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FREE MONADIC TARSKI AND MMI;-ALGEBRAS

Abstract. M M Is-algebras are a generalization of the monadic Tarski algebras as
defined by A. Monteiro and L. Iturrioz, and a particular case of the M M I, ;1-algebras
defined by A. Figallo. They can also be seen as monadic three-valued Lukasiewicz algebras
without a first element. By using this point of view, and the free monadic extensions,
we construct the free M M I3-algebras on a finite number of generators, and indicate the
coordinates of the generators. As a byproduct, we also obtain a construction of the free
monadic Tarski algebras.

1. Introduction

Monadic Tarski algebras were defined by A. Monteiro and L. Iturrioz in
[9, 10]. M MIs-algebras are a generalization of the monadic Tarski algebras,
and a particular case of the M M1, -algebras defined by A. Figallo in [4].
M M I3-algebras may also be regarded as monadic three-valued Lukasiewicz
algebras [11] without a first element.

The goal of this article is to present a new method for determining the
structure of free monadic Tarski and M M I3-algebras, and also their number
of elements. The result for monadic Tarski algebras is a byproduct of our work
on the M M I3-algebras. We proceed by first taking a look at three-valued
Lukasiewicz algebras and monadic three-valued fukasiewicz algebras, so we
begin by displaying these varieties of algebras and the relationships among
them. In Section 3, we outline our plan to obtain the free M M I3-algebras
using the free monadic extensions developed in [13], which we carry out in
following section. Finally, we show how other known results can be obtained
from ours. The method presented in this article is different from the one
used by A. Figallo, A. Suardiaz and A. Ziliani in [6].
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2. Preliminaries

Tarski algebras are a generalization of boolean algebras: if (4, A, v, —,0,1)
is a Boolean algebra and we define x — y = —x v y for all z,y € A, then
(A, —,1) is a Tarski algebra as defined below.

DEFINITION 2.1. An algebra (A4, —, 1) of type (2,0) is a Tarski algebra if:

M1) 1 > x ~ .

M2) z -z~ 1.

M3) 7 (y — 2) ~ (& = y) — (2 — 2).
M) (z —y) —y~(y—2) > 2

It is well known that if a Tarski algebra A has least element 0, then A is
a Boolean algebra, where the Boolean complement of a€ Ais —a=a — 0
and the infimum of the elements a and be Aisa A b= —(b—> —a).

One can consider an additional operation on Tarski algebras:

DEFINITION 2.2. [9] An algebra (A, —,V, 1) of type (2,1,0) is said to be
a monadic Tarski algebra if (A, —,1) is a Tarski algebra and:

Q1) V1 ~ 1.

Vr -z~ 1.

V((x — Vy) > Vy) ~ (Vo — Vy) — Vy.

V(iz - y) > (Yo - Vy) ~ 1.

Three-valued Lukasiewicz algebras, on the other hand, are one of the

many generalizations of boolean algebras. In this case, an intermediate truth
value between 0 and 1 is considered.

Q2)
Q3)
Q4)

DEFINITION 2.3. [8] A three-valued Lukasiewicz algebra (from now on
Ls-algebra) is an algebra (A, A,v,~,V,1) of type (2,2,1,1,0) where
(A, A, v, 1) is a distributive lattice with greatest element 1 and satisfying:

Ll) ~~z~ .

L2) ~(zAy)r~aVv ~9.
L3) ~zv Vz~1.

L4) ~z AV ~rz A ~2.

L5) V(z Ay) ~ Vz A Vy.

As usual we set 0 =~ 1, and this is the least element of the lattice A.
Defining Az = ~ V ~ x, we get a dual operator satisfying: ~ x A Az ~ 0,
~zvAzr ~xv~zand A(xvy) ~ Az v Ay. We denote by T the three-valued
Lukasiewicz algebra {0,¢,1}, where 0 <c <1, ~0=1, ~¢c=¢, VO =0,
Ve = V1 =1 and B is the subalgebra formed by the elements 0 and 1.

DEFINITION 2.4. [11] A monadic three-valued Lukasiewicz algebra (from
now on M Ls-algebra) is an Lg algebra with an additional unary operator 3
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satisfying the equations: 30 ~ 0, z ~ z AJz, I(z AJy) ~ Jx Ay, VIz ~ IV
and Adx ~ JAx.

It follows immediately that 31 ~ 1 and 3 (x v y) ~ 32z v Iy. Furthermore,
defining V& = ~ 3 ~ z, the following equations are satisfied as well: V1 ~ 1,

r~zxvVe, V(xvVy ~VorvVy AVz ~VAz and VVz ~ VVz.

DEFINITION 2.5. [4] An MIs-algebra is an algebra (A4, —, 01,09, 1) of type
(2,1,1,0) satisfying:

M) 1>~z

M2) (z —y)—> ((y —>2) = (@—>2)~ 1
M3) (z—y) >y~ (y—z) >

M4) ((z —»y) = (y—2) > (y—>2)~ 1

)
)
)
)

M6) o1z >y ~x — (z > y).

M7) (ojz — (gjz = y)) = (cjz —y)~ 1, j=1,2.
) oj(orr — opy) ~ o — opy, 1< 4,k <2
) (012 — o1y) — (022 — o2y) = (z —> y))
) o2z — ((012 — o1(z — y)) — o1(z — y))
) o1(x > y) — (ojz > ojy) ~ 1,5 =1,2.

1
1.

QW

M I3 algebras are to L3 algebras as Tarski algebras are to boolean algebras.
In this context, the following definition of M M I3-algebras is the analogue to
Monadic Tarski algebras.

DEFINITION 2.6. 6] An M MIs-algebra is an M Is-algebra with an addi-
tional operator V satisfying:

M12) Vz — = ~ 1.

M13) Y((z — Vy) — Vy) ~ (Vo — Vy) — Vy.
M14) Y(z - y) — (Vo — Vy) ~ 1.

M15) V(Vx — Vy) ~ Vo — Vy.

M16) Yoz ~ o;Vz, j = 1,2.

Given elements a, b in an M M I3-algebra A, we will denote as usual a < b
if and only if @ — b = 1. It is well known that A is an upper semilattice
with 1 as its greatest element and the join of two elements a and b given by
avb=(a—0b) —b.

The relationships between these classes of algebras was established in [6]
and can be summarized as follows:

If A is an M I3-algebra with least element 0, then defining ~ z =z — 0,
xAy=~(~zv ~y)and Vz = o9z, it turns out that (4, A, v,~,V, 1) is
an Ls-algebra.
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On the other hand, if A is an Ls-algebra, letting 10 =~ V ~ x, oox =
Vzand 2 - y = (V ~ 2z vy A (Vyv ~ ), we get an MIs-algebra
(A,*),O'l,O-Q, 1)

Given an M Ls-algebra A and defining o1z =~ V ~ z,000 = Va, Va =
~d~zandz —->y=(V~zvy) A (Vyv ~x), we get an M M I3-algebra
(A, —,01,09,V,1).

An MM Iz-algebra A that has a least element 0, can be turned into
an M Ls-algebra (A, A, v,~,V,3,1) by definig ~ ¢ = 2z — 0, Va = oz,
dJe=~V~zandzAry=~(~2zVv ~y).

Ls
MI; MLs
k %
MMI;

We will denote by Fy(n) the free algebra in the variety V over a finite
number n of generators.

Our main goal is to determine the structure of Furasr,(n). In [6] it
was proven that Fisarr,(n) can be obtained from Fisr,,(n), so we will first
construct Fyrr,(n) with an eye on how to calculate the coordinates of the
generators. We proceed by first constructing Fr,(n) and then its free monadic
extension [13|, FME(Fp,(n)), which turns out to be Fysr,(n). In this way,
we obtain a formula for the number of elements in Fiysr,(n). As a byproduct,
we obtain, by a different method, the same formula found in [12]| for the
number of elements in the free monadic Tarski algebra with n generators.

3. Fr.(n) and its free monadic extension
3.1. Free Ls-algebras
To determine Fr.(n), we use the following theorem:

THEOREM 3.1. [3| Let A be an algebra; then the free algebra in the variety
generated by A, with a set of generators of cardinality o, is obtained as
follows: Let I be a set of cardinal o and for each i € Idefine a mapping
gi: Al > A by

9i((a;)jer) = as.
Then the subalgebra of AN generated by the elements g;, i € I, is the free
algebra on the variety generated by A, on those elements.

Roberto Cignoli, proved in [2] that every Ls-algebra is a subdirect product
of a family of subalgebras of the algebra T, that is, either T or B. Therefore,
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we can apply Cohn’s theorem, obtaining the free Ls-algebra as the subalgebra
of TT" generated by the elements g1, ..., g, € T™

We see the algebra TT" as a product [ [~ T, so that each element has
3™ coordinates.

EXAMPLE 3.1. For n = 2, we write in a column the 3% = 9 elements of T?
and in the following columns the values of g; and gs:

| gi(z) | g2(x)

0,001 0 0
(0,¢) 0 c
0,1 0 1
(c,0) c 0
(¢,c) c c
(c,1) c 1
(1,0) | 1 0
(1,¢) 1

1,1) | 1 1

It is easy to see that the subalgebra of TT generated by these two
elements is isomorphic to B x T x B x T2 x B x T x B, since the element ¢
cannot be obtained in T by doing operations on 0 and 1, so in the axes of
the product where the functions g; only take the value 0 or 1, the generated
subalgebra is isomorphic to B.

For the free Ls-algebra with n generators, it is easy to calculate how
many axes are isomorphic to B (that is, 2" of them) and the rest of them
are isomorphic to T so Fr,(n) = B?" x T3" 2",

3.2. Free monadic extensions

DEFINITION 3.1. An M Ls-algebra L is a free monadic extension of a Ls-
algebra A (noted L = FME;,(A)) if:

L;) A is a subalgebra of L,
Ly) L is the monadic subalgebra generated by A,
L3) every homomorphism of Lz-algebras g from A to an M Ls-algebra C' can

be extended to a (necessarily unique) monadic homomorphism f from L
to C.

Now we briefly review the construction of free monadic extensions of
finite Lz-algebras given in [13] and that was based on P. Halmos’ method for
boolean algebras presented in |7].



514 R. V. Entizne, L. F. Monteiro, S. M. Savini, I. D. Viglizzo

DEFINITION 3.2. An hemimorphism is a map from an Ls-algebra A to an
Ls-algebra A’ such that for all z,y € A:

h1) h(0) =0, ha) h(z vy) = h(z) v h(y),
hs) h(Vz) = Vh(z),  hg) h(Az) = Ah(z),
hs) h(1) = 1.

DEFINITION 3.3. Given algebras A, A’, we say that an homomorphism y
precedes the hemimorphism v if for all z € A, y(z) < v(x). We denote this
with y < v.

LEMMA 3.1. (13| In a finite, non trivial Ls-algebra A, every hemimorphism
from A to T is the join of all the homomorphisms preceding it.

Starting with a finite Lz-algebra A = B/ x T*, we build FME,(A) as
follows.

Note that the boolean elements form a boolean algebra, which we denote by
B(A) and in this case is isomorphic to B/**. Each of the atoms of this boolean
algebra determine an homomorphism from A to T. Let Y = Homp, (A, T),
which by the previous consideration has j + k elements. Let V be the set
of all hemimorphisms from A to T. By Lemma 3.1, each hemimorphism is
the join of all the homomorphisms preceding it, so we can calculate that
V has 27t% — 1 elements and if X = {(y,v) : y € Y,v e V,y < v} then
IX] = (j + k)2++,

Let L be the Ls-algebra:

L= ]] vA).
(y,v)eX
We let Xp = {(y,v) € X : v(A) = B} and X1 = X\Xp. A is immersed in
L through the monomorphism h that for each ¢ € A and each coordinate
(y,v) € X yields the element

ha(y,v) = y(a).
The quantifier 3 is defined for all p € L through the formula
Iy, v) = \/{p(u,v) :ueY,u <o},

In particular, for a € A, using Lemma 3.1, we get

(1) Jha(y,v) = \/(ha)(u,v) = \/ u(a) = v(a).

u<v u<v
Then L = FME;,(h(A)) is isomorphic to

B2« mUtk) 2T 2t
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In particular, if we take A to be Fp,(n), which is isomorphic to
B2" x T3"~2" we get that L constructed as above is isomorphic to

2" 4n—1 n.o(3"—-1)_o(2"+n—1
B2( ) % T3 2( ) 9o )'

This is then FME,(Fr,(n)), which turns out to be Fyr,(n), and is
generated by the elements h(g1),...,h(gn), where gi,...,g, are the free
generators of Fp,,(n).

EXAMPLE 3.2. When n = 1, we have a single generator g = (0,¢,1) for
Fr.(1), which is isomorphic to B x T x B. We can describe the set X as
follows: Let Y = {y1,y2,ys}, where each y; is the 0 homomorphism having
as kernel the principal filter generated by one of the atoms of B(A). We can
build the set V' of hemimorphisms as joins of homomorphisms:

Vo={y1,y2,¥3,v1 = Y1 V y2,02 = Y1 V ¥3,U3 = Y2 V Y3,V4 = Y1 V Y2 V Y3}.
The elements of X and the values of hg(x), for each x € X, are in the
following table:

x| hig)(z)
(y1,91) 0
(y1,v1) 0
(y1,v2) 0
(y1,v4) 0
(2, v2) c
(y2,v1) c
(y2,v3) c
(y2,v4) ¢
(y3,93) 1
(y3,v2) 1
(y3,v3) 1
( 1

Y3, V)
So we have the coordinates of h(g) in L = B x T x B x T® x B% x T2

4. Free MMI3-algebras

In [6], it is proved that the free M M I3-algebras with n generators
Farars(n) can be obtained from Fiyrrg(n). If ai,as,...,ay, are a set of
free generators of Fysr,(n) then

(2) Fyr(n U [AVa;).
=1
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Here as usual, [y) denotes the set of all the elements x of the algebra such
that y < x.

We are using as generators for Fysr,(n) the images under h of the gen-
erators of I, (n) that we described in Section 3.1. Using equation (1), we
compute AVhg;(y,v) = A ~3 ~ hg;(y,v) = A ~v(~ g;).

0, iff y*(~ gi) =0, for all y* <w
v(~gi) =< 1, iff y*(~ g;) = 1, for some y* <wv

¢, otherwise.

0, iff y*(g;) =1, for all y* <w
v(~gi) =< 1, iff y*(g;) = 0, for some y* <wv

¢, otherwise.

1, iff y*(g;) =1, for all y* <w

~v(~gi) =10, iff y*(g;) = 0, for some y* < v
¢, otherwise.

{ 1, iff y*(¢g;) =1, forall y* <w

A~v(~g) =
(~9) 0, otherwise.

EXAMPLE 4.1. Coming back to Fiysr,(1) from Example 3.2, the following
table shows the value of AVhg and intermediate computation steps:

A

2
S
=

2
S

) Jv(~9) | ~v

— o = o

>
HHI—‘HQGQGOOOOG
o

= 0
SO 0 O B O 0O O 60 O o o o

{
O OO0 R OO0 o0 o0 o0 o o ol
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Next, we want to compute the number of elements in [AVhg;). Since this
is an increasing subset of an M M I3-algebra, we know it is of the form 2° - 3¢.
Since the coordinates of AVhg; are all 0 or 1, b is the number of coordinates
equal to 0 on boolean axes and ¢ on the three-valued ones. To count those
null coordinates, we consider the complementary sets

RY = {(y,v) € X 1 y*(g;) = 1 for all y* < v}.

To calculate the cardinal of R®), we count the number of homomorphisms
y € Y such that y(g;) = 1. Since there are n generators, there are 3"
homomorphisms, from which a third, that is 377!, are 1 when valued at g;.
By Lemma 3.1, to count the hemimorphisms in these conditions, we take all
the ways we can choose j homomorphisms from among those 3"~ !, so

; 5 3n—1 -1
‘R(l)‘ — Z < ‘ )]: gn—1 L93" 1
=N

Notice that the value we obtained here does not depend on the index 1,
so |[RW| = |RY)| for all 1 < 4,5 < n.

To discriminate between the boolean axes and the three-valued ones, we
define R](;) = R ~ X and R,(IZ‘) = R(i)\Rg). From the 37~1.23" ' ~1 pairs in
R(i), how many are in Xg? Fisr,(n) has 3" axes, from which 2" are boolean
axes and in 2"~ ! of them the coordinates of g; are 1, so reasoning as above

we obtain
o\ (2 :
RW| = ( .)_j_22"+n—2
-y (%

j=1

and therefore
|R(i)| —gn—1,93" =1 92" !4n—2
T = .

From the above calculations, we get:
(3) [[AVhg;)| = olXB|-IR| . 3lXr|-|RY|

Again, the values obtained for |Rg)| and \RSE)\, do not depend on the
index 1.
By the inclusion-exclusion principle, we now calculate
n

(4) Utavag)| = S0t 3 |)[avhg,,)

i=1 i=1 1<j1<...<5;<n s=1

Using the remark following Example 4.1, we calculate

\avhg,| = [\ avhg,
s=1 s=1

— 2b(n1i7j1r“7ji) . 3t(nai7j11~~,ji),
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where for each 1 <i < n,

)

7
b, 1, i) = 1X| = || RE”
=1

i
tnsi i, 0i) = Xl = | RS
s=1

Using the inclusion-exclusion principle,

i i h
s=1 h=1 1<ji<...<jp<n s=1
So we need to compute | ﬂ?zl R} 'S)|. It is easy to see that
- (Js)
(N RE” = {(y,v) e Xp: forall y* < v, y*(g;,) =+ =y*(g;,) = 1}.
s=1
For each h and ji,...,jp, the number of homomorphisms y* satisfying the

condition is 277", and following the previous reasoning, the number of
clements in (-, R](_)j,s) is
'U(n, h) _ 277,7}1 . 22”7]171 — 22nih+’n7h71,

and again this number is independent from the chosen ji, j2, ..., jn, SO we
may as well take the first h indices and calculate:

‘ORS) 3 h+1< )mR
s=1 h=1 ‘
b(n, i) — 22" n-1 _ Z (1)t <h>v(n, h) — i(—l)h<2>v(n, h).

h=1

)

In a similar way, we compute | ﬂ?;l R¥)| = ﬂ;‘ @ - ﬂ . For
this we first note that

h 3n—h gn—h
NrY|-Y ( S ) =g 93 .
j=1 s=1

Now using again the inclusion-exclusion principle,

‘OREE’) _ s+1<>‘ﬂR(J
s=1
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and since

‘ﬂR])}—uns)—v(n 5) =gnms. 23 Tl _gn=s 92"l
7=1

we get that

i

Z s+1<> u(n, s) — v(n, s)).

s=1

o

Since we also have | Xt| = |X| — |Xg| = 3"-23"~1 —22"+n=1 = (n,0) —
v(n,0), we can write:

Hn, i) — i(—l)s(Z)(u(ms) o, $)).

S
s=0
Finally, we can put all together:
n

Evarsy ()] = | J[AVRg) | = Y- Y \ﬂ [A¥hg;.)

i=1 i=1 1<j1<...<5;<n s=1

_ Z z+1<”> 9b(n.i) . 3H(nsi)

where

and
t(n l) _ Z (_1)h <Z>3nh . 23"_h71 _ 22"_h+n7h71.
’ h
h=0
EXAMPLE 4.2. For n = 1, we just use the coordinates of AVhg that we
calculated in Example 4.1. Fysp,(1) is isomorphic to B* x T®, and AVhg is
1 only at one of its boolean axes. Therefore |Fysarr,(1)] = 23 - 38
For n = 2 we calculate |[AVhg1) N [AVhga)| = |[AVhg1 v AVhgs)|.
(AVhgy v AVhge)(y,v) = 1 iff y*(g1) = 1 or y*(g2) = 1 for all y* < v.
This is, iff (y,v) e RD u R®).
|IRMW U RA)| = |RW| 4+ |RP| — |RM ~ RO,
Since there is only one homomorphism y* such that y*(g1) = y*(g2) = 1,
we obtain |R™M) n R®)| = 1.
Therefore,

IRD U RP|=2.3.25"1 —1 =23

Using a similar reasoning, ]Rg) N Rg)] = 1.
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Then

1) p2) 1) p(2)
|FMM13 2)=2- olXB|-|RB| . glXT|-|Rr| _ 9|XB|-|Rg VRE’| , g|XT|-|Ry vhiy |’

where [Xg| = 2% 2% 71 = 32; |Xq| = |X| - [Xp| = 32 2% 1 —22. 271 =
2°.(9-2° —1) = 2272 |Rp| =2% '*22 =22 = 4; [Ry| =321 28 71—
222—1+272 —3.4_4—8

The unions are computed as follows: |R](31) ]— |R ]—i—\R |—\R§31)
RO =4+4-1=7;|RP URY| = |[RO UR!( |—|RB RY)| = 23-7 =16,

so replacing with the corresponding figures, we finally get:

|FMMI (2)| =9. 232—4 . 32272—8 _ 232—7 . 32272—16 =9. 228 X 32264 _ 225 . 32256.
3

5. Conclusions

We have presented a new method to determine the structure and number
of elements of the free M M I3-algebras with a finite number of generators.
This method is interesting because it provides with easier formulas than those
presented in [6] (those formulas can also be seen in the abstract published
in [1]), as well as an explicit description of the generators and minimal
elements of those algebras.

As a byproduct of the construction presented here, one may also obtain
the structure and generators of the free monadic Tarski algebras Fy;r(n),
using a different method from those used in [5] and [12]. In order to do this,
one starts with the free boolean algebra, which can be obtained using Cohn’s
theorem and then calculate its free monadic extension just as in |7]. The set
X is then empty and the calculations of the sets X and Rg) stand, so we
get as in [12]:

n

[Far(n 2 Z+1< >22h o~ ()22 e

We hope to extend some of these results to other varieties of interest.
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