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WEAK HOMOMORPHISMS OF COALGEBRAS BEYOND
SET

Abstract. We study the notion of weak homomorphisms between coalgebras of
different types generalizing thereby that of homomorphisms for similarly typed coalgebras.
This helps extend some results known so far in the theory of Universal coalgebra over Set.
We find conditions under which coalgebras of a set of types and weak homomorphisms
between them form a category. Moreover, we establish an Isomorphism Theorem that
extends the so-called First Isomorphism Theorem, showing thereby that this category
admits a canonical factorization structure for morphisms.

1. Introduction

In Universal (Co)Algebra, the notion of homomorphism is usually consid-
ered for similarly typed (co)algebras. A useful way of weakening this notion
is to define it for differently typed (co)algebras. Following E. Marczewski
who proposed the concept of weak homomorphisms for non-indexed universal
algebras in 1961, K. Glazeck in 1980 proposed this concept for indexed ones
(see [16] for references). F. M. Schneider generalized the latter to F-algebras
for an arbitrary Set-endofunctor F'in [16]. Inspired by the preprint of his work
and the manuscript of the thesis of K. Saengsura, see [15], K. Denecke and W.
Supaporn extended the concept to (Fy, Fy)-systems for some Set-endofunctors
Fy and Fy in [7]. One of the interesting problems posed by F. M. Schneider in
[16] was whether and under what conditions it is possible to generalize the re-
sults he obtained by replacing Set with an arbitrary category C with a suitable
factorization structure for morphisms and considering those C-endofunctors
which are compatible with the chosen factorization structure in some sense.
In this paper, we attempt at solving this problem in the dual context. Indeed,
considering an arbitrary strongly well-powered category C with epi-strong
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mono factorizations and considering types preserving at least strong monos,
we study the concept of weak homomorphisms for differently typed coalgebras.

The main goal of the present paper is to show that for differently typed
coalgebras, weak homomorphisms in many respects behave very similarly to
proper ones so that many of the results known for coalgebras of a common
type actually still hold.

The paper is organized as follows. In Section 2, we give some basics in
connection with category theory as well as that of Universal Coalgebra in
a more general context. In particular, we focus on the extension of some of
the results from [8, 10, 14, 13] where coalgebras taking into consideration are
similarly typed with Set as base category. Therefore most of these help in
the sequel to extend, in the dual context, results from [16]. In particular, we
extend a result from [8, 13| which helps show that a morphism is actually
a homomorphism between coalgebras of a given type, a result which is at the
origin of the so-called First Diagram Lemma and Second Diagram Lemma
in [8]. These lemmas helped inter alia characterize the so-called closed subsets,
a concept that is also found in [16] for functorial algebras and in |7], where
they are rather known as open subsets when dealing with (F;, F5)-systems.
Extending the concept of closed subset, we define that of closed subobject
and characterize them in a category endowed with a suitable factorization
system in Section 3. Closed subobjects constitute one of the main ingredients
in the definition of weak homomorphisms. This inter alia helps extend the
above diagram lemmas to differently typed coalgebras. Furthermore, we show
that, under reasonable circumstances, differently typed coalgebras and weak
homomorphisms between them form a category Cx where F denote the set
of types. We end the section with an Isomorphism Theorem, which enables
us to see that this category admits a canonical factorization structure for
morphisms. The fourth section is devoted to the conclusion.

2. Preliminaries
Let C be a category and F' a C-endofunctor.

2.1. Basics. By F'-coalgebra (or F-system) or simply coalgebra (or system)
is meant a pair A = (A,a : A — F(A)). F is called the type and the
morphism « the transition structure (or dynamics or costructure) of the
coalgebra A. An F-homomorphism, i.e., a morphism from a coalgebra (A, )
to a coalgebra (B, 3) is a morphism ¢ : A — B such that F(¢)oa = 0.
With morphisms between them, F-coalgebras form a category [1, 3]. Denote
it by Cr and by U : Cp — C the forgetful functor; i.e., the functor sending
(A,a) to A and ¢ : (A,a) — (B,5) to ¢ : A — B. Although U always

reflect monos, it doesn’t preserve them in general.
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The category Cr has all colimits that exist in C as well as all limits that
are preserved by F'; these (co)limits are created by the forgetful functor
[1, 4]. As an immediate consequence thereof, epis (isos) in the former are
precisely morphisms which are epis (isos) in the latter, see ibid. Therefore,
the forgetful functor reflects epis (isos).

Functors weakly preserving kernels (i.e., transforming a kernel into a weak
kernel) and those preserving powers will be of interest in the sequel. In
case C = Set, polynomial functors (see [3, 8, 14]) (built from the identity,
constant functors, sums, products and composition and are instances of the
so-called partial product functors which are generalized pullbacks preserving
functors [6, 12]), as well as the finite powerset functor P, do weakly preserve
kernels and the latter does not preserve binary powers (and thus products) for
there exist coalgebras which are nonempty but are isomorphic to their binary
power (with nonempty carriers whose products are the empty coalgebra),
see [9].

The following definitions of some special morphisms as well as related
properties can be found in [2|. A morphism in C is a regular epi provided
it is the coequalizer of some parallel pair of morphisms. Every regular epi
is an epi. By a strong mono is meant a mono m : C' — D in C such that
for all morphisms f: A —- C, g: B — D and all epi ¢ : A — B such that
mo f = goe, there exists a unique morphism d : B — C such that doe = f
and mod = g. The class of epis is as well as that of strong monos, closed
under compositions and the latter under pullbacks, too (whenever they exist).

The following, which will be frequently used throughout this paper, is
straightforwardly checked.

LEMMA 2.1. Let m and n be morphisms. If mon is a strong monomorphism
and m s a monomorphism, then n is a strong monomorphism.

By an M-subobject of an object A in C for some class M € Mono(C) is
meant one represented by a morphism belonging to M. In particular, a strong
subobject of A is one represented by a strong mono. A strong subobject S of
A will alternatively be designated by the strong mono S — A by which it
is represented. By subcoalgebra of an F-coalgebra (A, ) is meant a strong
subobject of (A, a).

If C has epi-strong mono factorizations, then every morphism ¢ : A — B
factors in a unique way (up to isomorphisms) in an epi ¥ : A — @ followed
by a strong mono 6 : Q — B. If ¢ : A — B is a morphism and p: U — A is
a strong mono so that the composite ¢ o u factors in C in an epi ¢’ : U — @’
followed by a strong mono p' : Q' ~— B as pou = p' o)/, then Q' is denoted
by ¢[U] and is called the image of U (or of p: U — A) under ¢.
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LEMMA 2.2. If a morphism ¢ : A — B factors in an epi ¢ : A — @Q
followed by a strong mono 0 : Q — B as ¢ = 0o, then p[A] = Q. If
o : U — A is a strong subobject of A, then p|U] is a strong subobject of p[A]
and Y|U]| = ¢[U].

Proof. Q = ¢[A] is straightforward. Factorizing oo inanepi¢)’ : U — ¢[U]
followed by a strong mono €' : p[U] — B as poo = 6 o/, we have
foroo =0 o1). But then 6 strong mono and v’ epi imply that there exists
a unique morphism ¢ : p[U] — @ such that § o)’ =1 oo and § = 0o and
since 6’ is a strong mono and 6 is a (strong) mono, Lemma 2.1 yields that ¢ is
a strong mono, too. Hence ¢[U] is a strong subobject of p[A]. y[U] = ¢[U]
follows straightforwardly from the fact that epi-strong mono factorizations of
the same morphism are isomorphic. =

It is well known that strong monos are stable under the formation of
pullbacks [2]. If C has pullbacks (along strong monomorphisms) and p : U —
B <« A: pis a cospan where p is a strong monomorphism, then denote by
w' i~ [U] — A the pullback of u along .

Recall that a mono m : A — B in C is called extremal provided whenever
m = f oe where e is an epi, then e must be an isomorphism; and strong
implies extremal, a morphism which is both an epi and an extremal mono is
an iso. The following has been discussed for arbitrary limits in [2], where it
is shown that the mediating morphism {f;), is always an extremal mono. In
particular, it holds:

LEMMA 2.3. Assume that the generalized pullback (L, (f; : L — A;)ier) of
a sink (g; + Ai = A)ier and the product | [,.; A; of the A;’s exist in C. Then
the unique morphism {f;y : L — | [,c; Ai, given by the universal property of
the product, is a strong monomorphism.

Proof. Let ¢ : B — C be an epimorphism, and v : B — L and v : C —
[ [;,c; Ai be morphisms such that (f;)ou =voe.

C — HzeIA =

We want to show that there exists a unique morphism d : C — L such that
v={fiyodand u=doe. Let p; : [],c; Ai — A; be the i'" projection of
[Lies Ai- (piov:C — A)er is a source and by a straightforward diagram
chase one can prove: for all j,k € I, gjopjovoe = gyopgovoe and, since e is
an epimorphism, g; opjov = gy o pg ov. Therefore, by the universal property
of the generalized pullback, there exists a unique morphism d : C' — L such
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that, for each j € I, pj ov = f; od; that is, pj ov = p; o (f;) od. But then,
since the (] [,c; Ai, (pi)ier) is a mono-source, we deduce that v = (f;)od. On
the other hand,

pjov=pjolfipod=pjovoe=pjolfpodoe
= pjo(fiyou=pjo{fiyodoe
:>U:doea

since the p;’s are jointly monic and {f;) is a monomorphism. m

2.2. Factorization of homomorphisms and coalgebras of covarietors.
It is not hard to check the following. Assertion 2. has been proved by Hughes
in [11] for M taken to be the class of all regular monomorphisms in C whereas,
in the setting of category Set, Rutten in [13] and Gumm in [8] have proven
the two assertions. It helps show that some morphisms in the base category
are in fact homomorphisms.

THEOREM 2.4. Let (A,«a), (B,B) and (C,v) be coalgebras in
Cr, p : (A,a) = (C,v) a homomorphism, f : A — B and g : B - C
morphisms in C with ¢ = go f.

1. If f is an epimorphism in Cp, then g is a homomorphism.

2. If I preserves or takes M-morphisms to monomorphisms for some M <
Mono(C) and g is a homomorphism which is an M-morphism in C, then
f is a homomorphism.

Using the fact that epis in Cg are precisely homomorphisms carried
by epis in C, it is not hard to check that every homomorphism carried by
a strong mono in C is a strong mono in Crp. Summarizing some results
from [1], we obtain the following which will play a key role throughout our
work.

LEMMA 2.5. Assume that C has epi-strong mono factorizations.

1. If F preserves strong monomorphisms, then strong monomorphisms in Cg
are precisely the morphisms which are strong monomorphisms in C.
In case C = Set, strong monomorphisms are precisely injective homomor-
phisms.

2. If C = Set or F preserves strong monomorphisms, then Cgp has also
epi-strong mono factorizations. They are, in fact, created by the forgetful
functor U.

Recall that every strongly complete category; that is, a category which
has all small limits and all intersections of subobjects (possibly large), has
epi-strong mono factorizations [2|, and a type F is called a covarietor provided
the forgetful functor has a right adjoint [1, 3|. In Set, examples of covarietors
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are partial product functors (and hence polynomial ones, see also [3], for
instance) [12], the so-called bounded functors (e.g., P,) and the functors
which preserve w-mono-sources, see [9].

For later use, we also give the following summary of some essential results
from [1]:

LEMMA 2.6.

1. Limit Theorem: If C is a strongly complete category and F is a covarietor
preserving strong monomorphisms, then Cg is complete.
2. For every covarietor over Set, the category of coalgebras is complete.

2.3. Congruences and bisimulations. Congruences/bisimulations are
special relations on/between carriers of coalgebras and will be of interest in
the sequel. We don’t give a great treatment of them but just definitions and
some slight insights thereof needed for our purpose.

DEFINITION 2.7. Let (Ag)rex be a family of objects in a category C with
k-products, for some ordinal x. Then a kK — M-relation between the A.’s
for some M < Mono(C) is an M-subobject of the product [ [,., Ax. This
is represented by an M-morphism R »— [, Ak, or equivalently by a
family of morphisms (r : R — Ag)kex with the property that the morphism
(riy : R — | [ien Ak obtained by the universal property of the product is
an M-morphism. In case kK = 2, we talk of binary M-relation. In case
M = Mono(C), we simply talk of relation.

Let (ry : R — Ag)kes and (1), : R — Ap)rer be kK — M-relations. We
say that R is contained in R', written as R C R/, provided there exists a
strong monomorphism « : R — R’ with r, = 7} o u for every k € k; that is,

(riy = {rpyou.

DEFINITION 2.8. Let x be an ordinal and (A, a4, )kex a family of coal-
gebras in Cp such that the product [[,, Ay exists. An M — s-simulation
between coalgebras A’s in Cp for some class M < Mono(C) is an M-relation
(ri : R — Ag)gex such that there exists a dynamics p: R — F(R) on R
turning the projections r;’s into homomorphisms. For k = 2, we speak of
M-bisimulations. In case M = Mono(C), we just speak of k-simulation and
bistimulation in case k = 2. If for every k € k we have Ay = A, then we speak
of an M — k-simulation on A.

Thus, M — k-simulations are special M-subobjects and are M — k-relations
between the carriers of coalgebras which respect their coalgebraic structure.
In case M is the class of strong monomorphisms and C = Set, we retrieve
the definition given in [13, 8, 14].
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THEOREM 2.9. Assume that C, with k-products for some ordinal Kk > 2,
has generalized k-pullbacks and F' weakly preserves s-pullbacks. For every
sink (o : Ak — B)rex in Cp with Ay = (Ag,ax) and B = (B, ), the
k-pullback (7, : R — Ap)kew of the vi’s in C is a k-strong simulation between
the Ay ’s. If in addition C has epi-strong mono factorizations, F preserves
strong monomorphisms and there exists ko € K such that m, is a strong
monomorphism, then it is also the k-pullback of the pi’s in Cp.

Proof. For all k # k' in &, a straightforward diagram chase yields F'(¢y) o
ag om, = F(pgr) o agr o mr. Thus, since (F(my) : F(R) — F(Ag))kes 1s the
weak r-pullback of the F(pg)’s, there exists a morphism p : R — F(R) such
that for every k € k, F(mk) o p = ag o mg. On the other hand, by Lemma 2.3,
R is a strong k-relation between the Ag’s.

Tt

Qs

Apr o

Assume in addition that there exists kg € k such that my, is a strong
monomorphism and let (ux : R' — Ag)kex be a k-source in Cr such that
©p 0 i = @ o g for all k # k. Considering these equalities in C, the
universal property of the k-pullback yields a unique morphism u : R — R
such that for every k, m; o u = ug. To end the proof, we need to show that
u is a homomorphism. Now, in particular, we have 7, o u = py, where my,
is & homomorphism which is a strong monomorphism in C and F’ preserves
strong monomorphisms. Thus item 2. of Theorem 2.4 applies. =

DEFINITION 2.10. Assume that C is a category with kernel pairs. A con-

gruence on a coalgebra A over C is the kernel in C of a homomorphism ¢
with domain A.

Although the following does not give a characterization of regular epi-
morphisms in a category of coalgebras as in [10], it can help show that
a homomorphism is a regular epimorphism in some cases.
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LEMMA 2.11. If C has kernel pairs and binary powers and F weakly pre-
serves kernels, then:

1. every congruence is a strong bisimulation;
2. the forgetful functor U : Cp — C reflects reqular epimorphisms.

Proof. 1. Let (6, m,m2) be a congruence on a coalgebra (A, «). Then there
exists a homomorphism ¢ : (A, «) — (B, ) such that (0,71, m2) is the kernel
pair in C of ¢. By Lemma 2.3, the unique morphism {71, m) : 6§ — A x A,
given by the universal property of the product, is a strong monomorphism.
Thus, by Theorem 2.9, (6,71, m2) is a strong bisimulation on .A.

2. Let ¢ : A — B be a homomorphism which is a regular epimorphism in
C and let 71,72 : ker(p) — A be its kernel in C. We want to show that ¢ is
the coequalizer of w1 with mo in Cp. Since ¢ is a regular epimorphism in C,
then it is the coequalizer of m; with my in C [2|. Therefore, from 1. above,
we deduce that ker(p) is a strong bisimulation on A. Now let ¢ : A — C
be a homomorphism such that 1 o m; = 9 o mo. By the universal property
of the coequalizer, there exists a unique morphism ¢ : B — C in C such
that ¥ = € o . But then, since ¢ is an epimorphism in Cg, it follows from
Theorem 2.4 that ¢ is a homomorphism.

In some categories, every epimorphism is regular. E.g., the categories
Grp of groups, Ab of abelian groups and homomorphisms of groups, Lat of
lattices and homomorphisms of lattices, HComp of compact Hausdorff spaces
and continuous functions [2|, and every topos [5]. The following result is an
extension of the work in [10] and helps create such categories in the field of
the Universal coalgebra.

COROLLARY 2.12. If in addition to the assumptions of Lemma 2.11, every
epimorphism in C is reqular, then the following hold:

1. every epimorphism in Cg is regular.
2. if in addition C has epi-strong mono factorizations and F' preserves strong
monomorphisms, then every monomorphism in Cg is strong.

Proof. 1. It follows directly from 2. of Lemma 2.11.

2. By Lemma 2.5, every monomorphism ¢ in Cg factors in an epimorphism
1 followed by a strong monomorphism p as ¢ = po . But then, since ¢ is
a monomorphism, this equality implies that so is ¢». Now, by 1., ¥ is also
a regular epimorphism. Thus, it is an isomorphism [2]. Hence the desired
result. m

LEMMA 2.13. Assume that C, with epi-strong mono factorizations, has and
F preserves products as well as strong monos, (A;)ier a family of F-coalgebras
where A; = (A;,0q) and m; = | [,c; Ai — A; denotes the canonical projection
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for each i. Moreover, let ju : S — [[,c; Ai be a strong mono and o : S — F(S5)
a morphism. Then the following are equivalent:

(i) p:(S,0) = [l Ai is a strong mono in Cp.

(ii) For each i€ I, the composite ;o : S — A; is a homomorphism from
(S,0) to (Ai, ).

Proof. Since C has and F preserves products, then it follows that Cg has

products and they are created by the forgetful functor (see Subsection 2.1).

On the other hand, by Lemma 2.5, strong monos in Cg are carried by strong

monos in C. Taking all this into account, the desired result is straightforward. =

The next result, which has been proven in [8] in case C = Set without
assuming that F' preserves strong monos (which are just monos in this case),
gives a characterization of congruences and shows that every congruence
gives rise to a unique factor in some cases.

LEMMA 2.14. Assume that C has kernel pairs, binary powers, coequalizers of
equivalence relations and epi-strong mono factorizations, every epimorphism
is reqular and F preserves strong monomorphisms. Let A = (A,«a) be a
coalgebra, my,m2 : @ — A a strong equivalence relation on A and mg : A — A/0
the coequalizer of m1 and . Then, the following are equivalent:

1. m,me : 0 — A is a congruence on A.
2. There exists a unique dynamics ag : A0 — F(A/0) turning mg into a
homomorphism.
3. 0 C ker(F(mg) o).
Proof. 1. = 2. Let ¢ : A — B with B = (B, ) be a homomorphism whose
kernel pair (in C) is 6. Let ¢ = o ¢’ be the epi-strong mono factorization
of p in Cp with ¢’ : A - ¢[A] and p : ¢[A] — B and denote by § the
dynamics on ¢[A]. Clearly (0,7, m2) is also the kernel of ¢’ in C. Thus,
since by assumption ¢’ is a regular epimorphism, it follows that ¢’ is also
the coequalizer of m; and my in C [2]. Thus, there exists an isomorphism
P A/O — p[A] such that ¢’ =1 o my. We have:
F($) o F(mg)oaom = F(¢)oaom
=dopom =80y om
=F(¢)oaom = F(¢) o F(my) oaomo.
Thus, canceling F'(¢) at the left, the universal property of the coequalizer
yields that there exists a unique morphism ay : A/6 — F(A/6 such that
Qg O T :F(ﬂg)oa.
2. = 3. It follows directly from the equality F(mg)oaom = F(mg)oaoms,

the universal property of the pullbacks, Lemmas 2.1 and 2.3.
3. = 2. and 2. = 1. are straightforward. =
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DEFINITION 2.15. The factor coalgebra (A/0, ay) given by Lemma 2.14 is
denoted by A/6 and called the factor of the coalgebra A w.r.t. the congru-
ence 0. The epimorphism 7y : A — A/ is called the canonical projection

from A onto A/6 .

3. The category Cr
C is a strongly well-powered category with epi-strong mono factorizations.

3.1. Closed subobjects.

DEFINITION 3.1. Let A = (A,«) be an F-coalgebra for some type F.
A strong subobject pu : S — A is called closed in (A, «) if there exists a
morphism o : S — F(S) making ¢ an F-morphism from (S, 0) to (4, a).

It is not hard to see that if F' preserves strong monomorphisms, then
for each strong subobject S of A, the dynamics ¢ is unique and it follows
from Lemma 2.5 that (S, 0) is precisely a subcoalgebra of (A, «). Since C is
strongly well-powered, closed strong subobjects of A form a set. Denote it

by Subr(A).

LEMMA 3.2. Assume that F preserves strong monos. Let (A,«) be an
F-coalgebra and S an object in C. Then S € Subp((A,«)) if and only if
there exists a coalgebra (P, ) and a homomorphism ¢ : (P,m) — (A, ) with
S =~ ¢[P].

Proof. If 1 : S — A is a strong subobject closed in (A, ), then there exists
a dynamics o : S — F(S) such that u : (S,0) — (A, a) is a homomorphism.
Set (P, m) := (S, 0) and ¢ := p and consider the epi-strong mono factorization

S—w»,u[S]>9—>A of i in Cp given by Lemma 2.5. 4 = 6 o 1) is a strong

mono and 6 is a strong mono and therefore a mono. Therefore, by Lemma 2.1
1) is a strong mono, too. Now it is also an epi; thus it is an iso. Hence
S = u[S] for as it has been mentioned above, isos in Cr are carried by isos
in C.

Conversely, assume that there exist a coalgebra (P, 7) and a homomor-
phism ¢ : (P,m) — (A, a) with S = ¢[P] and let ¢ = € o7 be the epi-strong
mono factorization of ¢ in Cp. Then @[(P,7)] is carried by ¢[P] and
e : p[P] — A is a strong subobject of A such that ¢ : ¢[(P,7)] — (A, «) is
a homomorphism again by Lemma 2.5. Hence the desired result. m

The following result will be very useful in the sequel.

THEOREM 3.3. Assume that C has binary powers, and kernel pairs and F
preserves binary powers as well as strong monos and let A = (A, «) be an
F-coalgebra and ¢ : A — B a morphism. Then the following statements
hold:
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(i) If F weakly preserves kernels and there exists a dynamics : B — F(B)
such that ¢ is a homomorphism from A to B = (B, (3), then ker(p) €

(ii) If ¢ is an epimorphism in C which is the coequalizer of its kernel pair
and ker(p) € Subp(A x A), then there exists a dynamics 5 : B — F(B)
such that ¢ is a homomorphism from A to B = (B, 3).

Proof. Since C has and F' preserves binary powers, then Cr has binary
powers and they are carried by binary powers in C, see Subsection 2.1.

(i) It follows directly from item 1. of Lemma 2.11.

(ii) Let w1, mo : ker(¢p) — A denote the canonical projections of ker(p)
and let v : ker(p) — F(ker(y) be a dynamics such that the strong mono
(my,m9) : ker(p) — A x A given by the universal property of the product
according to Lemma 2.3 is a homomorphism from (ker(p),v) to A x A. Let
p1,p2 : A x A — A denote the canonical projections and 7 : A x A —
F(A x A) the dynamics of A x A. (w1, m) : (ker(¢),y) — (A x A,m) is
a homomorphism. On the other hand, for all i, « o p; = F(p;) o w and
post-composing by (71, m2) yields a o m; = F(m;) oy. Now it is not hard to
check that F(¢)oaom = F(p)oaoms. Thus, by the universal property
of the coequalizer, there exists a unique morphism 5 : B — F(B) such that
Bop—F(p)oa. =

It is not hard to see that a combination of Lemmas 2.5 and 2.6 yields:
REMARK 3.4. Items (i) and (ii) from Theorem 3.3 hold if C is strongly
complete and F' is a covarietor preserving strong monomorphisms.

An analog of the following for differently typed algebras of functors over
Set can be found in [16] and, also in [§] for coalgebras over Set without
assumption of preservation of strong monos.

LEMMA 3.5. If F' preserves strong monos, then the following hold for any
homomorphism ¢ : A — B and any object U :

(i) If U € Subp(A), then o[U] € Subp(B).
(ii) If C has and F preserves pullbacks along strong monos and U € Subp(B),
then ¢~ [U] € Subp(A).

Proof. (i) Let A= (A,a), B= (B, (), 0 : U — A be a strong subobject of
A such that U € Subp(A) with the dynamics o : U — F(U) and factorize
pooin Casanepi ) : U — [U] followed by a strong mono 6" : p[U] — B.
A straightforward diagram chase yields 06 ot = F(6') o F(¢') o u. On the
other hand F preserves strong monos, thus F(#’) is a strong mono and since
¢’ is an epi, it holds there exists a unique morphism ¢ : ¢[U] — F(¢[U])
such that pot)’ = F(¢')op and F(0')o¢p = So6. Hence ¢’ is a strong mono
which is a homomorphism from (¢[U], ¢) to (B, ).
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(ii) Since C has and F preserves pullbacks along strong monos, then Cg
has pullbacks along strong monos too (see Subsection 2.1); and if F' preserves
strong monos, then monos therein are carried by strong monos in C, by
Lemma 2.5. This immediately yields the desired result. m

3.2. Some facts about coalgebraically equivalent coalgebras. Bor-
rowing notations from [16], we have the following, where for each coalgebra
A and each set I, A’ := II;c; A; with A; = A is the I-power of A, whenever
it exists:

DEFINITION 3.6. An F-coalgebra A and a G-coalgebra A’ on a common
carrier A, for some C-endofunctors F' and G, are said to be coalgebraically
equivalent, written as Arp =g A’ or simply A = A’ if it is clear from the
context, provided for each set I such that A’ and A" exist, Subp(A!) =
S ubG(A’I ).

Recall (see Subsection 2.1) that if C has and F' preserves powers or if C
is strongly complete and F' is a covarietor preserving strong monomorphisms
(see Lemma 2.6), arbitrary powers of coalgebras exist in Cp; i.e., for every
coalgebra A and each set I, A! exists.

[16] contains an analog of the following, for differently typed algebras
over Set.

LEMMA 3.7. Assume that C has arbitrary powers and let F' and G be
C-endofunctors preserving arbitrary powers and strong monos, (A,«) and
(B, ) F-coalgebras and (A,d') and (B, ') G-coalgebras. If there exists a
strong mono ¢ : A — B which is a homomorphism from (A, «) to (B, ) and
from (A, o) to (B, '), then (B,B)r =¢ (B,f') = (A,a)r =g (4, d).

Proof. Since F' and G preserve arbitrary powers, then Crp and Cg have
powers and they are carried by powers in C, see Subsection 2.1. Assume
that (B,B)r =¢ (B,f') and let U € Subr((A,)!) for some set I such
that (A%, a!) := (A,a)! and (A”,a/T) := (A’,o/)!. Then there exists a
strong mono v : U »— A! and a dynamics pp : U — F(U) such that ¢ is a
homomorphism from (U, ur) to (A%, a’). But then, the composite ¢! o) :
U — B! is a strong mono because the class of strong monos is closed under
composition and under products [2], and an F-homomorphism, too. Hence
U € Subr((B, B)!). Therefore by assumption, U € Subg((B, 3')), too. Thus,
there exists a dynamics pg : U — G(U) such that o oy : (U, pg) — (B, ')
is a homomorphism. We have 87 o ! 09p = G(¢!) 0 G(¥) o pg; i.e., G(p!) o
o/Torp = G(e") o G(v) o ug, because ¢! is a homomorphism from (A, o/)! to
(B, 8")!. Now in addition, G preserves strong monomorphisms; thus G(p!)
is a mono so that canceling it from the left yields o’/ 09 = G(v)) o . Hence
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Y1 (U, pg) — (A, o) is a homomorphism; i.e., U € Subg((4,a/)!). By
symmetry, we have Subg((A, o)) € Subp((A,a)!). =

A category is said to satisfy the Axiom of Choice (AC, for short) in the
sense of [11] provided every epimorphism splits, i.e., every epimorphism is
right-invertible. E.g., Set and the category Vec of real vector spaces and
linear transformations between them see, for instance, [2] where it is shown
that in a category satisfying the AC, epimorphisms are closed under products
and pullbacks but this is not true in an arbitrary one. As far as epimorphisms
are concerned, a category satisfying the AC satisfies the conditions in the
following lemma, whose analog can be found in [16] for differently typed
algebras over Set.

LEMMA 3.8. Assume that C has and F' and G preserve pullbacks along strong
monos and arbitrary powers as well as strong monos and epis are closed under
pullbacks along strong monos and arbitrary powers and let A = (A, ) and
B = (B, ) be F-coalgebras, A’ = (A,d/) and B' = (B, ") be G-coalgebras.
If there exists an epi p : A - B which is a homomorphism from A to B as
well as from A’ to B, then Ap =¢ A" = Bp =g B'.

Proof. Assume that Ar =g A’ and let U € Subp(B'), for some set I, with
o : U — B! as corresponding strong mono. Then there exists a dynamics jp :
U — F(U) such that o : (U, up) — B is a homomorphism. Then by Lemma
3.5 (1)"[U] € Subp(A!) so that by assumption (¢!)~[U] € Subg(A7)
too. Thus, there exists a strong mono v : (¢!)~[U] — Al and a dynamics
vg ¢ (eD)7[U] — G((¢")"[U]) such that v : ((¢))"[U],vg) — AT is a
homomorphism. But then, again by Lemma 3.5 o![(o!)~[U]] € Subg(B'7).
Now ! factors in an epi followed by a strong mono in Cg and therefore in C
according to Lemma 2.5 as ¢! = cotp where 1 : AT — ! [A’] and by definition
©![(¢")~[U]] is the image of the strong subobject o : (p!)~[U] — Al where
o’ is the pullback of o along @!. If ¢! o ¢’ factors in an epi ¢’ : (¢!)~[U] —
©![(¢")~[U]] followed by a strong mono &’ : @![(o!)~[U]] — B! as ¢l o0’ =
o, ie.,co0pod’ =¢ o), then ¢’ epi and ¢ strong mono imply that
there exists a unique morphism o” : ¢![(¢!)"[U]] = ¢'[Af] such that
0" o' =1oc and eoo” = ¢'; and, ¢” is a strong mono by Lemma 2.1.

P ()T [UT T = o1 [AT]
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On the other hand, we have e 0 0” 09}/ = co¢poo’ = pl oa’ = o (p!)
with ¢’ an epi and o a strong mono. Thus there exists a unique morphism
§: o [(p!)"[U]] — U such that o9’ = (¢!) and 0 0§ = e 0 0”. Now as
a composite of strong monos, € o ¢” is a strong mono and o is a (strong)
mono. Thus by Lemma 2.1, § is a strong mono, too. Moreover, since epis
are closed under pullbacks along strong monos and under powers and ¢ is an
epi, so is (p!)". Therefore, the last but one equality implies that § is an epi
as well. Hence, it is an iso so that U € Subg(B'!). By symmetry, we obtain
that Subg(B) < Subp(B!) and this ends the proof. =

Taking into account Lemma 2.5, it is not hard to check the following:

REMARK 3.9. In case C = Set and without the assumption of preservation
of strong monos by the types, Lemmas 3.2, 3.5 (see [8, 14]), 3.7 and 3.8 are
valid.

3.3. Weak homomorphisms of coalgebras.

DEFINITION 3.10. Let F' and G be C-endofunctors, (A, ) an F-coalgebra
and (B, ) a G-coalgebra. A morphism ¢ : A — B is called a weak homomor-
phism from (A, «) to (B, ) if factoring ¢ in an epi ¢ followed by a strong
mono p : QQ — B as ¢ = p o1, there exist dynamics pp : @ — F(Q) and
pc : Q@ — G(Q) such that the following conditions are satisfied:

(i) Qr =¢ Q', with Q := (Q, pr) and Q' := (Q, pc);

(ii) ¥ : (A,a) > (Q, pr) and p : (Q, pg) — (B, ) are homomorphisms; i.e.,
the following diagram commutes.

F(A) a A v B d G(B)
F(4) w\\ / Aj)
P@)=<- 7 -0~ 57-=G(Q)

The concept of weak homomorphism generalizes that of homomorphism
for strong mono-preserving endofunctors. Indeed, in case F' preserves strong
monomorphisms, the category Crg has epi-strong mono factorizations accord-
ing to Lemma 2.5 and it holds in C that the epi-strong mono factorizations
of the same morphism are isomorphic. Hence:

REMARK 3.11. If F' preserves strong monomorphisms, then every F-
homomorphism from A to B is a weak homomorphism from A to B. In
particular, id 4 is a weak homomorphism from A to itself.

As far as epimorphisms are concerned, the following holds for instance
when the category C satisfies the AC.
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THEOREM 3.12. Assume that C has and F,G and H preserve arbitrary
powers and weakly preserves kernel pairs, C has pullbacks along strong monos,
epis are closed under pullbacks along strong monos and arbitrary powers and
every epimorphism is the coequalizer of its kernel pair, F' and G preserve pull-
backs along strong monos, F', G and H preserve strong monos and let (A, «)
be an F-coalgebra, (B, B) a G-coalgebra and (C,~y) a H-coalgebra. Whenever
v (Aa) > (B,8) and ¢ : (B,B) — (C,7) are weak homomorphisms,
Yop: (A a)— (C,v) is a weak homomorphism, too.

Proof. By assumption ¢ and 1 factor into an epi followed by a strong mono
as o = pupoep and ¢ = pugpoeg with ey : A - @1 and g2 : B — )2 and
there are F-dynamics pk : Q1 — F(Ql), G-dynamics pg @ Q1 — G(Q1),
p% Q2 — G(Q2) and H-dynamics p% : Q2 — H(Q2) such that:

(i) (QlapF) (@1, PG) and (Q2, PG) (Q2, PH)

( ) . ( ) (Q pF)a (Q17PG> (Bvﬁ)v €2 (Bvﬁ) - (QQasz)
and o : (Qg,p%{) — (C,~) are homomorphisms. As a composite of G-

homomorphisms, &2 0 11 : (Q1, p&) — (Q2, p%) is a G-homomorphism, too.
Let e o 41 = ug o €3 be its factorization in Cg into an epimorphism followed
by a strong monomorphism with e3 : (Q1,p5) = (Qs,p%). Then 1o =
(2 0 p3) o (e3 0 1) is an epi-strong mono factorization of ¥ o ¢ in C.

\/\/
\/

Since G weakly preserves kernels, then by (i) of Theorem 3.3 we obtain
ker(es) € Suba((Q1,p&) x (Q1,p)) and, because (Q1,pk) = (Q1, pg), it
immediately follows that ker(e3) € Subp((Q1,pk) x (Q1,pk)), too. More-
over, I’ weakly preserves kernels and e3 is an epimorphism in C. Thus, by
(ii) of Theorem 3.3, there is an F-dynamics p% : Q3 — F(Q3) such that
e3 : (Q1,p%) — (Qs,p3) is an F-homomorphism. As a consequence of
Lemma 3.8, (Q3, p%) = (Q3, p2,). On the other hand, by (i) of Lemma 3.5,

u3[@s3] € Suba((Q2,p%)) and, taking into account (Q2,p%) = (Q2.p%),
13[Qs] € Subp((Q2,p3)), too. Thus uz : (Qz,p3) — (Q2,p3) is an H-
homomorphism. Moreover, 3 : (Qs, p2,) — (Q2, p%) is a G-homomorphism,
too. Thus, since pu3 : Q3 — Q2 is a strong mono in C, it follows from
Lemma 3.7 that (Qs, p2) = (Qs, p3;). Hence (Qs,p%) = (Qs,p3;) and this
ends the proof. m
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From Theorem 3.12, the following is straightforward.

COROLLARY 3.13. Assume that C has arbitrary powers, kernel pairs, pull-
backs along strong monos, epis are closed under arbitrary powers and pullbacks
along strong monos, every epimorphism is the coequalizer of its kernel pair
and let F be a set of C-endofunctors that preserve arbitrary powers, pullbacks
along strong monos, strong monos and weakly preserve kernels. Then the
class Cr of F-coalgebras for some F' € F and weak homomorphisms between
them forms a category.

Below is another situation in which the composition of weak homomor-
phisms is well-behaved:

THEOREM 3.14. Assume that C is strongly complete, epis are closed under
pullbacks along strong monos and arbitrary powers and every epimorphism
1s the coequalizer of its kernel pair, F' and G are covarietors and together
with H preserve strong monos, arbitrary powers and weakly preserve kernels
and let (A,«) be an F-coalgebra, (B, ) a G-coalgebra and (C,v) a H-
coalgebra. Whenever ¢ : (A,a) — (B, B) and ¢ : (B, ) — (C,v) are weak
homomorphisms, ¥ o ¢ : (A,a) — (C,~) is a weak homomorphism, too.

Proof. As a consequence of Lemmas 2.6 and 2.5, the categories Cr and Cg
are complete and strong monos therein are carried by strong monos in C. Thus
in particular binary powers and pullbacks along strong monos exist in each
of them. On the other hand, strong monomorphisms are closed under the
formation of pullbacks [2]. The rest of the proof is as that of Theorem 3.12. m

Theorem 3.14 immediately yields:

COROLLARY 3.15. If C is strongly complete, epis are closed under pullbacks
along strong monos and arbitrary powers and every epimorphism is the
coequalizer of its kernel pair and F is a set of covarietors preserving strong
monos, arbitrary powers and weakly preserving kernels, then the class Cr of
F-coalgebras for some F € F and weak homomorphisms between them forms
a category.

3.4. Generation of weak homomorphisms. It is well known that if an
epimorphism is regular and has a kernel pair, then it is the coequalizer of its
kernel pair, see [2, 5|, for instance. Therefore, in any category with kernel
pairs an epimorphism is regular iff it is the coequalizer of its kernel pair.
This is the case, for instance, in every topos, in the category Grp and, by
Corollary 2.12; in any category of coalgebras of a weakly preserving kernels
endofunctor of a category with kernel pairs, coequalizers and binary powers
in which every epimorphism is regular. On the other hand, in some categories,
regular epimorphisms are stable under pullbacks. Typical examples are those



Weak homomorphisms of coalgebras beyond Set 571

which are regular in the sense of [5]. Therefore, from the above, a regular
category in which every epimorphism is regular (e.g., any topos) satisfies
the assumptions in item 1. of the following which is somewhat an analog to
Theorem 2.4. It is similar to some results about coalgebras of Set-endofunctors
from (8, 13].

THEOREM 3.16. Let (A, ), (B, ) and (C,~) be coalgebras in Cr, Cg and
Cy, respectively, ¢ : (A, a) — (C,7) a weak homomorphism, f: A — B and
g : B — C morphisms in C with ¢ = go f.

1. Assume that C has pullbacks along strong monos, arbitrary powers and
kernel pairs, every epimorphism in C is the coequalizer of its kernel pair,
epts are closed under pullbacks along strong monos and arbitrary powers
and both F and G preserve arbitrary powers, strong monos as well as
pullbacks along strong monos and weakly preserve kernel pairs. If f is an
epimorphism in C which is a weak homomorphism from (A, «) to (B, ),
then g is a weak homomorphism from (B, f3) to (C,~).

2. If C has arbitrary powers, G and H preserve strong monos and arbitrary
powers and g is a weak homomorphism which is a strong mono in C, then
f is a weak homomorphism.

Proof. 1. Factorize g in C as an epi followed by a strong mono as g = poe with
€:B — Q. Then ¢ = po(eo f) is an epi-strong mono factorization of ¢ in C.
Thus, since ¢ is a weak homomorphism from (A, «) to (C,~), there exists an
F-dynamics pr : Q@ — F(Q) and a H-dynamics pg : Q@ — H(Q) on @ such
that (Q, pr) = (Q,pn), €0 f : (A, a) = (Q, pr) and pu : (Q, prr) — (C, ) are
homomorphisms in Cp and Cp, respectively. On the other hand, f is a weak
homomorphism from (A, «) to (B, 3). Thus considering the trivial epi-strong
mono factorization of f in C, there exists an F-dynamics 5/ : B — F(B) such
that f : (A,a) — (B,f’) is an F-homomorphism and (B, 8")r =¢ (B, ).
Moreover, e o f : (A,a) — (Q, pr) is a homomorphism in Cp and f is an
epimorphism in Cp. Thus by (i) of Theorem 2.4, € : (B,5) — (Q, pr)
is a homomorphism in Cg, too. Now F weakly preserves kernels; thus it
follows from (i) of Theorem 3.3 that ker(e) € Subp((B,') x (B, ') and,
because (B, 3 )r =¢ (B, 3), ker(e) € Subg((B, 8) x (B, f3)), too. Therefore,
applying (ii) of Theorem 3.3 yields a unique G-dynamics pg : Q@ — G(Q)
such that ¢ : (B, 8) — (Q, pg) is a G-homomorphism. But then, by Lemma
3.8, (Bv/B/)F =¢ (B,B) = (Q,pr) = (Q, pc); and since (Q, pr) = (Q, pr),
we deduce that (Q, pc) = (Q, pr). Hence the desired result.

2. Factorize f in C as an epi followed by a strong mono as f = v o6
with v : K — B. Since strong monos are closed under composition [2],
¢ = (gowv)of is an epi-strong mono factorization of ¢ in C. Thus, ¢ being
a weak homomorphism from (A, «) to (C,~), there exists an F-dynamics
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krp : K — F(K) and a H-dynamics kg : K — H(K) on K such that
(Kv’%F) = (KN%H)a 0 : (A,Oé) - (K’KF) and gov : (Ka'%H) - (Ca’}/)
are homomorphisms in Cp and Cg, respectively. On the other hand, g is
a weak homomorphism from (B, ) to (C,~). Thus taking into account the
trivial epi-strong mono factorization of g in C, there exists an H-dynamics
87 : B — H(B) such that g : (B,3”) — (C,v) is a H-homomorphism
and (B,5" )y =¢ (B,B). gov: (K,kg) — (C,v) is a H-homomorphism,
g is a strong monomorphism in C which is an H-homomorphism and in
addition H preserves strong monomorphisms. Thus, by 2. of Theorem 2.4,
v: (K,kg) — (B,5”) is a H-homomorphism. On the other hand, v is a
strong monomorphism in C, G preserves strong monos too, and (B, 57y =¢
(B, B); thus by Lemma 3.7 (K, k) = (K,kg). Now (K,kp) = (K,kH).
Hence (K, kp) = (K, kg). Hence the desired result. m

From Theorem 3.16 one can easily deduce the following corollaries. In
case C = Set, an analog of the first one for similarly typed coalgebras can
be found in [8] as the so-called First Diagram Lemma and the functorial
algebraic version of both of them can be found in [16].

COROLLARY 3.17. Assume that the assumptions from 1. of Theorem 3.16
are satisfied and let ¢ : (A,a) — (B,) and ¢ : (A,a) — (C,7) be weak
homomorphisms where (A,a) is an F-coalgebra, (B, ) is a G-coalgebra,
(C,7) is a H-coalgebra and v is an epimorphism in C. There is a weak
homomorphism 7 : (B, ) — (C,~) such that mo @ =1 iff ker(y) C ker(¢).
In this case, 7 is uniquely determined.

Proof. Assume that ker(y) C ker(¢)) and denote by 7; : ker(¢) — A and
o; » ker(y) — A, i = 1,2, the canonical i*" projection of ker(y¢) and ker(z)),
respectively. Then there exists a strong monomorphism 7 : ker(¢) — ker(v)
such that m; = o; 07, ¢ = 1,2. But then we have 1 o m; = 9 o my. Thus, by
the universal property of the coequalizer, there exists a unique morphism
m: B — C such that ¢ = mop. Now v and ¢ are weak homomorphisms and
¢ is an epimorphism in C. Thus, by 1. of Theorem 3.16, 7 : (B, 3) — (C,~)
is a weak homomorphism, too.

Conversely assume that there exists a (unique) morphism 7 : B — C
such that ¥ = m o . Then we have ¥ o m; = 9 o 3 and, by the universal
property of the pullback, there exists a unique morphism 0 : ker(¢) — ker (1)
such that m; = 0; 00, i = 1,2. From these equalities, it follows that
(m,ma) = {01,092y 0 0 with {71, m2) a strong monomorphism and (o1, 02
a (strong) monomorphism. Thus by Lemma 2.1, 6 is a strong monomorphism,
too. Hence ker(y) C ker(¢). m is uniquely determined follows from the fact
that ¢ is an epimorphism in C.
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COROLLARY 3.18. Assume that the assumptions from 1. of Theorem 3.16
are satisfied and consider an F-coalgebra (A, «), a G-coalgebra (B, 3), a H-
coalgebra (C,~) and a J-coalgebra (D,6) as well as weak homomorphisms
¢ (Aa) — (B.B), ¥ : (Aa) — (Crr), p: (B,B) — (D,6) and i :
(C,y) — (D,d). Assume that ¢ is an epimorphism and p is a strong
monomorphism in C. If pow = po), then there exists a unique weak
homomorphism o : (B, ) — (C,~) with the property o o ¢ = 1. In addition,
o satisfies oo = p.

Proof. Since ¢ is an epimorphism, y is a strong monomorphism in C and
pop = o, it follows from the definition of a strong monomorphism that
there exists a unique morphism o : B — C such that cop = ¢ and poo = p.
But then the last but one equality and item 1. of Theorem 3.16 yield that
o:(B,B) — (C,v) is a weak homomorphism. =

By 2. of Theorem 3.16, we have the following;:

REMARK 3.19. If instead of considering the assumptions from 1. of Theo-
rem 3.16 in Corollary 3.18 we assume rather that G and J preserve strong
monomorphisms, then the result still holds and looks like the so-called Second
Diagram Lemma from [8].

Taking into account Lemmas 2.5 and 2.6, the following is straightforward:

REMARK 3.20. If Cis a strongly complete category in which every epimor-
phism is the coequalizer of its kernel pair and epis are closed under pullbacks
along strong monos and arbitrary powers and F and G are covarietors pre-
serving strong monos and arbitrary powers and weakly preserving kernels,
then item 1. of Theorem 3.16 as well as Corollaries 3.17 and 3.18 still hold.

LEMMA 3.21. Assume that C has kernel pairs. If A is an F-coalgebra, B
is a G-coalgebra and ¢ : A — B is a weak homomorphism, then ker(y) is a
congruence on A. If moreover C has binary powers and F weakly preserves
kernels, then it is a strong bisimulation on A.

Proof. Factorize ¢ in C in an epimorphism followed by a strong monomor-
phism as ¢ = g oe where € : A — @. Then there exist a F-dynamics pp :
Q@ — F(Q) and a G-dynamics pg : Q@ — G(Q) such that (Q, pr) = (Q, pa),
e: A (Q,pr) and p : (Q, pg) — B are homomorphisms in Cp and Cg,
respectively. Thus ker(e) is a congruence on 4. Now it is a routine exercise
to check that ker(yp) = ker(e). Thus ker(y) is a congruence on A, too. The
last assertion follows directly from 1. of Lemma 2.11. =

The following, which can be seen as an extension of Lemma 3.5, generalizes
some results about coalgebras of a common type over Set from [8]. An analog
thereof can be found in [16] for differently typed functorial algebras over Set.
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PROPOSITION 3.22. Let (A,«) be an F-coalgebra, (B, ) a G-coalgebra
and (B, p*) a H-coalgebra and ¢ : A — B a morphism. Assume that
v: (A a) - (B, ) is a weak homomorphism. Then the following statements
are true:

(i) If F preserves strong monomorphisms, then for each U € Subp((A4, a)),
o[U] € Subc((B, B))-
(ii) If C has and F and G preserve pullbacks along strong monos as well as
strong monos, then for each U € Subg((B,3)), ¢~ [U] € Subr((A, )).
(iii) If C has and F and G preserve arbitrary powers and strong monos and
@ is an isomorphism, then its inverse ¢~ ' is a weak homomorphism
from (B, ) to (A, «).
(iv) If C has and G and H preserve arbitrary powers and strong monos and
(B,B)a =u (B,B*), then ¢ : (A,a) — (B, B*) is a weak homomor-
phism.

Proof. Let ¢ factor in an epi followed by a strong mono as ¢ = 6 o ¢ with
1 : A — @ and denote by pp : Q@ — F(Q) and pg : Q@ — G(Q) the dynamics
such that ¢ : (4,a) — (Q, pr) and 0 : (Q, pc) — (B, ) are homomorphisms
in Cr and Cg, respectively and (Q, pr) = (Q, pa)-

(i) Let 0 : U = A be the strong mono and p : U — F(U) the morphism
making U a closed strong subobject of (A, «). Item (i) of Lemma 3.5 yields
Y[U] € Subp((Q,pr)). Moreover, by Lemma 2.2, ¥[U] = ¢[U]. Thus,
by invoking 3.10 (i), ¢[U] € Subg((Q, pc)). Now 0 : Q — B is a strong
mono which is a G-morphism and the class of strong monos is closed under
composition (see [2], for instance); therefore ¢[U] € Subg((B, B)).

(ii) Let U € Subg((B,f)). Then by item (ii) of Lemma 3.5, 7 [U] €
Subc((Q, pc)). Therefore, again by invoking 3.10 (i), 8~ [U] € Subr((Q, pF)).
Thus, applying once more (ii) of Lemma 3.5 we have ¢y [0~[U]] € Subp((A, ).
The desired result follows from the fact that ¢~ [U] = ¢~ [0~ [U]].

(iii) It follows directly from item 2. of Theorem 3.16 and Remark 3.11.

(iv) Assume that (B,S)¢ =g (B, *). Then since Q € Subg((B,f3)),
it follows that Q € Suby((B,*)), too. Thus, there exists a dynamics
pr : Q@ — H(Q) such that 0 : (Q, pg) — (B, 5*) is a homomorphism. But
then by Lemma 3.7, (B, 8)¢ =g (B, *) implies (Q, pg) = (Q, pr). Thus
we have (Q, pr) = (Q,pm). =
3.5. An Isomorphism Theorem for weak homomorphisms. In the

following we try to establish, for differently typed coalgebras, an analog to a
special version of 1. = 2. from Lemma 2.14.

THEOREM 3.23. Assume that C has kernel pairs, arbitrary powers, coequal-
izers of kernel pairs and every epimorphism in C is reqular and G preserves
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strong monomorphisms and together with F' preserve arbitrary powers. If
A is an F-coalgebra, B is a G-coalgebra, ¢ : A — B is a weak homomor-
phism and Tyepp) © A — A/ker(p) is the coequalizer of the kernel pair
m,me : ker(p) — A of ¢, then there exists a unique morphism Biey(y) :
Alker(p) — G(A/ker(p)) such that Ty A — (A/ker(9), Brer(p)) 5

a weak homomorphism.

Proof. Let ¢ = p o e be the epi-strong mono factorization of ¢ in C with
e:A— Qand p: Q — B. Then there exist morphisms pr : Q — F(Q)
and pg; : Q — G(Q) such that & : (4,0) — (Q, pr) and 1 : (@, pc) — (B, )
are homomorphisms in Cr and Cg, respectively and (Q,pr) = (Q, pa).
By Lemma 3.21, m,m : ker(¢) — A is a congruence on A. Clearly
(ker(p),m1,m2) is also the kernel of € in C. Thus, since by assumption ¢ is a
regular epimorphism, it is also the coequalizer of 71 and 79 in C [2, 5]. Thus,
there exists an isomorphism 1 : A/ker(¢) — Q such that & = 1 0 Tpep(y)-

™

ker(p) A L

B
T2
F(A) Tker(p) >
F(e)

F
(Ther(e)) \\ PG N

Aker(p G(Q)
Uker(p) - F(w)/ == G) - -

~ —
—

_ - /Bke'r(ap) N -

F(A/ker()) G(A/ker(¢))

But then, using a diagram chase and arguing as in the proof of 1. = 2.
of Lemma 2.14, we get that there exists a unique morphism ., :
A/ker(p) — F(A/ker(p)) such that aye,(,) © Trer(p) = F(Ther(p)) © . Since
€ is an F-homomorphism and & = 9 0 () With mp.,.(,) an epimorphism
in Cp, it follows from 1. of Theorem 2.4 that v is an F-homomorphism, too.
But then, we deduce that A/ker(yp) € Subp(Q, pr) and, since (Q, pr) =
(Q,pc), it follows that there exists a morphism By, : A/ker(¢) —
G(A/ker(yp)) such that ¥ : (A/Ker(¢)) — (Q,pc) a G-homomorphism.
1 is therefore an isomorphism in Cg, too. Let’s show that mpe,(,) @ (4,a) —
(A/ker(©), Brer(p)) is a weak homomorphism. We have ¢ = poe = po
Y 0 Ther(p)- M09 is a G-homomorphism from (A/ker(¢), Brer(y)) to (B, B).
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Thus by Remark 3.11, it is a weak homomorphism. In addition, o ¢ is
a strong monomorphism in C. Thus by 2. of Theorem 3.16, mjep(,) is a
weak homomorphism from (4, a) to (A/ker(¢), Brer())- The uniqueness of
Brer(p) as G-dynamics making mpe,(y) : (A, a) — (A/ker(p), Brer(p)) a weak
homomorphism is straightforward. =

REMARK 3.24. Instead of assuming in Theorem 3.23 that every epimor-
phism is regular, one could simply assume that C has regular epi-strong mono
factorizations and the result still holds.

If in the above ¢ is a weak homomorphism which is an epimorphism in
C, then g must be an isomorphism in C. Therefore, from Theorem 3.23 and
its proof, we immediately deduce the following, whose analog for similarly
typed coalgebras over Set can be found in [8, 14]:

THEOREM 3.25. (Isomorphism Theorem) Assume that C has kernel pairs,
arbitrary powers, coequalizers of kernel pairs and every epimorphism in C
is regular. If ' and G are arbitrary powers preserving C-endofunctors such
that G preserves strong monomorphisms, then every weak homomorphism
p: A— B, where A is an F-coalgebra and B a G-coalgebra, can be decomposed
as @ =V O Myep(y), Where v = p ot with ¢ both an F-isomorphism and a G-
1SOMOrphism, Tier(y) 1S @ weak homomorphism which is an epimorphism in
C and v is a weak homomorphism which is a strong monomorphism in C. In
particular, every codomain of a weak homomorphism which is an epimorphism
in C is isomorphic to a factor.

A /ker(p)

In the above diagram, the boldface is used when the carrier is endowed
with both an F-dynamics and a G-dynamics.

From Corollary 3.13 and Theorem 3.25, the following corollary is straight-
forward:

COROLLARY 3.26. Assume that C has arbitrary powers, pullbacks along
strong monomorphisms, kernel pairs, coequalizers of kernel pairs, every epi-
morphism in C is reqular and epis are closed under arbitrary powers and
pullbacks along strong monos. If F denotes a set of C-endofunctors which
preserve strong monomorphisms, pullbacks along strong monomorphisms,
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arbitrary powers and weakly preserve kernels, then every weak homomor-
phism can be decomposed in Cr into a weak homomorphism, which is an
epimorphism in C followed by a weak homomorphism, which is a strong
monomorphism in C.

Theorem 3.25 and Corollary 3.15 also immediately yield:

COROLLARY 3.27. Assume that C is a strongly complete category with
coequalizers of kernel pairs and in which epimorphisms are reqular and closed
under pullbacks along strong monos and arbitrary powers. If F denotes a set
of covarietors preserving strong monomorphisms, arbitrary powers and weakly
preserving kernels, then every weak homomorphism can be decomposed in
Cr into a weak homomorphism, which is an epimorphism in C followed by
a weak homomorphism, which is a strong monomorphism in C.

EXAMPLE 3.28. Set C = Grp, F' = Id and G = T the termination: for all
object G in Grp, T(G) := {*}, the one-element group (recall that it is both
initial and terminal object in Grp) and denote by !¢ : G — {#} the unique
morphism from G to {*}. Then:

1. For every n € Z, the F-coalgebra (nZ, () where ((nx) = n?z and the
G-coalgebra (nZ,!,z) are coalgebraically equivalent.

2. For every integer k, the map ay : Z — Z defined by = — kx is a weak
homomorphism from (Z, ay,) to (Z,!z), for any integer n.

Proof. 1. Grp has arbitrary powers because it is complete [2]. Therefore, since
F and G preserves products, in particular arbitrary powers exist in Grpp and
Grp each of which is carried by the corresponding powers of the carrier of the
coalgebra considered in Grp, see Subsection 2.1. On the other hand, for every
set I, Subp((nZ,()!) = {(mZ)! : m € nZ} because (! : (mZ)! — (mZ)!
defined by ¢! (z) = ¢!(x) is a dynamics on (mZ)! making the map (i%) :
(mZ)! — (nZ)!, where i, : mZ — nZ is an inclusion, a homomorphism in
Grp. In fact, if p; : (nZ)! — nZ and ¢; : (mZ)! — mZ are i'" canonical
projections, then (i% o g; : (mZ)! — nZ);c is the source that gives, (i%)! :
(mZ)! — (nZ)! defined by p; o (i%)! = i" ogq; for each i € I, by the universal
property of the product. Moreover, obviously Subg((nZ,',z)") = {(mZ)! :
m e nZ} with (mZ)! endowed with the dynamics defined by limzyr for each
m € nZ. Hence (nZ,()1q =1 (nZ, 7).

2. ap = i o €, where € : Z — kZ is defined by x — kx and 7 is the
inclusion map. By 1. above, (kZ, p)1q =1 (kZ,xz), where p : kZ — k7 is
defined by kp — nkp, and verification that ¢ and i; are morphisms in Grp;,
and in Grpyp from (Z, a,) to (kZ, p) and from (kZ,yz) to (Z,!z), respectively,
is straightforward. =
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REMARK 3.29. Every topos C is cartesian closed [5]. Thus for every object
A in C, the functor (—)4 is a right adjoint to the functor — x A. Therefore,
it preserves all limits that exist in C [2, 5].

Since Set is a topos and is complete [2, 5], it follows from Remark 3.29
that for any set ¥, the functor (—)* preserves all limits and, in particular,
arbitrary powers and pullbacks. Thus invoking subsection 2.1, Set(_y» has
arbitrary powers and they are created by the forgetful functor. This yields:

EXAMPLE 3.30. Set C = Set, F = (—)*! and G = (—)>° where £; = {0}
and Yo = 0; that is, for every set A, F(A) =0if A=0, F(A) ={f,: 31 —
A:() > a,ae A} if A # 0 and G(A) = {)) — A}. Denote by !4 : A — A>0
the unique map from A to {#) - A} and let (A4, a4) be the F-coalgebra with
ag =idyif A =0 and as(a) = f,, for all a € A, otherwise. Then:

L. (Aa aA)F =G (A7 'A)
2. Every map ¢ : A — A is a weak homomorphism from (A, a4) to (A,!4).

Proof. 1. If A = () then it is obvious. Otherwise, let I be a set. Since powers
in Set(_)z1 are created by the forgetful functor, we have (A, ax)! = (A7, aIA),
with 04{4 : AT — (AT)*1 being the unique map given by the universal property
of the product in Set and being such that for all i € I, if p; : AT — A denotes
the i*" canonical projection of A” onto A, aqop; = pi21 oozf4. Now pizl oaf4 =
agop; means that for all (a;)er, (pizloal{x)((ai)ie]) = (aa0p;)((ai)ier); that is,
pio(al{l((ai)id)) = a4(a;) which amounts to saying that pioag((ai)ig) = fa,
for all i € I; that is, p;((ay((a;)ier))(0)) = a; for all i € I. But this means that
(ady((a:)icr))(0) = (ai)ier. Thus, o ((ai)ier) = f(as)ie; SO that ol = ayr.
We want to show that Sub_ys, (AT, aq1)) = Sub(_)zo((AI, ar)). Let S €
Sub_ys, ((A,a41)). Then there exists an injective map u: S »— Al and a
dynamics o : S — St such that ™ oo = a1 op, where p>t : S¥1 — (A1)*1
is defined by p*t = ) — (A1 if S = () and p*(u) = powu, for all u € S,
otherwise. Obviously it holds ! 41 ot = u*0olg. Thus S € Sub_y=, (AT, 140)),
where p™0 is the trivial bijection {§) — S} — {# — A’}. Conversely, assuming
rather that S € Sub(,)zo((AI,!Az)) with p : S ~— Al the corresponding
injection, ag is a dynamics on S making p an F-homomorphism from (5, ag)
to (AT, a,r). Indeed, if S = {), it is obvious. Otherwise, let s € S. We
have ((1™ 0 ag)(s))(0) = (1™ (as(s)))() = (o (as(s)))(0) = (o f5) (@) =
1(fs(@)) = p(s) and ((aar o p)(s))(0) = (aar(u(s))(D) = fus @) = uls).
Hence > o aug = auq1 © fi.

2. Let ¢ : A — A be a map. Factorizing ¢ canonically as an epi fol-
lowed by a mono as ¢ = vom where 7 : A - ¢(A) and v : p(A) — A
is the inclusion map, to verify that 7 : (A,aa) — (p(A4),a,)) and
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v (p(A),!p)) — (A,la) are F-homomorphism and G-homomorphism,
respectively, is straightforward. In addition by 1. above, (p(A), aya))F =c
(p(A),loa)). =

Moreover, (—)* obviously preserves strong monos (resp. Set is strongly
complete and (—)* is a covarietor). Thus Corollary 3.13 (resp. 3.15) yields:

EXAMPLE 3.31. If 7 = {(—)”*, k € K} where K is a nonempty set, ¥, is
a set for every k € K, then Setr is a category.

In fact, we have the following example where coalgebras considered are
automata which are examples of deterministic systems with input [14]:

EXAMPLE 3.32. Set is a (strongly) complete topos in which epis are co-
equalizers of their kernel pairs and are closed under pullbacks. Moreover,
elements of the set of types F from Example 3.31 are simultaneously pull-
backs, arbitrary powers, strong monos and weakly kernels preserving functors
and are covarietors. Thus as far as coalgebras and (weak) homomorphisms
are concerned, Set and F satisfy assumptions in all the results from this

paper.

4. Conclusion

In our paper, we presented an extension of the concept of weak homomor-
phism between differently typed coalgebras to arbitrary categories endowed
with a suitable factorization system. We showed that many of the results
known so far for similarly typed coalgebras generalize to differently typed ones.
In particular, under some reasonable assumptions on the category and on the
set, of its endofunctors, we showed that differently typed coalgebras and weak
homomorphisms between them form a category which admits a canonical
factorization structure for morphisms. Requiring that the base category
satisfies the Axiom of Choice would have helped simplify the statement as
well as the proof of most of the results we have obtained but this would have
considerably restricted their scopes.

Acknowledgment. The author thanks the referee for valuable sugges-
tions and comments.

References

[1] J. Adamek, Introduction to coalgebra, Theory Appl. Categ. 14(8) (2005), 157-199.
[2] J. Adamek, H. Herrlich, G. E. Strecker, Abstract and Concrete Categories, John
Willey and Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1990.

[3] J. Adamek, H.-E. Porst, On Varieties and Covarieties in a Category, Preprint under
consideration for publication in Math. Struct. in Comp. Science, Received February
(2002).



580 M. Kianpi
[4] M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci. 114(2)
(1993), 299-315.
[5] M. Barr, C. Wells, Toposes, Triples and Theories, Springer, New York, Berlin,
Heidelberg, Tokyo, 1985.
[6] A. Carboni, P. T. Johnstone, Connected limits, familial representability and Artin
gluing, Math. Structures Comput. Sci. 5 (1995), 441-459.
[7] K. Denecke, W. Supaporn, Weak homomorphisms for (Fi, F»)-systems, Slides pre-
sented at the Institute of Mathematics, University of Postdam, Germany, September
10, 2009.
[8] H.P. Gumm, Elements of the general theory of coalgebras, LUATCS’99, Rand Africaans
University, Johannesburg, South Africa, 1999.
[9] H. P. Gumm, T. Schréder, Products of coalgebras, Algebra Universalis 46 (2001),
163-185.
[10] H. P. Gumm, T. Schroder, Types and coalgebraic structure, Algebra Universalis 53
(2005), 229-252.
[11] J. Hughes, A study of categories of algebras and coalgebras, PhD shesis, Carnegie
Mellon University, Pittsburg PA 1213, May, 2001.
[12] P. T. Johnstone, A. J. Power, H. Watanabe, T. Tsujishita, J. Worrell, On the structure
of categories of coalgebras, Theoret. Comput. Sci. 260 (2001), 87-117.
[13] J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Tech. report, CS-R962,
Centrum voor Wiskunde en 1996.
[14] J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci.
249 (2000), 3-80.
[15] K. Saengsura, (F1, F)-systems, Thesis, Universitdt Postdam, January 2009.
[16] F. M. Schneider, Weak homomorphisms between functorial algebras, Demonstratio
Math. 44 (2011), 801-818.
M. Kianpi

DEPARTMENT OF MATHEMATICS, LABORATORY OF ALGEBRA
FACULTY OF SCIENCE

UNIVERSITY OF YAOUNDE 1

P.O. BOX 812

YAOUNDE, REPUBLIC OF CAMEROON

E-mail: mkianpi@uyl.uninet.cm

Received December 26, 2012; revised version July 31, 2013.

Communicated by A. Romanowska.



