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SINGLE-VALLEY-EXTENDED CONTINUOUS SOLUTIONS
FOR THE FEIGENBAUM’S FUNCTIONAL EQUATION

fpϕpxqq “ ϕ2pfpxqq

Abstract. This work deals with the Feigenbaum’s functional equation in the broad
sense

#

fpϕpxqq “ ϕ2
pfpxqq,

ϕp0q “ 1, 0 ≤ ϕpxq ≤ 1, x P r0, 1s,

where ϕ2 is the 2-fold iteration of ϕ, fpxq is a strictly increasing continuous function on
r0, 1s and satisfies fp0q “ 0, fpxq ă x, px P p0, 1sq. Using constructive method, we discuss
the existence of single-valley-extended continuous solutions of the above equation.

1. Introduction
In the early 1978s, Feigenbaum [6], [7] and independently Coullet and

Tresser [2] introduced the notion of renormalization for real dynamical systems.
In 1992, Sullivan [10] proved the uniqueness of the fixed point for the period
doubling renormalization operator. This fixed point of renormalization
satisfies a functional equation known as the Cvitanović–Feigenbaum equation:

(1.1)

#

gpxq “ ´ 1
λgpgp´λxqq, 0 ă λ ă 1,

gp0q “ 1, ´1 ≤ gpxq ≤ 1, x P r´1, 1s.

As mentioned above, this equation and its solution play an important
role in the theory initiated by Feigenbaum [6], [7]. However, finding an exact
solution of the above equation, in general, is not an easy task. Such a problem
can be studied in either classes of smooth functions or classes of continuous
functions context. In classes of smooth functions, for equation (1.1), an
existence theory of smooth solutions has been established in [1], [3], [4], [5],
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[10] and references therein. As far as we know, seeking a solution of (1.1) in
classes of continuous functions has been relatively little researched. In this
area, we refer the reader to [9] and [11]. In particular, Yang and Zhang [11]
replaced (1.1) by the following equation

(1.2)

#

ϕpxq “ 1
λϕpϕpλxqq, 0 ă λ ă 1,

ϕp0q “ 1, 0 ≤ ϕpxq ≤ 1, x P r0, 1s,

which is called the second type of Feigenbaum’s functional equations, to study
the existence of a single-valley continuous solution of (1.2) by constructive
methods. Liao [8] proved that (1.2) has non-single-valley continuous solutions.

In the present paper, we will consider the Feigenbaum’s functional equa-
tions in the broad sense

(1.3)

#

fpϕpxqq “ ϕ2pfpxqq,

ϕp0q “ 1, 0 ≤ ϕpxq ≤ 1, x P r0, 1s,

where fpxq is a strictly increasing continuous function on r0, 1s and satisfies
fp0q “ 0, fpxq ă x, px P p0, 1sq. We will prove that the existence of a single-
valley-extended continuous solution of (1.3) by constructive method.

2. Basic definitions and lemmas
In this section, we will give some characterizations of single-valley-extend-

ed continuous solution of (1.3) and will prove them in Appendix.

Definition 2.1. We call ϕ a single-valley-extended continuous solution of
(1.3), if (1) ϕ is a continuous solution of (1.3); (2) there exists an α P pfp1q, 1q
and ϕ is strictly decreasing in rfp1q, αs and strictly increasing in rα, 1s.

Definition 2.2. We call ϕ a single-valley continuous solution of (1.3), if
(1) ϕ is a single-valley-extended continuous solution of (1.3); (2) there exists
an α P pfp1q, 1q and ϕ is strictly decreasing in r0, αs and strictly increasing
in rα, 1s.

Definition 2.3. We call ϕ a non-single-valley continuous solution of (1.3),
if (1) ϕ is a single-valley-extended continuous solution of (1.3); (2) ϕ has at
least an extreme point in p0, fp1qq.

Obviously, single-valley-extended continuous solution only contains single-
valley continuous solution and non-single-valley continuous solution.

Lemma 2.1. Suppose that ϕpxq is a single-valley-extended continuous solu-
tion of (1.3), and α is the extreme point of ϕ in pfp1q, 1q. Then the following
conclusions hold:

(i) ϕpxq has a unique minimum point α with ϕpαq “ 0;
(ii) 0 is a recurrent but not periodic point of ϕ;
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(iii) For x P r0, fp1qs, ϕpxq “ α if and only if x “ fpαq;
(iv) ϕpxq has a unique fixed point β “ ϕpβq in r0, 1s, and

p2.1q ϕp1q “ fp1q “ λ ă β ă α

and ϕpλq ą λ;
(v) The equation ϕpxq “ fpxq has only one solution x “ 1 in pα, 1s.

Lemma 2.2. Suppose that ϕpxq is a single-valley-extended continuous solu-
tion of (1.3). Then the following conclusions hold:

(i) If ϕpλq ą α then ϕpxq ≥ α for all x P r0, λs and ϕ is respectively strictly
increasing in rfnpαq, fnp1qs and strictly decreasing in rfn`1p1q, fnpαqs
for all n ≥ 0, thus ϕ has infinite many extreme points fnp1q and fnpαq;

(ii) If ϕpλq ă α then ϕ is strictly decreasing in r0, λs, thus ϕ is a single-valley
continuous solution.

Lemma 2.3. Let ϕ1, ϕ2 be two single-valley-extended continuous solutions
of (1.3). If

ϕ1pxq “ ϕ2pxq, x P rλ, 1s

then ϕ1pxq “ ϕ2pxq on r0, 1s.

3. Constructive method of solutions
In this section, we prove the existence of single-valley-extended continuous

solutions of (1.3) by the constructive method.

Theorem 3.1. Let fpxq be an arbitrary fixed strictly increasing continuous
function on r0, 1s with fp0q “ 0, fpxq ă x px P p0, 1sq. Denote fp1q “ λ. If
ϕ0pxq is a continuous function on rλ, 1s and satisfies the following conditions:

(i) there exists an α P pλ, 1q such that ϕ0pαq “ 0 and ϕ0 is strictly decreasing
in rλ, αs and strictly increasing in rα, 1s;

(ii) ϕ0p1q “ fp1q “ λ, ϕ0pλq ą λ, ϕ0pλq ‰ α, ϕ2
0pλq “ fpϕ0p1qq “

fpλq;
(iii) the equation ϕ0pxq “ fpxq has only one solution x “ 1 in rα, 1s;

then there exists a uniquely single-valley-extended continuous function
ϕpxq satisfying the equation

p3.1q

#

fpϕpxqq “ ϕ2pfpxqq, x P r0, 1s,

ϕpxq “ ϕ0pxq, x P rλ, 1s.

In particular, ϕ is a single-valley continuous solution when ϕ0pλq ă α and ϕ
has infinitely many extreme points when ϕ0pλq ą α. Conversely, if ϕ0 is the
restriction on rλ, 1s of a single-valley-extended continuous solution to (1.3),
then above conditions (i)–(iii) must hold.
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Proof. Suppose that ϕ0 satisfies the conditions (i)–(iii). Define

ψ` “ ϕ0|rα,1s, ψ´ “ ϕ0|rλ,αs.

By condition (i), we know that ψ` is strictly increasing and ψ´ is strictly
decreasing. It is trivial that tfnp1qu is decreasing and limnÑ8 f

np1q “ 0. Let

(3.2) ∆n “ rf
n`1p1q, fnp1qs, pn “ 0, 1, 2, ¨ ¨ ¨ q,

then r0, 1s “
Ť8
n“0 ∆n.

We define ϕ on ∆n for all n ≥ 0 by induction as follows. From λ ă
ϕ0pλq ă 1 and ϕ0pλq ‰ α, we consider the following two cases.

Case 1. Assume ϕ0pλq ą α. Firstly, we prove that ϕpxq is well defined
as a continuous function ϕnpxq on ∆n for all n ≥ 0. Obviously, ϕ “ ϕ0 is
well defined on ∆0. Suppose that ϕpxq is well defined as ϕnpxq on ∆n for all
n ≤ k, where k ≥ 0 is a certain integer. Let

(3.3) ϕk`1pxq “ ψ´1` pfpϕkpf
´1pxqqqq, px P ∆k`1q,

then ϕpxq is well defined as a continuous function ϕnpxq on ∆n for all n ≥ 0.
Secondly, we prove that ϕn and ϕn`1 have the same value on the common

endpoint fn`1p1q of ∆n and ∆n`1pn “ 1, 2, ¨ ¨ ¨ q for all n ≥ 0. For n “ 0,
from (3.3) and condition (ii), we have

ϕ1pfp1qq “ ψ´1` pfpϕ0p1qqq “ ψ´1` pϕ
2
0pfp1qqq(3.4)

“ ψ´1` pψ`pϕ0pfp1qqqq “ ϕ0pfp1qq,

i.e. ϕ0 and ϕ1 have the same value on the common endpoint fp1q of ∆0

and ∆1. Suppose that

(3.5) ϕkpf
kp1qq “ ϕk´1pf

kp1qq,

where k ≥ 1 is a certain integer. Let x “ fk`1p1q in (3.3) then we have

ϕk`1pf
k`1p1qq “ ψ´1` pfpϕkpf

kp1qqqq(3.6)

“ ψ´1` pfpϕk´1pf
kp1qqqq “ ϕkpf

k`1p1qq,

i.e. ϕn and ϕn`1 have the same value on the common endpoint fn`1p1q of
∆n and ∆n`1 for all n ≥ 0, by induction. Therefore, we can put

(3.7) ϕpxq “

#

1, px “ 0q,

ϕnpxq, px P ∆nq.

Since ϕn is continuous on ∆npn ≥ 0q and (3.4), (3.6), we have that ϕ is
a continuous function in p0, 1s.

Thirdly, we prove that ϕ is continuous at x “ 0. It is trivial that tfnpαqu
is strictly decreasing and limnÑ8 f

npαq “ 0. We prove that tϕnpfnpαqqu|8n“1
is strictly increasing in rα, 1s by induction. Since fpϕ1pfpαqqq ą 0 and (3.3),
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we get

ϕ2pf
2pαqq “ ψ´1` pfpϕ1pfpαqqqq ą ψ´1` p0q “ ψ´1` pfpϕ0pαqqq “ ϕ1pfpαqq.

Suppose that ϕkpfkpαqq ą ϕk´1pf
k´1pαqq holds for n “ k, where k ≥ 2 is

a certain integer. Therefore, by (3.3) and since ψ´1` ˝ f is strictly increasing,
we have that

ϕk`1pf
k`1pαqq “ ψ´1` pfpϕkpf

kpαqqqq ą ψ´1` pfpϕk´1pf
k´1pαqqqq

“ ϕkpf
kpαqq.

Hence, tϕnpfnpαqqu|8n“1 is strictly increasing in rα, 1s by induction. Let

lim
nÑ8

ϕnpf
npαqq “ γ,

then γ P rα, 1s. From (3.3), we have

ϕ0pϕn`1pf
n`1pαqqq “ ψ`pϕn`1pf

n`1pαqqq “ fpϕnpf
npαqqq.

If n Ñ 8, we get ϕ0pγq “ fpγq. By condition (iii), we know γ “ 1 “ ϕp0q.
Similarly, tϕnpfnp1qqu|8n“1 is strictly increasing in rα, 1s and

lim
nÑ8

ϕnpf
np1qq “ ϕp0q,

we omit the proof here. By the condition (i) and (3.3), we have that ϕn has
at fnpαq the minimum and at fn`1p1q the maximum on ∆n. This proves that
ϕ is continuous at x “ 0. Thereby, ϕ is a continuous function in r0, 1s. We
have that ϕpxq satisfies (3.1) by (3.3) and ϕpxq is unique from Lemma 2.3.
And ϕpxq has infinitely many extreme points from Lemma 2.2 (i).

Case 2. Assume ϕ0pλq ă α. Firstly, for x P ∆1 “ rf
2p1q, fp1qs, we set

ϕ1pxq “

#

ψ´1` pfpϕ0pf
´1pxqqqq, px P rf2p1q, fpαqsq,

ψ´1´ pfpϕ0pf
´1pxqqqq, px P rfpαq, fp1qsq.

For n ą 1, ϕnpxq is defined as (3.3). Let ϕpxq be defined as in (3.7). The
proof is similar to Case 1, and we omit it here. Hence, ϕpxq is a single-valley
continuous solution of (1.3) from Lemma 2.2(ii).

Obviously, if ϕ0 is the restriction on rλ, 1s of a single-valley-extended
continuous solution to (1.3), then conditions (i)–(iii) must hold by the lemmas
in Section 2.

Example 3.1. Let ϕ0pxq : r1{4, 1s ÞÑ r0, 1s be defined as

ϕ0pxq “

$

&

%

´13
8 x`

39
32 , p14 ≤ x ≤ 3

4q,

x´ 3
4 , p34 ≤ x ≤ 1q.

It is trivial that ϕ0 satisfies the conditions of Theorem 3.1, where fpxq “ x{4
and λ “ fp1q “ 1{4, α “ 3{4. Thereby, it is the restriction on r1{4, 1s of
a single-valley-extended continuous solution ϕ to (1.3). Since ϕ0 has the
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minimum point α “ 3{4 and ϕ0p1{4q “ 13{16 ą 3{4, the solution ϕ has
infinitely many extreme points. See Figure 1.

Fig. 1. The graph of non-single-valley solution

Example 3.2. Let ϕ0pxq : r1{4, 1s ÞÑ r0, 1s be defined as

ϕ0pxq “

$

&

%

´49
32x`

147
128 , p14 ≤ x ≤ 3

4q,

x´ 3
4 , p34 ≤ x ≤ 1q.

It is trivial that ϕ0 satisfies the conditions of Theorem 3.1, where fpxq “ x2{4
and λ “ fp1q “ 1{4, α “ 3{4. Hence, it is the restriction on r1{4, 1s of
a single-valley-extended continuous solution ϕ to (1.3). Since ϕ0 has the
minimum point α “ 3{4 and ϕ0p1{4q “ 49{64 ą 3{4, the solution ϕ has
infinitely many extreme points. The graph is similar to Figure 1.

Example 3.3. Let ϕ0pxq : r1{4, 1s ÞÑ r0, 1s be defined as

ϕ0pxq “

$

&

%

´3`
?
7

4 x` 9`3
?
7

16 , p14 ≤ x ≤ 3
4q,

x´ 3
4 , p34 ≤ x ≤ 1q,

Trivially, ϕ0 satisfies the conditions of Theorem 3.1, where fpxq “ x{4
and λ “ fp1q “ 1{4, α “ 3{4. Hence, it is the restriction on r1{4, 1s of
a single-valley-extended continuous solution ϕ to (1.3). Since ϕ0 has the
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minimum point α “ 3{4 and 1{4 ă ϕ0p1{4q “ p3`
?

7q{8 ă 3{4, the solution
ϕ is a single-valley continuous solution. See Figure 2.

Fig. 2. The graph of single-valley solution

Example 3.4. Let ϕ0pxq : r1{4, 1s ÞÑ r0, 1s be defined as

ϕ0pxq “

$

&

%

´6`
?
34

8 x` 18`3
?
34

32 , p14 ≤ x ≤ 3
4q,

x´ 3
4 , p34 ≤ x ≤ 1q.

Trivially, ϕ0 satisfies the conditions of Theorem 3.1, where fpxq “ x2{4
and λ “ fp1q “ 1{4, α “ 3{4. Hence, it is the restriction on r1{4, 1s of
a single-valley-extended continuous solution ϕ to (1.3). Since ϕ0 has the
minimum point α “ 3{4 and 1{4 ă ϕ0p1{4q “ p6 `

?
34q{16 ă 3{4, the

solution ϕ is a single-valley continuous solution. The graph is similar to
Figure 2.

Appendix A
Proof of Lemma 2.1. (i) Suppose that γ is a minimum point of ϕ. By
(1.3) we have

fpϕpγqq “ ϕ2pfpγqq ≥ ϕpγq.
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From fp0q “ 0 and fpxq ă x px P p0, 1sq, we know that ϕpγq “ 0. If γ ă fp1q,
then there exists a δ P r0, 1s such that fpδq “ γ and by (1.3), we have

fpϕpδqq “ ϕ2pfpδqq “ ϕ2pγq “ ϕp0q “ 1.

This contradicts fp0q “ 0, fpxq ă xpx P p0, 1sq. Thus γ ą fp1q and from the
definition of α, we know γ “ α and ϕpαq “ ϕpγq “ 0.

(ii) We now prove that for all n ≥ 0 and each x P r0, 1s, we have
(A.1) fnpϕpxqq “ ϕ2npfnpxqq.

Obviously, (A.1) holds for n “ 1 by (1.3). We suppose that (A.1) holds for
n ≤ k, where k ≥ 1 is an integer. Therefore, by (1.3) we have that

ϕ2k`1
pfk`1pxqq “ pϕ2kq

2
pfk`1pxqq “ ϕ2k ˝ ϕ2kpfk`1pxqq

“ ϕ2kpfkpϕpfpxqqqq “ fkpϕ2pfpxqqq

“ fkpfpϕpxqqq “ fk`1pϕpxqq,

i.e., (A.1) holds for n “ k ` 1. Thereby, (A.1) is proved by induction. Let
x “ 0 in (A.1). We have
(A.2) fnp1q “ fnpϕp0qq “ ϕ2npfnp0qq “ ϕ2np0q.

It is trivial that tfnp1qu is strictly decreasing and limnÑ8 f
np1q “ 0. Thereby,

we have
(A.3) lim

nÑ8
ϕ2np0q “ lim

nÑ8
fnp1q “ 0,

i.e., we proved that 0 is a recurrent but not periodic point of ϕ.
(iii) Firstly, we prove the sufficiency. By (1.3), we have 0 “ fpϕpαqq “

ϕ2pfpαqq. Since α is the unique minimum point of ϕ, it follows that ϕpfpαqq “
α. Thus, the sufficiency is proved.

Secondly, we prove the necessity. Suppose that ϕpxq “ α for some
x P r0, fp1qs. By (1.3), we know that

fpϕpf´1pxqqq “ ϕ2pxq “ ϕpαq “ 0,

and from fp0q “ 0, fpxq ă xpx P p0, 1sq, we have ϕpf´1pxqq “ 0. Thereby,
f´1pxq “ α, i.e., x “ fpαq. Thus the necessity is proved.

(iv) Let x “ 0 in (1.3) then
fp1q “ fpϕp0qq “ ϕ2pfp0qq “ ϕ2p0q “ ϕp1q.

Let ϕp1q “ fp1q “ λ. Firstly, we prove that β ă α. Suppose that q is a fixed
point of ϕpxq. We have q ‰ 1 by (A.3) and q ‰ α by ϕpαq “ 0. If q P pα, 1q
then since ϕpxq is strictly increasing in rα, 1s, it follows that q “ ϕpqq ă ϕp1q.
By induction, for all m ≥ 0, we have q “ ϕmpqq ă ϕmp1q, in particular,

q “ ϕ2n´1pqq ă ϕ2n´1p1q “ ϕ2n´1pϕp0qq “ ϕ2np0q.

This contradicts (A.3). Thereby, we proved that q ă α.
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Secondly, by ϕp0q “ 1, ϕpαq “ 0, we know that ϕ has at least one fixed
point β. We prove that β ą λ and β is unique, as follows. We claim that

(A.4) @x P r0, fpαqq, ϕpxq ą α.

If there exists x1 P p0, fpαqq such that ϕpx1q ≤ α, then by ϕp0q “ 1 and
intermediate value theorem, there exists x2 P p0, x1q such that ϕpx2q “ α.
This contradicts conclusion (iii). From ϕpfpαqq “ α and fpαq ă α, we have
β R r0, fpαqs. If β P pfpαq, fp1qs then f´1pβq P pα, 1s. By (1.3), we get

fpϕpf´1pβqqq “ ϕ2pβq “ β.

Thus ϕpf´1pβqq “ f´1pβq. Hence, ϕ has a fixed point in rα, 1s. This
proves β R pfpαq, fp1qs. Thereby, we have β P pfp1q, αq. Since ϕ is strictly
decreasing in pfp1q, αq, β is a unique fixed point of ϕ in r0, 1s.

Thirdly, since λ ă β ă α and ϕ is strictly decreasing in pλ, αq, we have

ϕpλq ą ϕpβq “ β ą λ.

(v) By (1.3), it is trivial that x “ 1 is a solution of the equation ϕpxq “
fpxq. Suppose that x0 P rα, 1s is an arbitrary solution of this equation, i.e.,
ϕpx0q “ fpx0q. Since rα, 1s Ă ϕpr0, fpαqsq, there exists y P r0, fpαqs, such
that ϕpyq “ x0. We claim that

(A.5) @n ≥ 0, ϕpfnpyqq “ x0.

Obviously, (A.5) holds for n “ 0. Suppose that (A.5) holds for n “ k, where
k ≥ 0. Therefore, by (1.3) we have

ϕ2pfk`1pyqq “ fpϕpfkpyqqq “ fpx0q “ ϕpx0q.

Since fk`1pyq ă y ă fpαq and (A.4), we have ϕpfk`1pyqq ą α. And, since ϕ
is strictly increasing in rα, 1s, we have ϕpfk`1pyqq “ x0, i.e., (A.5) holds for
n “ k ` 1. Thereby, (A.5) is proved by induction. Since tfnpyqu is strictly
decreasing and limnÑ8 f

npyq “ 0, we have x0 “ limnÑ8 ϕpf
npyqq “ ϕp0q

“ 1.

Proof of Lemma 2.2. (i) If ϕpλq ą α, we claim that

(A.6) @x P rfpαq, λs, ϕpxq ≥ α.

If there exists y P pfpαq, λq such that ϕpyq ă α, then by ϕp0q “ 1 and
intermediate value theorem, there exists z P py, λq such that ϕpzq “ α. This
contradicts Lemma 2.1(iii). Thereby we proved (A.6). From (A.4) we have

(A.7) @x P r0, λs, ϕpxq ≥ α.

Define
ψ` “ ϕ|rα,1s, ψ´ “ ϕ|rλ,αs.

Obviously, ψ` is strictly increasing and ψ´ is strictly decreasing. It is trivial
that tfnp1qu and tfnpαqu are decreasing, fn`1p1q ≤ fnpαq ≤ fnp1q and
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limnÑ8 f
np1q “ limnÑ8 f

npαq “ 0. For n “ 0, 1, 2, . . . , let

∆n “ rf
n`1p1q, fnp1qs, ∆1

n “ rf
npαq, fnp1qs, ∆2

n “ rf
n`1p1q, fnpαqs,

then

r0, 1s “
8
ď

n“0

∆n “

8
ď

n“0

p∆1
n Y∆2

nq.

We prove by induction, that for all n ≥ 0, ϕ is strictly increasing in ∆1
n

and strictly decreasing in ∆2
n, respectively.

Obviously, ϕ is strictly increasing in ∆1
0 and strictly decreasing in ∆2

0.
Suppose that ϕ is strictly increasing in ∆1

n and strictly decreasing in ∆2
n for

n ≥ k, where k ≥ 0. By (1.3), we have

(A.8) fpϕpf´1pxqqq “ ϕ2pxq, x P ∆k`1.

By (A.7), we have ϕpxq P rα, 1s. Thus (A.8) is equivalent to the following
equation

fpϕpf´1pxqqq “ ψ`pϕpxqq, x P ∆k`1.

Thereby,

(A.9) ϕpxq “ ψ´1` pfpϕpf
´1pxqqqq, x P ∆k`1.

Since ψ´1` , f, f´1 are strictly increasing and ϕ is strictly increasing in ∆1
k

and strictly decreasing in ∆2
k, we know ϕ is strictly increasing in ∆1

k`1 and
strictly decreasing in ∆2

k`1. Thereby, ϕ is strictly increasing in ∆1
n and

strictly decreasing in ∆2
n for all n ≥ 0. Thus ϕ has infinite many extreme

points fnp1q and fnpαq.
(ii) If ϕpλq ă α, we prove by induction that for all n ≥ 1, ϕ is strictly

decreasing in ∆n. By (A.4), we have ϕpxq P rα, 1s for x P rf2p1q, fpαqs. By
λ ă ϕpλq ă α and the condition (iii) of Lemma 2.1, we have ϕpxq P rλ, αs
for x P rfpαq, fp1qs. Thus for x P ∆1 “ rf

2p1q, fp1qs, from (1.3) we have

ϕpxq “

#

ψ´1` pfpϕpf
´1pxqqqq, px P rf2p1q, fpαqsq,

ψ´1´ pfpϕpf
´1pxqqqq, px P rfpαq, fp1qsq.

(A.10)

Since f, f´1, ψ´1` are strictly increasing and ψ´1´ is strictly decreasing and
ϕ is strictly increasing in ∆1

0 and strictly decreasing in ∆2
0, we know ϕ is

strictly decreasing in ∆1. For n ą 1, from (1.3) we have (A.9). The proof is
similar to conclusion (i), and we omit it here.

Proof of Lemma 2.3. It is trivial that there exist α P pλ, 1q, β P pλ, 1q such
that ϕipαq “ 0, ϕipβq “ β pi “ 1, 2q. Define

(A.11) ψ` “ ϕ1|rα,1s “ ϕ2|rα,1s, ψ´ “ ϕ1|rλ,αs “ ϕ2|rλ,αs.
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Obviously, ψ` is strictly increasing and ψ´ is strictly decreasing. It is trivial
that tfnp1qu is decreasing and limnÑ8 f

np1q “ 0. Let ∆n “ rf
n`1p1q, fnp1qs,

pn “ 0, 1, 2, . . . q then r0, 1s “
Ť8
n“0 ∆n.

We prove by induction that ϕ1pxq “ ϕ2pxq on ∆n for all n ≥ 0:
Obviously, ϕ1pxq “ ϕ2pxq on ∆0. Suppose that ϕ1pxq “ ϕ2pxq holds on

∆n for all n ≤ k, where k ≥ 0 is an integer. Let

ϕpxq “ ϕ1pxq “ ϕ2pxq, x P rfk`1p1q, 1s.

By (1.3), we have

(A.12) fpϕpf´1pxqqq “ fpϕipf
´1pxqqq “ ϕipϕipxqq, pi “ 1, 2, x P ∆k`1q.

Next, we prove the following two cases.
Case 1. ϕ1pλq “ ϕ2pλq ą α. Then by (A.7), we have that (A.12) is

equivalent to the following equation

fpϕpf´1pxqqq “ ψ`pϕipxqq,

thereby

(A.13) ϕipxq “ ψ´1` pfpϕpf
´1pxqqqq, pi “ 1, 2, x P ∆k`1q.

Thus we have ϕ1pxq “ ϕ2pxq on ∆k`1. By induction, ϕ1pxq “ ϕ2pxq on ∆n

for all n ≥ 0.
Case 2. ϕ1pλq “ ϕ2pλq ă α. By Lemma 2.1 (iv), we have ϕpλq ą λ.

Thus ϕipxq ą ϕipλq ą λ for x ă λ. If ϕipxq P rα, 1s then ϕi satisfy (A.13).
If ϕipxq P rλ, αs then (A.12) is equivalent to the following equation

fpϕpf´1pxqqq “ ψ´pϕipxqq,

thereby

(A.14) ϕipxq “ ψ´1´ pfpϕpf
´1pxqqqq, pi “ 1, 2, x P ∆k`1q.

We claim that ϕ1pxq and ϕ2pxq either both satisfy (A.13) or both satisfy
(A.14), simultaneously. Suppose there exists an x0 P ∆k`1 such that

ϕ1px0q “ ψ´1` pfpϕpf
´1px0qqqq, ϕ2px0q “ ψ´1´ pfpϕpf

´1px0qqqq.

By ψ´1` : r0, λs ÞÑ rα, 1s and ψ´1´ : r0, ϕpλqs ÞÑ rλ, αs, there exists xi such
that x1 ą x0, x1 P ∆k`1 and

ϕ1px0q ą ϕ1px1q ą α ą ϕ2px0q ą ϕ2px1q.

Since ϕipxq are respectively strictly monotone in rλ, αs and rα, 1s, from (A.12),
we have that

ϕ1pϕ1px1qq ă ϕ1pϕ1px0qq “ ϕ2pϕ2px0qq ă ϕ2pϕ2px1qq.

This contradicts (A.12) px “ x1q. Thus we have ϕ1pxq “ ϕ2pxq on ∆k`1.
Hence ϕ1pxq “ ϕ2pxq on ∆n, for all n ≥ 0.
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