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WEAK HOMOMORPHISMS OF COALGEBRAS BEYOND
SET

Abstract. We study the notion of weak homomorphisms between coalgebras of
different types generalizing thereby that of homomorphisms for similarly typed coalgebras.
This helps extend some results known so far in the theory of Universal coalgebra over Set.
We find conditions under which coalgebras of a set of types and weak homomorphisms
between them form a category. Moreover, we establish an Isomorphism Theorem that
extends the so-called First Isomorphism Theorem, showing thereby that this category
admits a canonical factorization structure for morphisms.

1. Introduction
In Universal (Co)Algebra, the notion of homomorphism is usually consid-

ered for similarly typed (co)algebras. A useful way of weakening this notion
is to define it for differently typed (co)algebras. Following E. Marczewski
who proposed the concept of weak homomorphisms for non-indexed universal
algebras in 1961, K. Glazeck in 1980 proposed this concept for indexed ones
(see [16] for references). F. M. Schneider generalized the latter to F -algebras
for an arbitrary Set-endofunctor F in [16]. Inspired by the preprint of his work
and the manuscript of the thesis of K. Saengsura, see [15], K. Denecke and W.
Supaporn extended the concept to pF1, F2q-systems for some Set-endofunctors
F1 and F2 in [7]. One of the interesting problems posed by F. M. Schneider in
[16] was whether and under what conditions it is possible to generalize the re-
sults he obtained by replacing Set with an arbitrary category C with a suitable
factorization structure for morphisms and considering those C-endofunctors
which are compatible with the chosen factorization structure in some sense.
In this paper, we attempt at solving this problem in the dual context. Indeed,
considering an arbitrary strongly well-powered category C with epi-strong
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mono factorizations and considering types preserving at least strong monos,
we study the concept of weak homomorphisms for differently typed coalgebras.

The main goal of the present paper is to show that for differently typed
coalgebras, weak homomorphisms in many respects behave very similarly to
proper ones so that many of the results known for coalgebras of a common
type actually still hold.

The paper is organized as follows. In Section 2, we give some basics in
connection with category theory as well as that of Universal Coalgebra in
a more general context. In particular, we focus on the extension of some of
the results from [8, 10, 14, 13] where coalgebras taking into consideration are
similarly typed with Set as base category. Therefore most of these help in
the sequel to extend, in the dual context, results from [16]. In particular, we
extend a result from [8, 13] which helps show that a morphism is actually
a homomorphism between coalgebras of a given type, a result which is at the
origin of the so-called First Diagram Lemma and Second Diagram Lemma
in [8]. These lemmas helped inter alia characterize the so-called closed subsets,
a concept that is also found in [16] for functorial algebras and in [7], where
they are rather known as open subsets when dealing with pF1, F2q-systems.
Extending the concept of closed subset, we define that of closed subobject
and characterize them in a category endowed with a suitable factorization
system in Section 3. Closed subobjects constitute one of the main ingredients
in the definition of weak homomorphisms. This inter alia helps extend the
above diagram lemmas to differently typed coalgebras. Furthermore, we show
that, under reasonable circumstances, differently typed coalgebras and weak
homomorphisms between them form a category CF where F denote the set
of types. We end the section with an Isomorphism Theorem, which enables
us to see that this category admits a canonical factorization structure for
morphisms. The fourth section is devoted to the conclusion.

2. Preliminaries
Let C be a category and F a C-endofunctor.

2.1. Basics. By F -coalgebra (or F -system) or simply coalgebra (or system)
is meant a pair A “ pA,α : A Ñ F pAqq. F is called the type and the
morphism α the transition structure (or dynamics or costructure) of the
coalgebra A. An F -homomorphism, i.e., a morphism from a coalgebra pA,αq
to a coalgebra pB, βq is a morphism ϕ : AÑ B such that F pϕq ˝ α “ β ˝ ϕ.
With morphisms between them, F -coalgebras form a category [1, 3]. Denote
it by CF and by U : CF Ñ C the forgetful functor ; i.e., the functor sending
pA,αq to A and ϕ : pA,αq Ñ pB, βq to ϕ : A Ñ B. Although U always
reflect monos, it doesn’t preserve them in general.
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The category CF has all colimits that exist in C as well as all limits that
are preserved by F ; these (co)limits are created by the forgetful functor
[1, 4]. As an immediate consequence thereof, epis (isos) in the former are
precisely morphisms which are epis (isos) in the latter, see ibid. Therefore,
the forgetful functor reflects epis (isos).

Functors weakly preserving kernels (i.e., transforming a kernel into a weak
kernel) and those preserving powers will be of interest in the sequel. In
case C = Set, polynomial functors (see [3, 8, 14]) (built from the identity,
constant functors, sums, products and composition and are instances of the
so-called partial product functors which are generalized pullbacks preserving
functors [6, 12]), as well as the finite powerset functor Pω do weakly preserve
kernels and the latter does not preserve binary powers (and thus products) for
there exist coalgebras which are nonempty but are isomorphic to their binary
power (with nonempty carriers whose products are the empty coalgebra),
see [9].

The following definitions of some special morphisms as well as related
properties can be found in [2]. A morphism in C is a regular epi provided
it is the coequalizer of some parallel pair of morphisms. Every regular epi
is an epi. By a strong mono is meant a mono m : C � D in C such that
for all morphisms f : A Ñ C, g : B Ñ D and all epi e : A � B such that
m ˝ f “ g ˝ e, there exists a unique morphism d : B Ñ C such that d ˝ e “ f
and m ˝ d “ g. The class of epis is as well as that of strong monos, closed
under compositions and the latter under pullbacks, too (whenever they exist).

The following, which will be frequently used throughout this paper, is
straightforwardly checked.

Lemma 2.1. Let m and n be morphisms. If m˝n is a strong monomorphism
and m is a monomorphism, then n is a strong monomorphism.

By an M-subobject of an object A in C for some class M Ď Mono(C) is
meant one represented by a morphism belonging to M. In particular, a strong
subobject of A is one represented by a strong mono. A strong subobject S of
A will alternatively be designated by the strong mono S � A by which it
is represented. By subcoalgebra of an F -coalgebra pA,αq is meant a strong
subobject of pA,αq.

If C has epi-strong mono factorizations, then every morphism ϕ : AÑ B
factors in a unique way (up to isomorphisms) in an epi ψ : A� Q followed
by a strong mono θ : Q� B. If ϕ : AÑ B is a morphism and µ : U � A is
a strong mono so that the composite ϕ ˝ µ factors in C in an epi ψ1 : U � Q1

followed by a strong mono µ1 : Q1 � B as ϕ ˝ µ “ µ1 ˝ψ1, then Q1 is denoted
by ϕrU s and is called the image of U (or of µ : U � Aq under ϕ.
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Lemma 2.2. If a morphism ϕ : A Ñ B factors in an epi ψ : A � Q
followed by a strong mono θ : Q � B as ϕ “ θ ˝ ψ, then ϕrAs “ Q. If
σ : U � A is a strong subobject of A, then ϕrU s is a strong subobject of ϕrAs
and ψrU s – ϕrU s.

Proof.Q “ ϕrAs is straightforward. Factorizing ϕ˝σ in an epi ψ1 : U � ϕrU s
followed by a strong mono θ1 : ϕrU s � B as ϕ ˝ σ “ θ1 ˝ ψ1, we have
θ ˝ψ ˝σ “ θ1 ˝ψ1. But then θ strong mono and ψ1 epi imply that there exists
a unique morphism δ : ϕrU s Ñ Q such that δ ˝ ψ1 “ ψ ˝ σ and θ1 “ θ ˝ δ and
since θ1 is a strong mono and θ is a (strong) mono, Lemma 2.1 yields that δ is
a strong mono, too. Hence ϕrU s is a strong subobject of ϕrAs. ψrU s – ϕrU s
follows straightforwardly from the fact that epi-strong mono factorizations of
the same morphism are isomorphic.

It is well known that strong monos are stable under the formation of
pullbacks [2]. If C has pullbacks (along strong monomorphisms) and µ : U �
B Ð A : ϕ is a cospan where µ is a strong monomorphism, then denote by
µ1 : ϕ´rU s� A the pullback of µ along ϕ.

Recall that a mono m : A� B in C is called extremal provided whenever
m “ f ˝ e where e is an epi, then e must be an isomorphism; and strong
implies extremal, a morphism which is both an epi and an extremal mono is
an iso. The following has been discussed for arbitrary limits in [2], where it
is shown that the mediating morphism xfiy, is always an extremal mono. In
particular, it holds:

Lemma 2.3. Assume that the generalized pullback pL, pfi : LÑ AiqiPIq of
a sink pgi : Ai Ñ AqiPI and the product

ś

iPI Ai of the Ai’s exist in C. Then
the unique morphism xfiy : LÑ

ś

iPI Ai, given by the universal property of
the product, is a strong monomorphism.

Proof. Let e : B � C be an epimorphism, and u : B Ñ L and v : C Ñ
ś

iPI Ai be morphisms such that xfiy ˝ u “ v ˝ e.

C
v //

d

##

ś

iPI Ai
pj //

pk ''

Aj
gj // A

B

e

OOOO

u
// L

xfiy

OO fj
77

fk
// Ak

gk

??

We want to show that there exists a unique morphism d : C Ñ L such that
v “ xfiy ˝ d and u “ d ˝ e. Let pi :

ś

iPI Ai Ñ Ai be the ith projection of
ś

iPI Ai. ppi ˝ v : C Ñ AiqiPI is a source and by a straightforward diagram
chase one can prove: for all j, k P I, gj ˝pj ˝v˝e “ gk ˝pk ˝v˝e and, since e is
an epimorphism, gj ˝ pj ˝ v “ gk ˝ pk ˝ v. Therefore, by the universal property
of the generalized pullback, there exists a unique morphism d : C Ñ L such
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that, for each j P I, pj ˝ v “ fj ˝ d; that is, pj ˝ v “ pj ˝ xfiy ˝ d. But then,
since the p

ś

iPI Ai, ppiqiPIq is a mono-source, we deduce that v “ xfiy ˝ d. On
the other hand,

pj ˝ v “ pj ˝ xfiy ˝ dñ pj ˝ v ˝ e “ pj ˝ xfiy ˝ d ˝ e

ñ pj ˝ xfiy ˝ u “ pj ˝ xfiy ˝ d ˝ e

ñ u “ d ˝ e,

since the pi’s are jointly monic and xfiy is a monomorphism.

2.2. Factorization of homomorphisms and coalgebras of covarietors.
It is not hard to check the following. Assertion 2. has been proved by Hughes
in [11] for M taken to be the class of all regular monomorphisms in C whereas,
in the setting of category Set, Rutten in [13] and Gumm in [8] have proven
the two assertions. It helps show that some morphisms in the base category
are in fact homomorphisms.

Theorem 2.4. Let pA,αq, pB, βq and pC, γq be coalgebras in
CF , ϕ : pA,αq Ñ pC, γq a homomorphism, f : A Ñ B and g : B Ñ C
morphisms in C with ϕ “ g ˝ f .

1. If f is an epimorphism in CF , then g is a homomorphism.
2. If F preserves or takes M-morphisms to monomorphisms for some M Ď

MonopCq and g is a homomorphism which is an M-morphism in C, then
f is a homomorphism.

Using the fact that epis in CF are precisely homomorphisms carried
by epis in C, it is not hard to check that every homomorphism carried by
a strong mono in C is a strong mono in CF . Summarizing some results
from [1], we obtain the following which will play a key role throughout our
work.

Lemma 2.5. Assume that C has epi-strong mono factorizations.

1. If F preserves strong monomorphisms, then strong monomorphisms in CF
are precisely the morphisms which are strong monomorphisms in C.
In case C “ Set, strong monomorphisms are precisely injective homomor-
phisms.

2. If C “ Set or F preserves strong monomorphisms, then CF has also
epi-strong mono factorizations. They are, in fact, created by the forgetful
functor U .

Recall that every strongly complete category ; that is, a category which
has all small limits and all intersections of subobjects (possibly large), has
epi-strong mono factorizations [2], and a type F is called a covarietor provided
the forgetful functor has a right adjoint [1, 3]. In Set, examples of covarietors
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are partial product functors (and hence polynomial ones, see also [3], for
instance) [12], the so-called bounded functors (e.g., Pω) and the functors
which preserve ω-mono-sources, see [9].

For later use, we also give the following summary of some essential results
from [1]:

Lemma 2.6.

1. Limit Theorem: If C is a strongly complete category and F is a covarietor
preserving strong monomorphisms, then CF is complete.

2. For every covarietor over Set, the category of coalgebras is complete.

2.3. Congruences and bisimulations. Congruences/bisimulations are
special relations on/between carriers of coalgebras and will be of interest in
the sequel. We don’t give a great treatment of them but just definitions and
some slight insights thereof needed for our purpose.

Definition 2.7. Let pAkqkPκ be a family of objects in a category C with
κ-products, for some ordinal κ. Then a κ ´M-relation between the Ak’s
for some M ĎMonopCq is an M-subobject of the product

ś

kPκAk. This
is represented by an M-morphism R �

ś

kPκAk, or equivalently by a
family of morphisms prk : RÑ AkqkPκ with the property that the morphism
xrky : R �

ś

kPκAk obtained by the universal property of the product is
an M-morphism. In case κ “ 2, we talk of binary M-relation. In case
M “MonopCq, we simply talk of relation.

Let prk : R Ñ AkqkPκ and pr1k : R1 Ñ AkqkPκ be κ ´M-relations. We
say that R is contained in R1, written as R v R1, provided there exists a
strong monomorphism u : R� R1 with rk “ r1k ˝ u for every k P κ; that is,
xrky “ xr

1
ky ˝ u.

Definition 2.8. Let κ be an ordinal and pAk, αAk
qkPκ a family of coal-

gebras in CF such that the product
ś

kPκAk exists. An M´ κ-simulation
between coalgebras Ak’s in CF for some class M ĎMonopCq is an M-relation
prk : R Ñ AkqkPκ such that there exists a dynamics ρ : R Ñ F pRq on R
turning the projections rk’s into homomorphisms. For κ “ 2, we speak of
M-bisimulations. In case M “MonopCq, we just speak of κ-simulation and
bisimulation in case κ “ 2. If for every k P κ we have Ak “ A, then we speak
of an M´ κ-simulation on A.

Thus, M´κ-simulations are special M-subobjects and are M´κ-relations
between the carriers of coalgebras which respect their coalgebraic structure.
In case M is the class of strong monomorphisms and C “ Set, we retrieve
the definition given in [13, 8, 14].
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Theorem 2.9. Assume that C, with κ-products for some ordinal κ ≥ 2,
has generalized κ-pullbacks and F weakly preserves κ-pullbacks. For every
sink pϕk : Ak Ñ BqkPκ in CF with Ak “ pAk, αkq and B “ pB, βq, the
κ-pullback pπk : RÑ AkqkPκ of the ϕk’s in C is a κ-strong simulation between
the Ak’s. If in addition C has epi-strong mono factorizations, F preserves
strong monomorphisms and there exists k0 P κ such that πk0 is a strong
monomorphism, then it is also the κ-pullback of the ϕk’s in CF .

Proof. For all k ‰ k1 in κ, a straightforward diagram chase yields F pϕkq ˝
αk ˝ πk “ F pϕk1q ˝ αk1 ˝ πk1 . Thus, since pF pπkq : F pRq Ñ F pAkqqkPκ is the
weak κ-pullback of the F pϕkq’s, there exists a morphism ρ : RÑ F pRq such
that for every k P κ, F pπkq ˝ ρ “ αk ˝ πk. On the other hand, by Lemma 2.3,
R is a strong κ-relation between the Ak’s.

F pRq
F pπkq //

F pπk1 q

��

F pAkq

F pϕkq

��

R

ρ

44

πk1

��

πk // Ak

αk

33

ϕk

��

F pAk1q
F pϕk1 q // F pBq

Ak1

αk1

44

ϕk1

// B

β

33

Assume in addition that there exists k0 P κ such that πk0 is a strong
monomorphism and let pµk : R1 Ñ AkqkPκ be a κ-source in CF such that
ϕk ˝ µk “ ϕk1 ˝ µk1 for all k ‰ k1. Considering these equalities in C, the
universal property of the κ-pullback yields a unique morphism u : R1 Ñ R
such that for every k, πk ˝ u “ µk. To end the proof, we need to show that
u is a homomorphism. Now, in particular, we have πk0 ˝ u “ µk0 where πk0

is a homomorphism which is a strong monomorphism in C and F preserves
strong monomorphisms. Thus item 2. of Theorem 2.4 applies.

Definition 2.10. Assume that C is a category with kernel pairs. A con-
gruence on a coalgebra A over C is the kernel in C of a homomorphism ϕ
with domain A.

Although the following does not give a characterization of regular epi-
morphisms in a category of coalgebras as in [10], it can help show that
a homomorphism is a regular epimorphism in some cases.
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Lemma 2.11. If C has kernel pairs and binary powers and F weakly pre-
serves kernels, then:

1. every congruence is a strong bisimulation;
2. the forgetful functor U : CF Ñ C reflects regular epimorphisms.

Proof. 1. Let pθ, π1, π2q be a congruence on a coalgebra pA,αq. Then there
exists a homomorphism ϕ : pA,αq Ñ pB, βq such that pθ, π1, π2q is the kernel
pair in C of ϕ. By Lemma 2.3, the unique morphism xπ1, π2y : θ Ñ Aˆ A,
given by the universal property of the product, is a strong monomorphism.
Thus, by Theorem 2.9, pθ, π1, π2q is a strong bisimulation on A.

2. Let ϕ : AÑ B be a homomorphism which is a regular epimorphism in
C and let π1, π2 : kerpϕq Ñ A be its kernel in C. We want to show that ϕ is
the coequalizer of π1 with π2 in CF . Since ϕ is a regular epimorphism in C,
then it is the coequalizer of π1 with π2 in C [2]. Therefore, from 1. above,
we deduce that kerpϕq is a strong bisimulation on A. Now let ψ : A Ñ C
be a homomorphism such that ψ ˝ π1 “ ψ ˝ π2. By the universal property
of the coequalizer, there exists a unique morphism ε : B Ñ C in C such
that ψ “ ε ˝ ϕ. But then, since ϕ is an epimorphism in CF , it follows from
Theorem 2.4 that ε is a homomorphism.

In some categories, every epimorphism is regular. E.g., the categories
Grp of groups, Ab of abelian groups and homomorphisms of groups, Lat of
lattices and homomorphisms of lattices, HComp of compact Hausdorff spaces
and continuous functions [2], and every topos [5]. The following result is an
extension of the work in [10] and helps create such categories in the field of
the Universal coalgebra.

Corollary 2.12. If in addition to the assumptions of Lemma 2.11, every
epimorphism in C is regular, then the following hold:

1. every epimorphism in CF is regular.
2. if in addition C has epi-strong mono factorizations and F preserves strong

monomorphisms, then every monomorphism in CF is strong.

Proof. 1. It follows directly from 2. of Lemma 2.11.
2. By Lemma 2.5, every monomorphism ϕ in CF factors in an epimorphism

ψ followed by a strong monomorphism µ as ϕ “ µ ˝ ψ. But then, since ϕ is
a monomorphism, this equality implies that so is ψ. Now, by 1., ψ is also
a regular epimorphism. Thus, it is an isomorphism [2]. Hence the desired
result.

Lemma 2.13. Assume that C, with epi-strong mono factorizations, has and
F preserves products as well as strong monos, pAiqiPI a family of F -coalgebras
where Ai “ pAi, αiq and πi :

ś

iPI Ai Ñ Ai denotes the canonical projection
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for each i. Moreover, let µ : S �
ś

iPI Ai be a strong mono and σ : S Ñ F pSq
a morphism. Then the following are equivalent:

(i) µ : pS, σq Ñ
ś

iPI Ai is a strong mono in CF .
(ii) For each i P I, the composite πi ˝ µ : S Ñ Ai is a homomorphism from

pS, σq to pAi, αiq.

Proof. Since C has and F preserves products, then it follows that CF has
products and they are created by the forgetful functor (see Subsection 2.1).
On the other hand, by Lemma 2.5, strong monos in CF are carried by strong
monos in C. Taking all this into account, the desired result is straightforward.

The next result, which has been proven in [8] in case C = Set without
assuming that F preserves strong monos (which are just monos in this case),
gives a characterization of congruences and shows that every congruence
gives rise to a unique factor in some cases.

Lemma 2.14. Assume that C has kernel pairs, binary powers, coequalizers of
equivalence relations and epi-strong mono factorizations, every epimorphism
is regular and F preserves strong monomorphisms. Let A “ pA,αq be a
coalgebra, π1, π2 : θ Ñ A a strong equivalence relation on A and πθ : A� A{θ
the coequalizer of π1 and π2. Then, the following are equivalent:

1. π1, π2 : θ Ñ A is a congruence on A.
2. There exists a unique dynamics αθ : A{θ Ñ F pA{θq turning πθ into a

homomorphism.
3. θ v kerpF pπθq ˝ αq.
Proof. 1.ñ 2. Let ϕ : AÑ B with B “ pB, βq be a homomorphism whose
kernel pair (in C) is θ. Let ϕ “ µ ˝ ϕ1 be the epi-strong mono factorization
of ϕ in CF with ϕ1 : A � ϕrAs and µ : ϕrAs � B and denote by δ the
dynamics on ϕrAs. Clearly pθ, π1, π2q is also the kernel of ϕ1 in C. Thus,
since by assumption ϕ1 is a regular epimorphism, it follows that ϕ1 is also
the coequalizer of π1 and π2 in C [2]. Thus, there exists an isomorphism
ψ : A{θ Ñ ϕrAs such that ϕ1 “ ψ ˝ πθ. We have:

F pψq ˝ F pπθq ˝ α ˝ π1 “ F pϕ1q ˝ α ˝ π1

“ δ ˝ ϕ1 ˝ π1 “ δ ˝ ϕ1 ˝ π2

“ F pϕ1q ˝ α ˝ π2 “ F pψq ˝ F pπθq ˝ α ˝ π2.

Thus, canceling F pψq at the left, the universal property of the coequalizer
yields that there exists a unique morphism αθ : A{θ Ñ F pA{θ such that
αθ ˝ πθ “ F pπθq ˝ α.

2.ñ 3. It follows directly from the equality F pπθq˝α˝π1 “ F pπθq˝α˝π2,
the universal property of the pullbacks, Lemmas 2.1 and 2.3.

3.ñ 2. and 2.ñ 1. are straightforward.
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Definition 2.15. The factor coalgebra pA{θ, αθq given by Lemma 2.14 is
denoted by A{θ and called the factor of the coalgebra A w.r.t. the congru-
ence θ. The epimorphism πθ : A � A{θ is called the canonical projection
from A onto A{θ .

3. The category CF
C is a strongly well-powered category with epi-strong mono factorizations.

3.1. Closed subobjects.

Definition 3.1. Let A “ pA,αq be an F -coalgebra for some type F .
A strong subobject µ : S � A is called closed in pA,αq if there exists a
morphism σ : S Ñ F pSq making µ an F -morphism from pS, σq to pA,αq.

It is not hard to see that if F preserves strong monomorphisms, then
for each strong subobject S of A, the dynamics σ is unique and it follows
from Lemma 2.5 that pS, σq is precisely a subcoalgebra of pA,αq. Since C is
strongly well-powered, closed strong subobjects of A form a set. Denote it
by SubF pAq.
Lemma 3.2. Assume that F preserves strong monos. Let pA,αq be an
F -coalgebra and S an object in C. Then S P SubF ppA,αqq if and only if
there exists a coalgebra pP, πq and a homomorphism ϕ : pP, πq Ñ pA,αq with
S – ϕrP s.

Proof. If µ : S � A is a strong subobject closed in pA,αq, then there exists
a dynamics σ : S Ñ F pSq such that µ : pS, σq Ñ pA,αq is a homomorphism.
Set pP, πq :“ pS, σq and ϕ :“ µ and consider the epi-strong mono factorization

S
ψ // // µrSs //

θ // A of µ in CF given by Lemma 2.5. µ “ θ ˝ ψ is a strong
mono and θ is a strong mono and therefore a mono. Therefore, by Lemma 2.1
ψ is a strong mono, too. Now it is also an epi; thus it is an iso. Hence
S – µrSs for as it has been mentioned above, isos in CF are carried by isos
in C.

Conversely, assume that there exist a coalgebra pP, πq and a homomor-
phism ϕ : pP, πq Ñ pA,αq with S – ϕrP s and let ϕ “ ε ˝ η be the epi-strong
mono factorization of ϕ in CF . Then ϕrpP, πqs is carried by ϕrP s and
ε : ϕrP s� A is a strong subobject of A such that ε : ϕrpP, πqs� pA,αq is
a homomorphism again by Lemma 2.5. Hence the desired result.

The following result will be very useful in the sequel.

Theorem 3.3. Assume that C has binary powers, and kernel pairs and F
preserves binary powers as well as strong monos and let A “ pA,αq be an
F -coalgebra and ϕ : A Ñ B a morphism. Then the following statements
hold:



Weak homomorphisms of coalgebras beyond Set 565

(i) If F weakly preserves kernels and there exists a dynamics β : B Ñ F pBq
such that ϕ is a homomorphism from A to B “ pB, βq, then kerpϕq P
SubF pAˆAq.

(ii) If ϕ is an epimorphism in C which is the coequalizer of its kernel pair
and kerpϕq P SubF pAˆAq, then there exists a dynamics β : B Ñ F pBq
such that ϕ is a homomorphism from A to B “ pB, βq.

Proof. Since C has and F preserves binary powers, then CF has binary
powers and they are carried by binary powers in C, see Subsection 2.1.

(i) It follows directly from item 1. of Lemma 2.11.
(ii) Let π1, π2 : kerpϕq Ñ A denote the canonical projections of kerpϕq

and let γ : kerpϕq Ñ F pkerpϕq be a dynamics such that the strong mono
xπ1, π2y : kerpϕq � A ˆ A given by the universal property of the product
according to Lemma 2.3 is a homomorphism from pkerpϕq, γq to AˆA. Let
p1, p2 : A ˆ A Ñ A denote the canonical projections and π : A ˆ A Ñ

F pA ˆ Aq the dynamics of A ˆ A. xπ1, π2y : pkerpϕq, γq Ñ pA ˆ A, πq is
a homomorphism. On the other hand, for all i, α ˝ pi “ F ppiq ˝ π and
post-composing by xπ1, π2y yields α ˝ πi “ F pπiq ˝ γ. Now it is not hard to
check that F pϕq ˝ α ˝ π1 “ F pϕq ˝ α ˝ π2. Thus, by the universal property
of the coequalizer, there exists a unique morphism β : B Ñ F pBq such that
β ˝ ϕ “ F pϕq ˝ α.

It is not hard to see that a combination of Lemmas 2.5 and 2.6 yields:

Remark 3.4. Items (i) and (ii) from Theorem 3.3 hold if C is strongly
complete and F is a covarietor preserving strong monomorphisms.

An analog of the following for differently typed algebras of functors over
Set can be found in [16] and, also in [8] for coalgebras over Set without
assumption of preservation of strong monos.

Lemma 3.5. If F preserves strong monos, then the following hold for any
homomorphism ϕ : AÑ B and any object U :

(i) If U P SubF pAq, then ϕrU s P SubF pBq.
(ii) If C has and F preserves pullbacks along strong monos and U P SubF pBq,

then ϕ´rU s P SubF pAq.
Proof. (i) Let A “ pA,αq, B “ pB, βq, σ : U � A be a strong subobject of
A such that U P SubF pAq with the dynamics µ : U Ñ F pUq and factorize
ϕ ˝ σ in C as an epi ψ1 : U � ϕrU s followed by a strong mono θ1 : ϕrU s� B.
A straightforward diagram chase yields β ˝ θ1 ˝ψ1 “ F pθ1q ˝F pψ1q ˝µ. On the
other hand F preserves strong monos, thus F pθ1q is a strong mono and since
ψ1 is an epi, it holds there exists a unique morphism φ : ϕrU s Ñ F pϕrU sq
such that φ˝ψ1 “ F pψ1q ˝µ and F pθ1q ˝φ “ β ˝ θ1. Hence θ1 is a strong mono
which is a homomorphism from pϕrU s, φq to pB, βq.
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(ii) Since C has and F preserves pullbacks along strong monos, then CF
has pullbacks along strong monos too (see Subsection 2.1); and if F preserves
strong monos, then monos therein are carried by strong monos in C, by
Lemma 2.5. This immediately yields the desired result.

3.2. Some facts about coalgebraically equivalent coalgebras. Bor-
rowing notations from [16], we have the following, where for each coalgebra
A and each set I, AI :“ ΠiPIAi with Ai “ A is the I-power of A, whenever
it exists:

Definition 3.6. An F -coalgebra A and a G-coalgebra A1 on a common
carrier A, for some C-endofunctors F and G, are said to be coalgebraically
equivalent, written as AF ”G A1 or simply A ” A1 if it is clear from the
context, provided for each set I such that AI and A1I exist, SubF pAIq “
SubGpA1Iq.

Recall (see Subsection 2.1) that if C has and F preserves powers or if C
is strongly complete and F is a covarietor preserving strong monomorphisms
(see Lemma 2.6), arbitrary powers of coalgebras exist in CF ; i.e., for every
coalgebra A and each set I, AI exists.

[16] contains an analog of the following, for differently typed algebras
over Set.

Lemma 3.7. Assume that C has arbitrary powers and let F and G be
C-endofunctors preserving arbitrary powers and strong monos, pA,αq and
pB, βq F -coalgebras and pA,α1q and pB, β1q G-coalgebras. If there exists a
strong mono ϕ : A� B which is a homomorphism from pA,αq to pB, βq and
from pA,α1q to pB, β1q, then pB, βqF ”G pB, β1q ñ pA,αqF ”G pA,α

1q.

Proof. Since F and G preserve arbitrary powers, then CF and CG have
powers and they are carried by powers in C, see Subsection 2.1. Assume
that pB, βqF ”G pB, β1q and let U P SubF ppA,αq

Iq for some set I such
that pAI , αIq :“ pA,αqI and pA1I , α1Iq :“ pA1, α1qI . Then there exists a
strong mono ψ : U � AI and a dynamics µF : U Ñ F pUq such that ψ is a
homomorphism from pU, µF q to pAI , αIq. But then, the composite ϕI ˝ ψ :
U � BI is a strong mono because the class of strong monos is closed under
composition and under products [2], and an F -homomorphism, too. Hence
U P SubF ppB, βq

Iq. Therefore by assumption, U P SubGppB, β1qIq, too. Thus,
there exists a dynamics µG : U Ñ GpUq such that ϕI ˝ψ : pU, µGq Ñ pBI , β1Iq
is a homomorphism. We have β1I ˝ϕI ˝ψ “ GpϕIq ˝Gpψq ˝ µG; i.e., GpϕIq ˝
α1I ˝ψ “ GpϕIq ˝Gpψq ˝µG, because ϕI is a homomorphism from pA,α1qI to
pB, β1qI . Now in addition, G preserves strong monomorphisms; thus GpϕIq
is a mono so that canceling it from the left yields α1I ˝ψ “ Gpψq ˝µG. Hence
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ψ : pU, µGq Ñ pA,α1qI is a homomorphism; i.e., U P SubGppA,α
1qIq. By

symmetry, we have SubGppA,α1qIq Ď SubF ppA,αq
Iq.

A category is said to satisfy the Axiom of Choice (AC, for short) in the
sense of [11] provided every epimorphism splits, i.e., every epimorphism is
right-invertible. E.g., Set and the category Vec of real vector spaces and
linear transformations between them see, for instance, [2] where it is shown
that in a category satisfying the AC, epimorphisms are closed under products
and pullbacks but this is not true in an arbitrary one. As far as epimorphisms
are concerned, a category satisfying the AC satisfies the conditions in the
following lemma, whose analog can be found in [16] for differently typed
algebras over Set.

Lemma 3.8. Assume that C has and F and G preserve pullbacks along strong
monos and arbitrary powers as well as strong monos and epis are closed under
pullbacks along strong monos and arbitrary powers and let A “ pA,αq and
B “ pB, βq be F -coalgebras, A1 “ pA,α1q and B1 “ pB, β1q be G-coalgebras.
If there exists an epi ϕ : A� B which is a homomorphism from A to B as
well as from A1 to B1, then AF ”G A1 ñ BF ”G B1.
Proof. Assume that AF ”G A1 and let U P SubF pBIq, for some set I, with
σ : U � BI as corresponding strong mono. Then there exists a dynamics µF :
U Ñ F pUq such that σ : pU, µF q Ñ BI is a homomorphism. Then by Lemma
3.5 pϕIq´rU s P SubF pAIq so that by assumption pϕIq´rU s P SubGpA1Iq
too. Thus, there exists a strong mono ν : pϕIq´rU s� AI and a dynamics
νG : pϕIq´rU s Ñ GppϕIq´rU sq such that ν : ppϕIq´rU s, νGq Ñ A1I is a
homomorphism. But then, again by Lemma 3.5 ϕIrpϕIq´rU ss P SubGpB1Iq.
Now ϕI factors in an epi followed by a strong mono in CF and therefore in C
according to Lemma 2.5 as ϕI “ ε˝ψ where ψ : AI � ϕIrAIs and by definition
ϕIrpϕIq´rU ss is the image of the strong subobject σ1 : pϕIq´rU s� AI , where
σ1 is the pullback of σ along ϕI . If ϕI ˝ σ1 factors in an epi ψ1 : pϕIq´rU s�
ϕIrpϕIq´rU ss followed by a strong mono ε1 : ϕIrpϕIq´rU ss� BI as ϕI ˝σ1 “
ε1 ˝ ψ1, i.e., ε ˝ ψ ˝ σ1 “ ε1 ˝ ψ1, then ψ1 epi and ε strong mono imply that
there exists a unique morphism σ” : ϕIrpϕIq´rU ss � ϕIrAIs such that
σ” ˝ ψ1 “ ψ ˝ σ1 and ε ˝ σ” “ ε1; and, σ” is a strong mono by Lemma 2.1.

ϕIrpϕIq´rU ss

δ

��

// σ” //
��

ε1

��

ϕIrAIs
��

ε

��

pϕIq´rU s

ψ1

OOOO

pϕIq1

��

// σ1
// AI

ψ

OOOO

ϕI

����
U // σ

// BI
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On the other hand, we have ε ˝ σ” ˝ ψ1 “ ε ˝ ψ ˝ σ1 “ ϕI ˝ σ1 “ σ ˝ pϕIq1

with ψ1 an epi and σ a strong mono. Thus there exists a unique morphism
δ : ϕIrpϕIq´rU ss Ñ U such that δ ˝ ψ1 “ pϕIq1 and σ ˝ δ “ ε ˝ σ”. Now as
a composite of strong monos, ε ˝ σ” is a strong mono and σ is a (strong)
mono. Thus by Lemma 2.1, δ is a strong mono, too. Moreover, since epis
are closed under pullbacks along strong monos and under powers and ϕ is an
epi, so is pϕIq1. Therefore, the last but one equality implies that δ is an epi
as well. Hence, it is an iso so that U P SubGpB1Iq. By symmetry, we obtain
that SubGpB1Iq Ď SubF pBIq and this ends the proof.

Taking into account Lemma 2.5, it is not hard to check the following:

Remark 3.9. In case C = Set and without the assumption of preservation
of strong monos by the types, Lemmas 3.2, 3.5 (see [8, 14]), 3.7 and 3.8 are
valid.

3.3. Weak homomorphisms of coalgebras.

Definition 3.10. Let F and G be C-endofunctors, pA,αq an F -coalgebra
and pB, βq a G-coalgebra. A morphism ϕ : AÑ B is called a weak homomor-
phism from pA,αq to pB, βq if factoring ϕ in an epi ψ followed by a strong
mono µ : Q Ñ B as ϕ “ µ ˝ ψ, there exist dynamics ρF : Q Ñ F pQq and
ρG : QÑ GpQq such that the following conditions are satisfied:
(i) QF ”G Q1, with Q :“ pQ, ρF q and Q1 :“ pQ, ρGq;
(ii) ψ : pA,αq Ñ pQ, ρF q and µ : pQ, ρGq Ñ pB, βq are homomorphisms; i.e.,
the following diagram commutes.

F pAq

F pψq ##

A
αoo

ψ �� ��

ϕ // B
β // GpBq

F pQq Q
@@

µ

@@

ρF
oo

ρG
// GpQq

Gpµq

;;

The concept of weak homomorphism generalizes that of homomorphism
for strong mono-preserving endofunctors. Indeed, in case F preserves strong
monomorphisms, the category CF has epi-strong mono factorizations accord-
ing to Lemma 2.5 and it holds in C that the epi-strong mono factorizations
of the same morphism are isomorphic. Hence:

Remark 3.11. If F preserves strong monomorphisms, then every F -
homomorphism from A to B is a weak homomorphism from A to B. In
particular, idA is a weak homomorphism from A to itself.

As far as epimorphisms are concerned, the following holds for instance
when the category C satisfies the AC.
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Theorem 3.12. Assume that C has and F,G and H preserve arbitrary
powers and weakly preserves kernel pairs, C has pullbacks along strong monos,
epis are closed under pullbacks along strong monos and arbitrary powers and
every epimorphism is the coequalizer of its kernel pair, F and G preserve pull-
backs along strong monos, F , G and H preserve strong monos and let pA,αq
be an F -coalgebra, pB, βq a G-coalgebra and pC, γq a H-coalgebra. Whenever
ϕ : pA,αq Ñ pB, βq and ψ : pB, βq Ñ pC, γq are weak homomorphisms,
ψ ˝ ϕ : pA,αq Ñ pC, γq is a weak homomorphism, too.

Proof. By assumption ϕ and ψ factor into an epi followed by a strong mono
as ϕ “ µ1 ˝ ε1 and ψ “ µ2 ˝ ε2 with ε1 : A � Q1 and ε2 : B � Q2 and
there are F -dynamics ρ1

F : Q1 Ñ F pQ1q, G-dynamics ρ1
G : Q1 Ñ GpQ1q,

ρ2
G : Q2 Ñ GpQ2q and H-dynamics ρ2

H : Q2 Ñ HpQ2q such that:
(i) pQ1, ρ

1
F q ” pQ1, ρ

1
Gq and pQ2, ρ

2
Gq ” pQ2, ρ

2
Hq;

(ii) ε1 : pA,αq Ñ pQ, ρ1
F q, µ1 : pQ1, ρ

1
Gq Ñ pB, βq, ε2 : pB, βq Ñ pQ2, ρ

2
Gq

and µ2 : pQ2, ρ
2
Hq Ñ pC, γq are homomorphisms. As a composite of G-

homomorphisms, ε2 ˝ µ1 : pQ1, ρ
1
Gq Ñ pQ2, ρ

2
Gq is a G-homomorphism, too.

Let ε2 ˝ µ1 “ µ3 ˝ ε3 be its factorization in CG into an epimorphism followed
by a strong monomorphism with ε3 : pQ1, ρ

1
Gq � pQ3, ρ

3
Gq. Then ψ ˝ ϕ “

pµ2 ˝ µ3q ˝ pε3 ˝ ε1q is an epi-strong mono factorization of ψ ˝ ϕ in C.

A
ϕ //

ε1     

B
ψ //

ε2

!! !!

C

Q1

==

µ1

==

ε3     

Q2

>> µ2

>>

Q3

>>
µ3

>>

Since G weakly preserves kernels, then by (i) of Theorem 3.3 we obtain
kerpε3q P SubGppQ1, ρ

1
Gq ˆ pQ1, ρ

1
Gqq and, because pQ1, ρ

1
F q ” pQ1, ρ

1
Gq, it

immediately follows that kerpε3q P SubF ppQ1, ρ
1
F q ˆ pQ1, ρ

1
F qq, too. More-

over, F weakly preserves kernels and ε3 is an epimorphism in C. Thus, by
(ii) of Theorem 3.3, there is an F -dynamics ρ3

F : Q3 Ñ F pQ3q such that
ε3 : pQ1, ρ

1
F q � pQ3, ρ

3
F q is an F -homomorphism. As a consequence of

Lemma 3.8, pQ3, ρ
3
F q ” pQ3, ρ

3
Gq. On the other hand, by (i) of Lemma 3.5,

µ3rQ3s P SubGppQ2, ρ
2
Gqq and, taking into account pQ2, ρ

2
Gq ” pQ2, ρ

2
Hq,

µ3rQ3s P SubHppQ2, ρ
2
Hqq, too. Thus µ3 : pQ3, ρ

3
Hq � pQ2, ρ

2
Hq is an H-

homomorphism. Moreover, µ3 : pQ3, ρ
3
Gq� pQ2, ρ

2
Gq is a G-homomorphism,

too. Thus, since µ3 : Q3 � Q2 is a strong mono in C, it follows from
Lemma 3.7 that pQ3, ρ

3
Gq ” pQ3, ρ

3
Hq. Hence pQ3, ρ

3
F q ” pQ3, ρ

3
Hq and this

ends the proof.
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From Theorem 3.12, the following is straightforward.

Corollary 3.13. Assume that C has arbitrary powers, kernel pairs, pull-
backs along strong monos, epis are closed under arbitrary powers and pullbacks
along strong monos, every epimorphism is the coequalizer of its kernel pair
and let F be a set of C-endofunctors that preserve arbitrary powers, pullbacks
along strong monos, strong monos and weakly preserve kernels. Then the
class CF of F -coalgebras for some F P F and weak homomorphisms between
them forms a category.

Below is another situation in which the composition of weak homomor-
phisms is well-behaved:

Theorem 3.14. Assume that C is strongly complete, epis are closed under
pullbacks along strong monos and arbitrary powers and every epimorphism
is the coequalizer of its kernel pair, F and G are covarietors and together
with H preserve strong monos, arbitrary powers and weakly preserve kernels
and let pA,αq be an F -coalgebra, pB, βq a G-coalgebra and pC, γq a H-
coalgebra. Whenever ϕ : pA,αq Ñ pB, βq and ψ : pB, βq Ñ pC, γq are weak
homomorphisms, ψ ˝ ϕ : pA,αq Ñ pC, γq is a weak homomorphism, too.

Proof. As a consequence of Lemmas 2.6 and 2.5, the categories CF and CG
are complete and strong monos therein are carried by strong monos in C. Thus
in particular binary powers and pullbacks along strong monos exist in each
of them. On the other hand, strong monomorphisms are closed under the
formation of pullbacks [2]. The rest of the proof is as that of Theorem 3.12.

Theorem 3.14 immediately yields:

Corollary 3.15. If C is strongly complete, epis are closed under pullbacks
along strong monos and arbitrary powers and every epimorphism is the
coequalizer of its kernel pair and F is a set of covarietors preserving strong
monos, arbitrary powers and weakly preserving kernels, then the class CF of
F -coalgebras for some F P F and weak homomorphisms between them forms
a category.

3.4. Generation of weak homomorphisms. It is well known that if an
epimorphism is regular and has a kernel pair, then it is the coequalizer of its
kernel pair, see [2, 5], for instance. Therefore, in any category with kernel
pairs an epimorphism is regular iff it is the coequalizer of its kernel pair.
This is the case, for instance, in every topos, in the category Grp and, by
Corollary 2.12, in any category of coalgebras of a weakly preserving kernels
endofunctor of a category with kernel pairs, coequalizers and binary powers
in which every epimorphism is regular. On the other hand, in some categories,
regular epimorphisms are stable under pullbacks. Typical examples are those
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which are regular in the sense of [5]. Therefore, from the above, a regular
category in which every epimorphism is regular (e.g., any topos) satisfies
the assumptions in item 1. of the following which is somewhat an analog to
Theorem 2.4. It is similar to some results about coalgebras of Set-endofunctors
from [8, 13].

Theorem 3.16. Let pA,αq, pB, βq and pC, γq be coalgebras in CF , CG and
CH , respectively, ϕ : pA,αq Ñ pC, γq a weak homomorphism, f : AÑ B and
g : B Ñ C morphisms in C with ϕ “ g ˝ f .

1. Assume that C has pullbacks along strong monos, arbitrary powers and
kernel pairs, every epimorphism in C is the coequalizer of its kernel pair,
epis are closed under pullbacks along strong monos and arbitrary powers
and both F and G preserve arbitrary powers, strong monos as well as
pullbacks along strong monos and weakly preserve kernel pairs. If f is an
epimorphism in C which is a weak homomorphism from pA,αq to pB, βq,
then g is a weak homomorphism from pB, βq to pC, γq.

2. If C has arbitrary powers, G and H preserve strong monos and arbitrary
powers and g is a weak homomorphism which is a strong mono in C, then
f is a weak homomorphism.

Proof. 1. Factorize g in C as an epi followed by a strong mono as g “ µ˝ε with
ε : B � Q. Then ϕ “ µ˝ pε˝fq is an epi-strong mono factorization of ϕ in C.
Thus, since ϕ is a weak homomorphism from pA,αq to pC, γq, there exists an
F -dynamics ρF : QÑ F pQq and a H-dynamics ρH : QÑ HpQq on Q such
that pQ, ρF q ” pQ, ρHq, ε˝f : pA,αq Ñ pQ, ρF q and µ : pQ, ρHq Ñ pC, γq are
homomorphisms in CF and CH , respectively. On the other hand, f is a weak
homomorphism from pA,αq to pB, βq. Thus considering the trivial epi-strong
mono factorization of f in C, there exists an F -dynamics β1 : B Ñ F pBq such
that f : pA,αq Ñ pB, β1q is an F -homomorphism and pB, β1qF ”G pB, βq.
Moreover, ε ˝ f : pA,αq Ñ pQ, ρF q is a homomorphism in CF and f is an
epimorphism in CF . Thus by (i) of Theorem 2.4, ε : pB, β1q Ñ pQ, ρF q
is a homomorphism in CF , too. Now F weakly preserves kernels; thus it
follows from (i) of Theorem 3.3 that kerpεq P SubF ppB, β1q ˆ pB, β1qq and,
because pB, β1qF ”G pB, βq, kerpεq P SubGppB, βq ˆ pB, βqq, too. Therefore,
applying (ii) of Theorem 3.3 yields a unique G-dynamics ρG : Q Ñ GpQq
such that ε : pB, βq Ñ pQ, ρGq is a G-homomorphism. But then, by Lemma
3.8, pB, β1qF ”G pB, βq ñ pQ, ρF q ” pQ, ρGq; and since pQ, ρF q ” pQ, ρHq,
we deduce that pQ, ρGq ” pQ, ρHq. Hence the desired result.

2. Factorize f in C as an epi followed by a strong mono as f “ ν ˝ θ
with ν : K � B. Since strong monos are closed under composition [2],
ϕ “ pg ˝ νq ˝ θ is an epi-strong mono factorization of ϕ in C. Thus, ϕ being
a weak homomorphism from pA,αq to pC, γq, there exists an F -dynamics
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κF : K Ñ F pKq and a H-dynamics κH : K Ñ HpKq on K such that
pK,κF q ” pK,κHq, θ : pA,αq Ñ pK,κF q and g ˝ ν : pK,κHq Ñ pC, γq
are homomorphisms in CF and CH , respectively. On the other hand, g is
a weak homomorphism from pB, βq to pC, γq. Thus taking into account the
trivial epi-strong mono factorization of g in C, there exists an H-dynamics
β” : B Ñ HpBq such that g : pB, β”q Ñ pC, γq is a H-homomorphism
and pB, β”qH ”G pB, βq. g ˝ ν : pK,κHq Ñ pC, γq is a H-homomorphism,
g is a strong monomorphism in C which is an H-homomorphism and in
addition H preserves strong monomorphisms. Thus, by 2. of Theorem 2.4,
ν : pK,κHq Ñ pB, β”q is a H-homomorphism. On the other hand, ν is a
strong monomorphism in C, G preserves strong monos too, and pB, β”qH ”G
pB, βq; thus by Lemma 3.7 pK,κHq ” pK,κGq. Now pK,κF q ” pK,κHq.
Hence pK,κF q ” pK,κGq. Hence the desired result.

From Theorem 3.16 one can easily deduce the following corollaries. In
case C = Set, an analog of the first one for similarly typed coalgebras can
be found in [8] as the so-called First Diagram Lemma and the functorial
algebraic version of both of them can be found in [16].

Corollary 3.17. Assume that the assumptions from 1. of Theorem 3.16
are satisfied and let ϕ : pA,αq Ñ pB, βq and ψ : pA,αq Ñ pC, γq be weak
homomorphisms where pA,αq is an F -coalgebra, pB, βq is a G-coalgebra,
pC, γq is a H-coalgebra and ψ is an epimorphism in C. There is a weak
homomorphism π : pB, βq Ñ pC, γq such that π ˝ ϕ “ ψ iff kerpϕq v kerpψq.
In this case, π is uniquely determined.

Proof. Assume that kerpϕq v kerpψq and denote by πi : kerpϕq Ñ A and
σi : kerpψq Ñ A, i “ 1, 2, the canonical ith projection of kerpϕq and kerpψq,
respectively. Then there exists a strong monomorphism τ : kerpϕq Ñ kerpψq
such that πi “ σi ˝ τ , i “ 1, 2. But then we have ψ ˝ π1 “ ψ ˝ π2. Thus, by
the universal property of the coequalizer, there exists a unique morphism
π : B Ñ C such that ψ “ π ˝ϕ. Now ψ and ϕ are weak homomorphisms and
ϕ is an epimorphism in C. Thus, by 1. of Theorem 3.16, π : pB, βq Ñ pC, γq
is a weak homomorphism, too.

Conversely assume that there exists a (unique) morphism π : B Ñ C
such that ψ “ π ˝ ϕ. Then we have ψ ˝ π1 “ ψ ˝ π2 and, by the universal
property of the pullback, there exists a unique morphism θ : kerpϕq Ñ kerpψq
such that πi “ σi ˝ θ, i “ 1, 2. From these equalities, it follows that
xπ1, π2y “ xσ1, σ2y ˝ θ with xπ1, π2y a strong monomorphism and xσ1, σ2y

a (strong) monomorphism. Thus by Lemma 2.1, θ is a strong monomorphism,
too. Hence kerpϕq v kerpψq. π is uniquely determined follows from the fact
that ϕ is an epimorphism in C.
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Corollary 3.18. Assume that the assumptions from 1. of Theorem 3.16
are satisfied and consider an F -coalgebra pA,αq, a G-coalgebra pB, βq, a H-
coalgebra pC, γq and a J-coalgebra pD, δq as well as weak homomorphisms
ϕ : pA,αq Ñ pB, βq, ψ : pA,αq Ñ pC, γq, ρ : pB, βq Ñ pD, δq and µ :
pC, γq Ñ pD, δq. Assume that ϕ is an epimorphism and µ is a strong
monomorphism in C. If ρ ˝ ϕ “ µ ˝ ψ, then there exists a unique weak
homomorphism σ : pB, βq Ñ pC, γq with the property σ ˝ ϕ “ ψ. In addition,
σ satisfies µ ˝ σ “ ρ.

Proof. Since ϕ is an epimorphism, µ is a strong monomorphism in C and
ρ ˝ ϕ “ µ ˝ ψ, it follows from the definition of a strong monomorphism that
there exists a unique morphism σ : B Ñ C such that σ ˝ϕ “ ψ and µ˝σ “ ρ.
But then the last but one equality and item 1. of Theorem 3.16 yield that
σ : pB, βq Ñ pC, γq is a weak homomorphism.

By 2. of Theorem 3.16, we have the following:

Remark 3.19. If instead of considering the assumptions from 1. of Theo-
rem 3.16 in Corollary 3.18 we assume rather that G and J preserve strong
monomorphisms, then the result still holds and looks like the so-called Second
Diagram Lemma from [8].

Taking into account Lemmas 2.5 and 2.6, the following is straightforward:

Remark 3.20. If C is a strongly complete category in which every epimor-
phism is the coequalizer of its kernel pair and epis are closed under pullbacks
along strong monos and arbitrary powers and F and G are covarietors pre-
serving strong monos and arbitrary powers and weakly preserving kernels,
then item 1. of Theorem 3.16 as well as Corollaries 3.17 and 3.18 still hold.

Lemma 3.21. Assume that C has kernel pairs. If A is an F -coalgebra, B
is a G-coalgebra and ϕ : AÑ B is a weak homomorphism, then kerpϕq is a
congruence on A. If moreover C has binary powers and F weakly preserves
kernels, then it is a strong bisimulation on A.

Proof. Factorize ϕ in C in an epimorphism followed by a strong monomor-
phism as ϕ “ µ ˝ ε where ε : A � Q. Then there exist a F -dynamics ρF :
QÑ F pQq and a G-dynamics ρG : QÑ GpQq such that pQ, ρF q ” pQ, ρGq,
ε : A � pQ, ρF q and µ : pQ, ρGq Ñ B are homomorphisms in CF and CG,
respectively. Thus kerpεq is a congruence on A. Now it is a routine exercise
to check that kerpϕq – kerpεq. Thus kerpϕq is a congruence on A, too. The
last assertion follows directly from 1. of Lemma 2.11.

The following, which can be seen as an extension of Lemma 3.5, generalizes
some results about coalgebras of a common type over Set from [8]. An analog
thereof can be found in [16] for differently typed functorial algebras over Set.
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Proposition 3.22. Let pA,αq be an F -coalgebra, pB, βq a G-coalgebra
and pB, β˚q a H-coalgebra and ϕ : A Ñ B a morphism. Assume that
ϕ : pA,αq Ñ pB, βq is a weak homomorphism. Then the following statements
are true:

(i) If F preserves strong monomorphisms, then for each U P SubF ppA,αqq,
ϕrU s P SubGppB, βqq.

(ii) If C has and F and G preserve pullbacks along strong monos as well as
strong monos, then for each U P SubGppB, βqq, ϕ´rU s P SubF ppA,αqq.

(iii) If C has and F and G preserve arbitrary powers and strong monos and
ϕ is an isomorphism, then its inverse ϕ´1 is a weak homomorphism
from pB, βq to pA,αq.

(iv) If C has and G and H preserve arbitrary powers and strong monos and
pB, βqG ”H pB, β˚q, then ϕ : pA,αq Ñ pB, β˚q is a weak homomor-
phism.

Proof. Let ϕ factor in an epi followed by a strong mono as ϕ “ θ ˝ ψ with
ψ : A� Q and denote by ρF : QÑ F pQq and ρG : QÑ GpQq the dynamics
such that ψ : pA,αq Ñ pQ, ρF q and θ : pQ, ρGq Ñ pB, βq are homomorphisms
in CF and CG, respectively and pQ, ρF q ” pQ, ρGq.

(i) Let σ : U � A be the strong mono and µ : U Ñ F pUq the morphism
making U a closed strong subobject of pA,αq. Item (i) of Lemma 3.5 yields
ψrU s P SubF ppQ, ρF qq. Moreover, by Lemma 2.2, ψrU s – ϕrU s. Thus,
by invoking 3.10 (i), ϕrU s P SubGppQ, ρGqq. Now θ : Q � B is a strong
mono which is a G-morphism and the class of strong monos is closed under
composition (see [2], for instance); therefore ϕrU s P SubGppB, βqq.

(ii) Let U P SubGppB, βqq. Then by item (ii) of Lemma 3.5, θ´rU s P
SubGppQ, ρGqq. Therefore, again by invoking 3.10 (i), θ´rU s P SubF ppQ, ρF qq.
Thus, applying once more (ii) of Lemma 3.5 we have ψ´rθ´rU ssPSubF ppA,αqq.
The desired result follows from the fact that ϕ´rU s “ ψ´rθ´rU ss.

(iii) It follows directly from item 2. of Theorem 3.16 and Remark 3.11.
(iv) Assume that pB, βqG ”H pB, β˚q. Then since Q P SubGppB, βqq,

it follows that Q P SubHppB, β
˚qq, too. Thus, there exists a dynamics

ρH : Q Ñ HpQq such that θ : pQ, ρHq Ñ pB, β˚q is a homomorphism. But
then by Lemma 3.7, pB, βqG ”H pB, β˚q implies pQ, ρGq ” pQ, ρHq. Thus
we have pQ, ρF q ” pQ, ρHq.

3.5. An Isomorphism Theorem for weak homomorphisms. In the
following we try to establish, for differently typed coalgebras, an analog to a
special version of 1.ñ 2. from Lemma 2.14.

Theorem 3.23. Assume that C has kernel pairs, arbitrary powers, coequal-
izers of kernel pairs and every epimorphism in C is regular and G preserves
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strong monomorphisms and together with F preserve arbitrary powers. If
A is an F -coalgebra, B is a G-coalgebra, ϕ : A Ñ B is a weak homomor-
phism and πkerpϕq : A Ñ A{kerpϕq is the coequalizer of the kernel pair
π1, π2 : kerpϕq Ñ A of ϕ, then there exists a unique morphism βkerpϕq :
A{kerpϕq Ñ GpA{kerpϕqq such that πkerpϕq : A Ñ pA{kerpϕq, βkerpϕqq is
a weak homomorphism.

Proof. Let ϕ “ µ ˝ ε be the epi-strong mono factorization of ϕ in C with
ε : A � Q and µ : Q � B. Then there exist morphisms ρF : Q Ñ F pQq
and ρG : QÑ GpQq such that ε : pA,αq� pQ, ρF q and µ : pQ, ρGq Ñ pB, βq
are homomorphisms in CF and CG, respectively and pQ, ρF q ” pQ, ρGq.
By Lemma 3.21, π1, π2 : kerpϕq Ñ A is a congruence on A. Clearly
pkerpϕq, π1, π2q is also the kernel of ε in C. Thus, since by assumption ε is a
regular epimorphism, it is also the coequalizer of π1 and π2 in C [2, 5]. Thus,
there exists an isomorphism ψ : A{kerpϕq Ñ Q such that ε “ ψ ˝ πkerpϕq.

kerpϕq
π1 //

π2

// A
ϕ //

ε

&& &&

πkerpϕq

����

α
ww

B
β

""
F pAq

F pεq

''
F pπkerpϕqq

��

GpBq

Q
OO

µ

OO

ρFyy ρG ""
A{kerpϕq

αkerpϕq

ww βkerpϕq ''

ψ

33

F pQq GpQq
OO

Gpµq

OO

F pA{kerpϕqq

F pψq

33

GpA{kerpϕqq

Gpψq
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But then, using a diagram chase and arguing as in the proof of 1. ñ 2.
of Lemma 2.14, we get that there exists a unique morphism αkerpϕq :
A{kerpϕq Ñ F pA{kerpϕqq such that αkerpϕq ˝ πkerpϕq “ F pπkerpϕqq ˝α. Since
ε is an F -homomorphism and ε “ ψ ˝ πkerpϕq with πkerpϕq an epimorphism
in CF , it follows from 1. of Theorem 2.4 that ψ is an F -homomorphism, too.
But then, we deduce that A{kerpϕq P SubF pQ, ρF q and, since pQ, ρF q ”
pQ, ρGq, it follows that there exists a morphism βkerpϕq : A{kerpϕq Ñ
GpA{kerpϕqq such that ψ : pA{Kerpϕqq Ñ pQ, ρGq a G-homomorphism.
ψ is therefore an isomorphism in CG, too. Let’s show that πkerpϕq : pA,αq Ñ
pA{kerpϕq, βkerpϕqq is a weak homomorphism. We have ϕ “ µ ˝ ε “ µ ˝
ψ ˝ πkerpϕq. µ ˝ ψ is a G-homomorphism from pA{kerpϕq, βkerpϕqq to pB, βq.
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Thus by Remark 3.11, it is a weak homomorphism. In addition, µ ˝ ψ is
a strong monomorphism in C. Thus by 2. of Theorem 3.16, πkerpϕq is a
weak homomorphism from pA,αq to pA{kerpϕq, βkerpϕqq. The uniqueness of
βkerpϕq as G-dynamics making πkerpϕq : pA,αq Ñ pA{kerpϕq, βkerpϕqq a weak
homomorphism is straightforward.
Remark 3.24. Instead of assuming in Theorem 3.23 that every epimor-
phism is regular, one could simply assume that C has regular epi-strong mono
factorizations and the result still holds.

If in the above ϕ is a weak homomorphism which is an epimorphism in
C, then µ must be an isomorphism in C. Therefore, from Theorem 3.23 and
its proof, we immediately deduce the following, whose analog for similarly
typed coalgebras over Set can be found in [8, 14]:
Theorem 3.25. (Isomorphism Theorem) Assume that C has kernel pairs,
arbitrary powers, coequalizers of kernel pairs and every epimorphism in C
is regular. If F and G are arbitrary powers preserving C-endofunctors such
that G preserves strong monomorphisms, then every weak homomorphism
ϕ : AÑ B, where A is an F -coalgebra and B a G-coalgebra, can be decomposed
as ϕ “ ν ˝ πkerpϕq, where ν “ µ ˝ ψ with ψ both an F -isomorphism and a G-
isomorphism, πkerpϕq is a weak homomorphism which is an epimorphism in
C and ν is a weak homomorphism which is a strong monomorphism in C. In
particular, every codomain of a weak homomorphism which is an epimorphism
in C is isomorphic to a factor.

A ϕ //

ε

$$ $$
πkerpϕq

�� ��

B

Q
::

µ

::

A{kerpϕq

ψ

OO ν

CC

In the above diagram, the boldface is used when the carrier is endowed
with both an F -dynamics and a G-dynamics.

From Corollary 3.13 and Theorem 3.25, the following corollary is straight-
forward:
Corollary 3.26. Assume that C has arbitrary powers, pullbacks along
strong monomorphisms, kernel pairs, coequalizers of kernel pairs, every epi-
morphism in C is regular and epis are closed under arbitrary powers and
pullbacks along strong monos. If F denotes a set of C-endofunctors which
preserve strong monomorphisms, pullbacks along strong monomorphisms,
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arbitrary powers and weakly preserve kernels, then every weak homomor-
phism can be decomposed in CF into a weak homomorphism, which is an
epimorphism in C followed by a weak homomorphism, which is a strong
monomorphism in C.

Theorem 3.25 and Corollary 3.15 also immediately yield:

Corollary 3.27. Assume that C is a strongly complete category with
coequalizers of kernel pairs and in which epimorphisms are regular and closed
under pullbacks along strong monos and arbitrary powers. If F denotes a set
of covarietors preserving strong monomorphisms, arbitrary powers and weakly
preserving kernels, then every weak homomorphism can be decomposed in
CF into a weak homomorphism, which is an epimorphism in C followed by
a weak homomorphism, which is a strong monomorphism in C.

Example 3.28. Set C = Grp, F “ Id and G “ T the termination: for all
object G in Grp, T pGq :“ t˚u, the one-element group (recall that it is both
initial and terminal object in Grp) and denote by !G : GÑ t˚u the unique
morphism from G to t˚u. Then:

1. For every n P Z, the F -coalgebra pnZ, ζq where ζpnxq “ n2x and the
G-coalgebra pnZ, !nZq are coalgebraically equivalent.

2. For every integer k, the map αk : Z Ñ Z defined by x ÞÑ kx is a weak
homomorphism from pZ, αnq to pZ, !Zq, for any integer n.

Proof. 1. Grp has arbitrary powers because it is complete [2]. Therefore, since
F and G preserves products, in particular arbitrary powers exist in GrpF and
GrpG each of which is carried by the corresponding powers of the carrier of the
coalgebra considered in Grp, see Subsection 2.1. On the other hand, for every
set I, SubF ppnZ, ζqIq “ tpmZqI : m P nZu because ζIm : pmZqI Ñ pmZqI
defined by ζImpxq “ ζIpxq is a dynamics on pmZqI making the map pinmqI :
pmZqI Ñ pnZqI , where inm : mZÑ nZ is an inclusion, a homomorphism in
Grp. In fact, if pi : pnZqI Ñ nZ and qi : pmZqI Ñ mZ are ith canonical
projections, then pinm ˝ qi : pmZqI Ñ nZqiPI is the source that gives, pinmqI :
pmZqI Ñ pnZqI defined by pi ˝ pinmqI “ inm ˝ qi for each i P I, by the universal
property of the product. Moreover, obviously SubGppnZ, !nZqIq “ tpmZqI :
m P nZu with pmZqI endowed with the dynamics defined by !pmZqI for each
m P nZ. Hence pnZ, ζqId ”T pnZ, !nZq.

2. αk “ ik ˝ εk where εk : Z Ñ kZ is defined by x ÞÑ kx and ik is the
inclusion map. By 1. above, pkZ, ρqId ”T pkZ, !kZq, where ρ : kZ Ñ kZ is
defined by kp ÞÑ nkp, and verification that εk and ik are morphisms in GrpId
and in GrpT from pZ, αnq to pkZ, ρq and from pkZ, !kZq to pZ, !Zq, respectively,
is straightforward.
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Remark 3.29. Every topos C is cartesian closed [5]. Thus for every object
A in C, the functor p´qA is a right adjoint to the functor ´ˆA. Therefore,
it preserves all limits that exist in C [2, 5].

Since Set is a topos and is complete [2, 5], it follows from Remark 3.29
that for any set Σ, the functor p´qΣ preserves all limits and, in particular,
arbitrary powers and pullbacks. Thus invoking subsection 2.1, Setp´qΣ has
arbitrary powers and they are created by the forgetful functor. This yields:

Example 3.30. Set C = Set, F “ p´qΣ1 and G “ p´qΣ0 where Σ1 “ t∅u
and Σ0 “ ∅; that is, for every set A, F pAq “ ∅ if A “ ∅, F pAq “ tfa : Σ1 Ñ

A : ∅ ÞÑ a, a P Au if A ‰ ∅ and GpAq “ t∅ Ñ Au. Denote by !A : A Ñ AΣ0

the unique map from A to t∅Ñ Au and let pA,αAq be the F -coalgebra with
αA “ id∅ if A “ ∅ and αApaq “ fa, for all a P A, otherwise. Then:

1. pA,αAqF ”G pA, !Aq.
2. Every map ϕ : AÑ A is a weak homomorphism from pA,αAq to pA, !Aq.

Proof. 1. If A “ ∅ then it is obvious. Otherwise, let I be a set. Since powers
in Setp´qΣ1 are created by the forgetful functor, we have pA,αAqI “ pAI , αIAq,
with αIA : AI Ñ pAIqΣ1 being the unique map given by the universal property
of the product in Set and being such that for all i P I, if pi : AI Ñ A denotes
the ith canonical projection of AI onto A, αA ˝pi “ pΣ1

i ˝α
I
A. Now pΣ1

i ˝α
I
A “

αA˝pi means that for all paiqiPI , ppΣ1
i ˝α

I
AqppaiqiPIq “ pαA˝piqppaiqiPIq; that is,

pi˝pα
I
AppaiqiPIqq “ αApaiq which amounts to saying that pi˝αIAppaiqiPIq “ fai

for all i P I; that is, pippαIAppaiqiPIqqp∅qq “ ai for all i P I. But this means that
pαIAppaiqiPIqqp∅q “ paiqiPI . Thus, αIAppaiqiPIq “ fpaiqiPI

so that αIA “ αAI .
We want to show that Subp´qΣ1 ppA

I , αAI qq “ Subp´qΣ0 ppA
I , !AI qq. Let S P

Subp´qΣ1 ppA
I , αAI qq. Then there exists an injective map µ : S � AI and a

dynamics σ : S Ñ SΣ1 such that µΣ1 ˝σ “ αAI ˝µ, where µΣ1 : SΣ1 Ñ pAIqΣ1

is defined by µΣ1 “ ∅Ñ pAIqΣ1 if S “ ∅ and µΣ1puq “ µ ˝ u, for all u P SΣ1 ,
otherwise. Obviously it holds !AI ˝µ “ µΣ0˝!S . Thus S P Subp´qΣ0 ppA

I , !AI qq,
where µΣ0 is the trivial bijection t∅Ñ Su Ñ t∅Ñ AIu. Conversely, assuming
rather that S P Subp´qΣ0 ppA

I , !AI qq with µ : S � AI the corresponding
injection, αS is a dynamics on S making µ an F -homomorphism from pS, αSq
to pAI , αAI q. Indeed, if S “ ∅, it is obvious. Otherwise, let s P S. We
have ppµΣ1 ˝αSqpsqqp∅q “ pµΣ1pαSpsqqqp∅q “ pµ˝ pαSpsqqqp∅q “ pµ˝ fsqp∅q “
µpfsp∅qq “ µpsq and ppαAI ˝ µqpsqqp∅q “ pαAI pµpsqqqp∅q “ fµpsqp∅q “ µpsq.
Hence µΣ1 ˝ αS “ αAI ˝ µ.

2. Let ϕ : A Ñ A be a map. Factorizing ϕ canonically as an epi fol-
lowed by a mono as ϕ “ ν ˝ π where π : A � ϕpAq and ν : ϕpAq � A
is the inclusion map, to verify that π : pA,αAq Ñ pϕpAq, αϕpAqq and
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ν : pϕpAq, !ϕpAqq Ñ pA, !Aq are F -homomorphism and G-homomorphism,
respectively, is straightforward. In addition by 1. above, pϕpAq, αϕpAqqF ”G
pϕpAq, !ϕpAqq.

Moreover, p´qΣ obviously preserves strong monos (resp. Set is strongly
complete and p´qΣ is a covarietor). Thus Corollary 3.13 (resp. 3.15) yields:
Example 3.31. If F “ tp´qΣk , k P Ku where K is a nonempty set, Σk is
a set for every k P K, then SetF is a category.

In fact, we have the following example where coalgebras considered are
automata which are examples of deterministic systems with input [14]:
Example 3.32. Set is a (strongly) complete topos in which epis are co-
equalizers of their kernel pairs and are closed under pullbacks. Moreover,
elements of the set of types F from Example 3.31 are simultaneously pull-
backs, arbitrary powers, strong monos and weakly kernels preserving functors
and are covarietors. Thus as far as coalgebras and (weak) homomorphisms
are concerned, Set and F satisfy assumptions in all the results from this
paper.

4. Conclusion
In our paper, we presented an extension of the concept of weak homomor-

phism between differently typed coalgebras to arbitrary categories endowed
with a suitable factorization system. We showed that many of the results
known so far for similarly typed coalgebras generalize to differently typed ones.
In particular, under some reasonable assumptions on the category and on the
set of its endofunctors, we showed that differently typed coalgebras and weak
homomorphisms between them form a category which admits a canonical
factorization structure for morphisms. Requiring that the base category
satisfies the Axiom of Choice would have helped simplify the statement as
well as the proof of most of the results we have obtained but this would have
considerably restricted their scopes.

Acknowledgment. The author thanks the referee for valuable sugges-
tions and comments.
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