v4)}. m
ceZ(Ty)

ExAMPLE 2.13. Consider the sequence = = (x;) defined in (2.4) and let 7
be the Z; of N. Then we have

Z(T,) ={-1,1}.
It follows from (2.16) that
I — LIM z = B,(—1) n B(1).
We finally complete this work by giving the relation between the set of
Z-cluster points and the set of rough Z-limit points of a sequence.

THEOREM 2.14. Let T < 2V be an admissible ideal and x = (z;) be an
Z-bounded sequence. If r > diam(Z(T,)), then we have Z(T',) € Z — LIM"x.

Proof. Let ¢ ¢ Z — LIM"z. Then there exists an € > 0 such that
(2.20) {ieN:|ax;—c]|>r+e} e

Since x = (z;) is Z-bounded and from the inequality (2.20), there exists an
Z-cluster point ¢; such that

lc —er]| > r + &1,
where €1 := §. So we get
diam(Z(T'y)) > r + €1,
which proves the theorem. =m

The converse of this theorem is also true, i.e., if Z(T',) € Z — LIM"z, then
we have r > diam(Z(T')).
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