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SINGLE-VALLEY-EXTENDED CONTINUOUS SOLUTIONS
FOR THE FEIGENBAUM’S FUNCTIONAL EQUATION

flo(@) = ¢*(f(x))

Abstract. This work deals with the Feigenbaum’s functional equation in the broad

sense
fle(@) = *(f(x)),
e(0)=1, 0<¢(x)<1, wze[0,1],
where @2 is the 2-fold iteration of ¢, f(x) is a strictly increasing continuous function on

[0,1] and satisfies f(0) = 0, f(z) < z, (z € (0, 1]). Using constructive method, we discuss
the existence of single-valley-extended continuous solutions of the above equation.

1. Introduction

In the early 1978s, Feigenbaum [6], [7] and independently Coullet and
Tresser [2] introduced the notion of renormalization for real dynamical systems.
In 1992, Sullivan [10] proved the uniqueness of the fixed point for the period
doubling renormalization operator. This fixed point of renormalization
satisfies a functional equation known as the Cvitanovié¢-Feigenbaum equation:

(1.1) {9(@ = —39(9(=X2)), 0<A<1,

g(0)=1, —-1<g(x)<1, ze[-1,1].

As mentioned above, this equation and its solution play an important
role in the theory initiated by Feigenbaum [6], [7]. However, finding an exact
solution of the above equation, in general, is not an easy task. Such a problem
can be studied in either classes of smooth functions or classes of continuous
functions context. In classes of smooth functions, for equation (1.1), an
existence theory of smooth solutions has been established in [1], [3], [4], [5],
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[10] and references therein. As far as we know, seeking a solution of (1.1) in
classes of continuous functions has been relatively little researched. In this
area, we refer the reader to 9] and [11]. In particular, Yang and Zhang [11]
replaced (1.1) by the following equation

p(x) = selp(\z)), 0<A<1,
(P(O> =1, 0< @(x> <1, wze [07 1]7

which is called the second type of Feigenbaum’s functional equations, to study
the existence of a single-valley continuous solution of (1.2) by constructive
methods. Liao [8] proved that (1.2) has non-single-valley continuous solutions.

In the present paper, we will consider the Feigenbaum’s functional equa-
tions in the broad sense

fle(@)) = ©*(f(2)),
(10(0) =1, 0< 90(1‘) <1, ze [07 ]-]7
where f(x) is a strictly increasing continuous function on [0, 1] and satisfies

f(0) =0, f(x) < x,(x e (0,1]). We will prove that the existence of a single-
valley-extended continuous solution of (1.3) by constructive method.

(1.2)

(1.3)

2. Basic definitions and lemmas

In this section, we will give some characterizations of single-valley-extend-
ed continuous solution of (1.3) and will prove them in Appendix.

DEFINITION 2.1. We call ¢ a single-valley-extended continuous solution of
(1.3), if (1) ¢ is a continuous solution of (1.3); (2) there exists an « € (f(1),1)
and ¢ is strictly decreasing in [f(1), a] and strictly increasing in [« 1].

DEFINITION 2.2. We call ¢ a single-valley continuous solution of (1.3), if
(1) ¢ is a single-valley-extended continuous solution of (1.3); (2) there exists
an a € (f(1),1) and ¢ is strictly decreasing in [0, a] and strictly increasing
in [a, 1].

DEFINITION 2.3. We call ¢ a non-single-valley continuous solution of (1.3),
if (1) ¢ is a single-valley-extended continuous solution of (1.3); (2) ¢ has at
least an extreme point in (0, f(1)).

Obviously, single-valley-extended continuous solution only contains single-
valley continuous solution and non-single-valley continuous solution.

LEMMA 2.1. Suppose that p(x) is a single-valley-extended continuous solu-
tion of (1.3), and « is the extreme point of ¢ in (f(1),1). Then the following
conclusions hold:

(i) ¢(x) has a unique minimum point o with ¢(a) = 0;

(i1) 0 is a recurrent but not periodic point of p;
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(i) For xz € [0, f(1)], p(z) = « if and only if v = f(a);
(iv) ¢(z) has a unique fized point 5 = p(pB) in [0,1], and
(2.1) o) = (1) =r<f<a
and p(A) > A;
(v) The equation p(x) = f(x) has only one solution x = 1 in («,1].
LEMMA 2.2. Suppose that p(x) is a single-valley-extended continuous solu-
tion of (1.3). Then the following conclusions hold:

(i) If p(A) > « then p(x) > a for all x € [0, \] and ¢ is respectively strictly
increasing in [f*(a), f*(1)] and strictly decreasing in [f"T1(1), f*()]
for alln >0, thus ¢ has infinite many extreme points (1) and f"(«);

(i1) If o(N) < « then @ is strictly decreasing in [0, ], thus ¢ is a single-valley
continuous solution.

LEMMA 2.3. Let 1, p2 be two single-valley-extended continuous solutions
of (1.3). If

p1(2) = @2(x), xe[A1]
then p1(x) = pa(z) on [0,1].

3. Constructive method of solutions

In this section, we prove the existence of single-valley-extended continuous
solutions of (1.3) by the constructive method.

THEOREM 3.1. Let f(x) be an arbitrary fized strictly increasing continuous
function on [0,1] with f(0) =0, f(z) <z (x € (0,1]). Denote f(1) = \. If

wo(x) is a continuous function on [\, 1] and satisfies the following conditions:

(1) there exists an v € (A, 1) such that go(c) = 0 and g is strictly decreasing
in [\, a] and strictly increasing in [, 1];
() wo(1) = F(1) = A 9oN) > A go() # 4, BN = Flgo(1)) =
JAOVE
(iil) the equation po(x) = f(x) has only one solution x =1 in [, 1];
then there exists a uniquely single-valley-extended continuous function
(x) satisfying the equation
f(so(x)) = 802(]6(‘%))7 RS [07 1]7
p(x) = po(z), z € [A1].
In particular, ¢ is a single-valley continuous solution when @o(\) < o and ¢
has infinitely many extreme points when po(N) > a. Conversely, if pg is the

restriction on [\, 1] of a single-valley-extended continuous solution to (1.3),
then above conditions (1)—(iil) must hold.

(3.1)
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Proof. Suppose that ¢ satisfies the conditions (i)—(iii). Define
Uy = (700|[a71]a Y = 900|[>\,a]_

By condition (i), we know that 1 is strictly increasing and 1 _ is strictly
decreasing. It is trivial that {f™(1)} is decreasing and lim,_,o, f™(1) = 0. Let
(32) An = [fn+1(1)7fn(1)]7 (n:O>1>27"')7

then [0,1] = (7", A,.

We define ¢ on A,, for all n > 0 by induction as follows. From A <
wo(A) < 1 and pg(N) # «, we consider the following two cases.

Case 1. Assume @g(\) > «. Firstly, we prove that ¢(z) is well defined
as a continuous function ¢, (z) on A, for all n > 0. Obviously, ¢ = ¢¢ is
well defined on Ag. Suppose that ¢(x) is well defined as ¢, (x) on A, for all
n < k, where k > 0 is a certain integer. Let

(3:3) prr1 (@) = 0 (Flen(f7H (@), (@€ Agrn),

then ¢(x) is well defined as a continuous function ¢, (x) on A, for all n > 0.
Secondly, we prove that ¢, and ¢,,1 have the same value on the common

endpoint f"T1(1) of A, and A, 1(n = 1,2,---) for all n > 0. For n = 0,
from (3.3) and condition (ii), we have
(3.4) e1(f(1) = v (feo(1))) = 3 (@5 (F(1)))

= 7 (W (o (F(1)))) = wo(f(1)),

i.e. g and ¢ have the same value on the common endpoint f(1) of Ag
and Aq. Suppose that

(3.5) ee(FF (1) = er—a (F*(1)),

where k > 1 is a certain integer. Let z = f¥+1(1) in (3.3) then we have

(3.6) pee (1) = v (flen(f5(1)
= U (florma (FF))) = er(F (D)),

i.e. ¢, and @, 1 have the same value on the common endpoint f**!(1) of
A, and A,y for all n > 0, by induction. Therefore, we can put

1, (x =0),
on(x), (reA,).

Since ¢, is continuous on A, (n > 0) and (3.4), (3.6), we have that ¢ is
a continuous function in (0, 1].
Thirdly, we prove that ¢ is continuous at x = 0. It is trivial that {f™(«)}
e 0]

is strictly decreasing and lim,,,« f™(a) = 0. We prove that {¢,(f™(a))}|s,
is strictly increasing in [e, 1] by induction. Since f(¢1(f(a))) > 0 and (3.3),

(3.7) p(z) = {
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we get

p2(f2 () = ¥3 (fp1(f(a))) > ¥3H(0) = ¥ (F(vo(@))) = w1(f(a)).
Suppose that i (f*(a)) > @r_1(f**(a)) holds for n = k, where k > 2 is
a certain integer. Therefore, by (3.3) and since w;l o f is strictly increasing,
we have that

prn (M1 (@) = X (fler(F (@) > ¥ (fler-1 (@)

= er(f¥(@).
Hence, {on(f"(a))}|7 is strictly increasing in [a, 1] by induction. Let

lim @, (f"(a)) =,
then 7 € [o, 1]. From (3.3), we have

po(n+1 (/")) = Vi (a1 (1)) = Flen(f"(@)).

If n — o0, we get po(y) = f(7). By condition (iii), we know v = 1 = ¢(0).
Similarly, {¢on(f™(1))}|s_; is strictly increasing in [«, 1] and

Jim @, (f*(1)) = #(0),

we omit the proof here. By the condition (i) and (3.3), we have that ¢, has
at fn(«) the minimum and at fy,+1(1) the maximum on A,,. This proves that
¢ is continuous at x = 0. Thereby, ¢ is a continuous function in [0, 1]. We
have that ¢(z) satisfies (3.1) by (3.3) and ¢(z) is unique from Lemma 2.3.
And ¢(x) has infinitely many extreme points from Lemma 2.2 (i).

Case 2. Assume () < a. Firstly, for z € Ay = [f2(1), f(1)], we set

(@) - {Wf (ol @) (e L2, F@)])
V(o @), (e [Fa). A

For n > 1, ¢,(x) is defined as (3.3). Let ¢(z) be defined as in (3.7). The
proof is similar to Case 1, and we omit it here. Hence, ¢(x) is a single-valley
continuous solution of (1.3) from Lemma 2.2(ii).

Obviously, if g is the restriction on [\, 1] of a single-valley-extended
continuous solution to (1.3), then conditions (i)—(iii) must hold by the lemmas
in Section 2. =

EXAMPLE 3.1. Let @g(z) : [1/4,1] — [0,1] be defined as

po(x) =

-3, (3 <z <.

It is trivial that ¢q satisfies the conditions of Theorem 3.1, where f(z) = z/4
and A = f(1) = 1/4,a = 3/4. Thereby, it is the restriction on [1/4, 1] of
a single-valley-extended continuous solution ¢ to (1.3). Since o has the
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minimum point @ = 3/4 and ¢p(1/4) = 13/16 > 3/4, the solution ¢ has
infinitely many extreme points. See Figure 1.

non-single valley solution

Pix)

Fig. 1. The graph of non-single-valley solution

ExXAMPLE 3.2. Let ¢g(z) : [1/4,1] — [0,1] be defined as
po(z) = 5 ;

It is trivial that o satisfies the conditions of Theorem 3.1, where f(x) = z2/4
and A = f(1) = 1/4,a = 3/4. Hence, it is the restriction on [1/4, 1] of
a single-valley-extended continuous solution ¢ to (1.3). Since g has the
minimum point @ = 3/4 and ¢o(1/4) = 49/64 > 3/4, the solution ¢ has
infinitely many extreme points. The graph is similar to Figure 1.
EXAMPLE 3.3. Let ¢o(z) : [1/4,1] — [0, 1] be defined as

po(z) = 3 3
Trivially, oo satisfies the conditions of Theorem 3.1, where f(x) = x/4
and A = f(1) = 1/4,a = 3/4. Hence, it is the restriction on [1/4, 1] of
a single-valley-extended continuous solution ¢ to (1.3). Since o has the
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minimum point o = 3/4 and 1/4 < o(1/4) = (3 +/7)/8 < 3/4, the solution
© is a single-valley continuous solution. See Figure 2.

single valley solution

olfih F

oifle))
s

wix)

ot

Fig. 2. The graph of single-valley solution

EXAMPLE 3.4. Let ¢o(z) : [1/4, 1] — [0, 1] be defined as

),
).

Trivially, o satisfies the conditions of Theorem 3.1, where f(x) = x2/4
and A = f(1) = 1/4,a = 3/4. Hence, it is the restriction on [1/4, 1] of
a single-valley-extended continuous solution ¢ to (1.3). Since ¢ has the
minimum point o = 3/4 and 1/4 < ¢g(1/4) = (6 + +/34)/16 < 3/4, the
solution ¢ is a single-valley continuous solution. The graph is similar to
Figure 2.
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Appendix A

Proof of Lemma 2.1. (i) Suppose that 7 is a minimum point of ¢. By
(1.3) we have

Fle(n) = *(f(7) = o).
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From f(0) = 0 and f(z) <z (x € (0,1]), we know that p(y) = 0. If v < f(1),

then there exists a d € [0, 1] such that f(J) = and by (1.3), we have
F(p(8)) = ©*(f(9)) = ¢*(7) = p(0) = 1.

This contradicts f(0) =0, f(z) < z(z € (0,1]). Thus v > f(1) and from the

definition of a, we know v = a and p(a) = () = 0.
(ii) We now prove that for all n > 0 and each z € [0, 1], we have

(A1) fre(@) = o (f*(2)).
Obviously, (A.1) holds for n = 1 by (1.3). We suppose that (A.1) holds for
n < k, where k > 1 is an integer. Therefore, by (1.3) we have that

(41 @) = () (@) = ¢ 0 (1 (@)
P (@) = AU @)

= [H(flp(2))) = FF(e(@)),
i.e., (A.1) holds for n = k + 1. Thereby, (A.1) is proved by induction. Let
xz =01n (A.1). We have
(A.2) (1) = f1((0) = 0™ (f(0)) = ¢*"(0).
It is trivial that { f"(1)} is strictly decreasing and lim,,_,o f™(1) = 0. Thereby,
we have

. on IRT n o
(A.3) lim ™ (0) = Tim f"(1) = 0,

2k+1

i.e., we proved that 0 is a recurrent but not periodic point of (.

(iii) Firstly, we prove the sufficiency. By (1.3), we have 0 = f(¢(«))
©%(f(a)). Since a is the unique minimum point of ¢, it follows that ¢(f(a)) =
a. Thus, the sufficiency is proved.

Secondly, we prove the necessity. Suppose that ¢(x) = « for some
xz € [0, f(1)]. By (1.3), we know that

Fle(f (@) = ¢*(x) = p(a) =0,
and from f(0) = 0, f(x) < z(z € (0,1]), we have o(f~1(x)) = 0. Thereby,
f~l(x) = a, ie., x = f(a). Thus the necessity is proved.

(iv) Let x = 0 in (1.3) then
F(1) = f(p(0) = ¢*(f(0)) = ¢*(0) = p(1).
Let (1) = f(1) = \. Firstly, we prove that 5 < a. Suppose that ¢ is a fixed
point of p(z). We have ¢ # 1 by (A.3) and ¢ # a by p(a) =0. If g€ (a, 1)
then since p(z) is strictly increasing in [«, 1], it follows that ¢ = ¢(q) < ¢(1).
By induction, for all m > 0, we have ¢ = ¢ (q) < ¢"(1), in particular,
g=¢"""g) <" (1) = ¢ Hp(0)) = ¥ (0).

This contradicts (A.3). Thereby, we proved that ¢ < a.
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Secondly, by ¢(0) = 1, ¢(a) = 0, we know that ¢ has at least one fixed
point 5. We prove that 8§ > A and ( is unique, as follows. We claim that

(A.4) Ve e [0, f(a), () > a.

If there exists z1 € (0, f(«)) such that p(z1) < «, then by ¢(0) = 1 and
intermediate value theorem, there exists x € (0,x1) such that p(z2) = a.
This contradicts conclusion (iii). From ¢(f(«a)) = a and f(a) < «, we have

B0, /(). Tt B e (f(a), £(1)] then f-1(8) € (ar 1]. By (13), we get
Fle(f7H(8)) = ¥*(B) = 8.

Thus ¢(f~1(B)) = f~1(B). Hence, ¢ has a fixed point in [a,1]. This
proves 3 ¢ (f(«), f(1)]. Thereby, we have B e (f(1),a). Since ¢ is strictly
decreasing in (f(1),«), 8 is a unique fixed point of ¢ in [0, 1].

Thirdly, since A < 8 < « and ¢ is strictly decreasing in (A, «), we have

p(A) > @(B) = B> A

(v) By (1.3), it is trivial that = = 1 is a solution of the equation ¢(x) =

f(z). Suppose that g € [a, 1] is an arbitrary solution of this equation, i.e.,

o(xo) = f(xo). Since [a, 1] < ([0, f(«)]), there exists y € [0, f(«)], such
that ¢(y) = xo. We claim that
(A.5) Yn >0, ¢(f"(y)) = zo.

Obviously, (A.5) holds for n = 0. Suppose that (A.5) holds for n = k, where
k > 0. Therefore, by (1.3) we have

(W) = Fe(fF () = f(wo) = ¢(x0)-
Since f*1(y) <y < f(a) and (A.4), we have o(f**1(y)) > a. And, since ¢
is strictly increasing in [a, 1], we have p(f**1(y)) = o, i.e., (A.5) holds for
n =k + 1. Thereby, (A.5) is proved by induction. Since {f"(y)} is strictly
decreasing and lim,_.o f"(y) = 0, we have z¢ = lim,_ ©(f"(y)) = ©(0)

=1 =
Proof of Lemma 2.2. (i) If p()\) > a, we claim that
(A6) Vz e [f(a)v )‘]a (10('1") 2> .

If there exists y € (f(a),\) such that ¢(y) < «a, then by ¢(0) = 1 and
intermediate value theorem, there exists z € (y, A) such that ¢(z) = . This
contradicts Lemma 2.1(iii). Thereby we proved (A.6). From (A.4) we have
(A.7) Ve [0,\], ¢(z)>a.
Define

Yy = 90|[a,1]7 Y- = 90|[>\,a]-

Obviously, ¥ is strictly increasing and ¢_ is strictly decreasing. It is trivial
that {f*(1)} and {f"(a)} are decreasing, f"*1(1) < f*(a) < f*(1) and
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limy, o0 (1) = limy, o0 f" () = 0. For n =0,1,2,..., let

Ap = [0, M), AL =), ()], AL = [, ()],
then

o0 o0
=UA UAluN
n=0 n=0

We prove by induction, that for all n > 0, ¢ is strictly increasing in A}
and strictly decreasing in A2, respectively.

Obviously, ¢ is strictly increasing in A} and strictly decreasing in A2.
Suppose that ¢ is strictly increasing in Al and strictly decreasing in A2 for
n > k, where k > 0. By (1.3), we have

(A.8) Flo(f7H(2))) = ¢*(x), =€ Ay

By (A.7), we have ¢(z) € [a, 1]. Thus (A.8) is equivalent to the following
equation

Flo(f7H@))) = i (p()), =€ Agyr.
Thereby,

(A.9) p(z) =0 (Flp(F1 (@), @€ Apr.

Since 1/);1, f, f~1 are strictly increasing and ¢ is strictly increasing in A,lf
and strictly decreasing in Az, we know ¢ is strictly increasing in A,lc 41 and
strictly decreasing in A% 41~ Thereby, ¢ is strictly increasing in Al and
strictly decreasing in A2 for all n > 0. Thus ¢ has infinite many extreme
points f(1) and f"(«).

(ii) If p(A) < a, we prove by induction that for all n > 1, ¢ is strictly
decreasing in A,. By (A.4), we have o(z) € [a, 1] for z € [f%(1), f(a)]. By
A < ¢(N\) < a and the condition (iii) of Lemma 2.1, we have ¢(z) € [\, «]
for x € [f(a), f(1)]. Thus for z € Ay = [f%(1), f(1)], from (1.3) we have

VI fe(FT @), (2 e [£2Q1), F(o)),
VI f(e(F @), (e [f(a), FD)))-

Since f, f71, w;l are strictly increasing and ¥ ~! is strictly decreasing and
¢ is strictly increasing in A} and strictly decreasing in A3, we know ¢ is
strictly decreasing in A;. For n > 1, from (1.3) we have (A.9). The proof is
similar to conclusion (i), and we omit it here. =

(A.10) o(r) = { ;

Proof of Lemma 2.3. It is trivial that there exist o € (A, 1), 8 € (A, 1) such
that ;(a) = 0,9:;(8) = B (i = 1,2). Define

(A.11) Vi = 01la1] = P2l Y- = Pilpa) = P2lpna).
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Obviously, ¥ is strictly increasing and ¢_ is strictly decreasing. It is trivial
that {f™(1)} is decreasing and lim,,_,., f*(1) = 0. Let A,, = [f*T1(1), f*(1)],
(n=0,1,2,...) then [0,1] = 2, Ay.

We prove by induction that ¢1(z) = p2(z) on A, for all n > 0:

Obviously, ¢1(z) = p2(x) on Ag. Suppose that p;1(x) = ¢2(x) holds on
A, for all n < k, where k > 0 is an integer. Let

p(x) = p1(2) = pa(a), ze[fFH(1),1).

By (1.3), we have
(A12)  fle(fH (@) = fleilfH2))) = ¢ilpi(@)), (1 = 1,2,2 € Agiy).
Next, we prove the following two cases.

Case 1. ¢1(A) = ¢a(\) > a. Then by (A.7), we have that (A.12) is
equivalent to the following equation

Fle(fF~H (@) = ¥ (wil2)),

thereby

(A.13) pi(z) = P (Fle(fTH (@), (i=1,2,2 € Apy).
Thus we have ¢1(x) = p2(x) on Agy1. By induction, ¢1(x) = ¢a(z) on A,
for all n > 0.

Case 2. ¢1(A) = v2(\) < a. By Lemma 2.1 (iv), we have p(\) > .
Thus pi(z) > @i(A) > A for z < A, If p;(x) € [a, 1] then ¢; satisfy (A.13).
If pi(z) € [A, ] then (A.12) is equivalent to the following equation

Flo(fH(2))) = ¥-(wi(2)),
thereby
A1) @@=l Tl @), (=120 A,

We claim that ¢;(x) and p2(x) either both satisfy (A.13) or both satisfy
(A.14), simultaneously. Suppose there exists an xg € Ag4q such that

p1(wo) = ¥ (Fle(fH(x0))))s  wa(w0) = = (f(9(f (20))))-
By ¢;' : [0,A\] = [a, 1] and ¥=! : [0,0(N)] = [), a], there exists z; such
that z1 > xg, 1 € Agy1 and
p1(z0) > @1(x1) > o > pa(wo) > pa(x1).
Since ¢;(x) are respectively strictly monotone in [\, o] and [« 1], from (A.12),
we have that
p1(p1(21)) < @1(p1(x0)) = palpa(z0)) < P2(p2(z1))-

This contradicts (A.12) (z = x1). Thus we have pi(x) = pa(x) on Agyq.
Hence ¢1(z) = p2(z) on A, for alln > 0. =
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