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FREE MONADIC TARSKI AND MMI3-ALGEBRAS

Abstract. MMI3-algebras are a generalization of the monadic Tarski algebras as
defined by A. Monteiro and L. Iturrioz, and a particular case of the MMIn`1-algebras
defined by A. Figallo. They can also be seen as monadic three-valued Łukasiewicz algebras
without a first element. By using this point of view, and the free monadic extensions,
we construct the free MMI3-algebras on a finite number of generators, and indicate the
coordinates of the generators. As a byproduct, we also obtain a construction of the free
monadic Tarski algebras.

1. Introduction
Monadic Tarski algebras were defined by A. Monteiro and L. Iturrioz in

[9, 10]. MMI3-algebras are a generalization of the monadic Tarski algebras,
and a particular case of the MMIn`1-algebras defined by A. Figallo in [4].
MMI3-algebras may also be regarded as monadic three-valued Łukasiewicz
algebras [11] without a first element.

The goal of this article is to present a new method for determining the
structure of free monadic Tarski and MMI3-algebras, and also their number
of elements. The result for monadic Tarski algebras is a byproduct of our work
on the MMI3-algebras. We proceed by first taking a look at three-valued
Łukasiewicz algebras and monadic three-valued Łukasiewicz algebras, so we
begin by displaying these varieties of algebras and the relationships among
them. In Section 3, we outline our plan to obtain the free MMI3-algebras
using the free monadic extensions developed in [13], which we carry out in
following section. Finally, we show how other known results can be obtained
from ours. The method presented in this article is different from the one
used by A. Figallo, A. Suardíaz and A. Ziliani in [6].
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2. Preliminaries
Tarski algebras are a generalization of boolean algebras: if pA,^,_,´, 0, 1q

is a Boolean algebra and we define x Ñ y “ ´x _ y for all x, y P A, then
pA,Ñ, 1q is a Tarski algebra as defined below.

Definition 2.1. An algebra pA,Ñ, 1q of type p2, 0q is a Tarski algebra if:

M1) 1 Ñ x « x.
M2) xÑ x « 1.
M3) xÑ py Ñ zq « pxÑ yq Ñ pxÑ zq.
M4) pxÑ yq Ñ y « py Ñ xq Ñ x.

It is well known that if a Tarski algebra A has least element 0, then A is
a Boolean algebra, where the Boolean complement of a P A is ´a “ aÑ 0
and the infimum of the elements a and b P A is a^ b “ ´pbÑ ´aq.

One can consider an additional operation on Tarski algebras:

Definition 2.2. [9] An algebra pA,Ñ,@, 1q of type p2, 1, 0q is said to be
a monadic Tarski algebra if pA,Ñ, 1q is a Tarski algebra and:

Q1) @1 « 1.
Q2) @xÑ x « 1.
Q3) @ppxÑ @yq Ñ @yq « p@xÑ @yq Ñ @y.
Q4) @pxÑ yq Ñ p@xÑ @yq « 1.

Three-valued Łukasiewicz algebras, on the other hand, are one of the
many generalizations of boolean algebras. In this case, an intermediate truth
value between 0 and 1 is considered.

Definition 2.3. [8] A three-valued Łukasiewicz algebra (from now on
L3-algebra) is an algebra pA,^,_,„,∇, 1q of type p2, 2, 1, 1, 0q where
pA,^,_, 1q is a distributive lattice with greatest element 1 and satisfying:

L1) „„ x « x.
L2) „ px^ yq «„ x_ „ y.
L3) „ x_∇x « 1.
L4) „ x^∇x « x^ „ x.
L5) ∇px^ yq « ∇x^∇y.

As usual we set 0 “„ 1, and this is the least element of the lattice A.
Defining ∆x “ „ ∇ „ x, we get a dual operator satisfying: „ x^∆x « 0,
„ x_∆x « x_„x and ∆px_yq « ∆x_∆y.We denote by T the three-valued
Łukasiewicz algebra t0, c, 1u, where 0 ă c ă 1, „ 0 “ 1, „ c “ c, ∇0 “ 0,
∇c “ ∇1 “ 1 and B is the subalgebra formed by the elements 0 and 1.

Definition 2.4. [11] A monadic three-valued Łukasiewicz algebra (from
now on ML3-algebra) is an L3 algebra with an additional unary operator D
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satisfying the equations: D 0 « 0, x « x^Dx, Dpx^Dyq « Dx^Dy, ∇Dx « D∇x
and ∆Dx « D∆x.

It follows immediately that D 1 « 1 and D px_yq « Dx_D y. Furthermore,
defining @x “„ D „ x, the following equations are satisfied as well: @ 1 « 1,
x « x_ @x, @ px_ @ yq « @x_ @ y, ∆@x « @∆x and ∇@x « @∇x.

Definition 2.5. [4] An MI3-algebra is an algebra pA,Ñ, σ1, σ2, 1q of type
p2, 1, 1, 0q satisfying:

M1) 1 Ñ x « x.
M2) pxÑ yq Ñ ppy Ñ zq Ñ pxÑ zqq « 1.
M3) pxÑ yq Ñ y « py Ñ xq Ñ x.
M4) ppxÑ yq Ñ py Ñ xqq Ñ py Ñ xq « 1.
M5) pxÑ pxÑ yqq Ñ x « x.
M6) σ1xÑ y « xÑ pxÑ yq.
M7) pσjxÑ pσjxÑ yqq Ñ pσjxÑ yq « 1, j “ 1, 2.
M8) σjpσkxÑ σkyq « σkxÑ σky, 1 ≤ j, k ≤ 2.
M9) pσ1xÑ σ1yq Ñ ppσ2xÑ σ2yq Ñ pxÑ yqq « 1.

M10) σ2xÑ ppσ1xÑ σ1pxÑ yqq Ñ σ1pxÑ yqq « 1.
M11) σ1pxÑ yq Ñ pσjxÑ σjyq « 1, j “ 1, 2.

MI3 algebras are to L3 algebras as Tarski algebras are to boolean algebras.
In this context, the following definition of MMI3-algebras is the analogue to
Monadic Tarski algebras.

Definition 2.6. [6] An MMI3-algebra is an MI3-algebra with an addi-
tional operator @ satisfying:

M12) @xÑ x « 1.
M13) @ppxÑ @yq Ñ @yq « p@xÑ @yq Ñ @y.
M14) @pxÑ yq Ñ p@xÑ @yq « 1.
M15) @p@xÑ @yq « @xÑ @y.
M16) @σjx « σj@x, j “ 1, 2.

Given elements a, b in an MMI3-algebra A, we will denote as usual a ≤ b
if and only if a Ñ b “ 1. It is well known that A is an upper semilattice
with 1 as its greatest element and the join of two elements a and b given by
a_ b “ paÑ bq Ñ b.

The relationships between these classes of algebras was established in [6]
and can be summarized as follows:

If A is an MI3-algebra with least element 0, then defining „ x “ xÑ 0,
x^ y “ „p„ x_ „ yq and ∇x “ σ2x, it turns out that pA,^,_,„,∇, 1q is
an L3-algebra.
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On the other hand, if A is an L3-algebra, letting σ1x “„ ∇ „ x, σ2x “
∇x and x Ñ y “ p∇ „ x _ yq ^ p∇y_ „ xq, we get an MI3-algebra
pA,Ñ, σ1, σ2, 1q.

Given an ML3-algebra A and defining σ1x “„ ∇ „ x,σ2x “ ∇x, @x “
„ D „ x and xÑ y “ p∇ „ x_ yq ^ p∇y_ „ xq, we get an MMI3-algebra
pA,Ñ, σ1, σ2,@, 1q.

An MMI3-algebra A that has a least element 0, can be turned into
an ML3-algebra pA,^,_,„,∇, D, 1q by definig „ x “ x Ñ 0, ∇x “ σ2x,
Dx “„ @ „ x and x^ y “„ p„ x_ „ yq.
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We will denote by FV pnq the free algebra in the variety V over a finite
number n of generators.

Our main goal is to determine the structure of FMMI3pnq. In [6] it
was proven that FMMI3pnq can be obtained from FML3pnq, so we will first
construct FML3pnq with an eye on how to calculate the coordinates of the
generators. We proceed by first constructing FL3pnq and then its free monadic
extension [13], FMEpFL3pnqq, which turns out to be FML3pnq. In this way,
we obtain a formula for the number of elements in FML3pnq. As a byproduct,
we obtain, by a different method, the same formula found in [12] for the
number of elements in the free monadic Tarski algebra with n generators.

3. FL3pnq and its free monadic extension
3.1. Free L3-algebras

To determine FL3pnq, we use the following theorem:

Theorem 3.1. [3] Let A be an algebra; then the free algebra in the variety
generated by A, with a set of generators of cardinality α, is obtained as
follows: Let I be a set of cardinal α and for each i P Idefine a mapping
gi : AI Ñ A by

gippajqjPIq “ ai.

Then the subalgebra of AAI generated by the elements gi, i P I, is the free
algebra on the variety generated by A, on those elements.

Roberto Cignoli, proved in [2] that every L3-algebra is a subdirect product
of a family of subalgebras of the algebra T, that is, either T or B. Therefore,
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we can apply Cohn’s theorem, obtaining the free L3-algebra as the subalgebra
of TTn generated by the elements g1, . . . , gn P Tn.

We see the algebra TTn as a product
ś

Tn T, so that each element has
3n coordinates.

Example 3.1. For n “ 2, we write in a column the 32 “ 9 elements of T2

and in the following columns the values of g1 and g2:

x g1pxq g2pxq

p0, 0q 0 0

p0, cq 0 c

p0, 1q 0 1

pc, 0q c 0

pc, cq c c

pc, 1q c 1

p1, 0q 1 0

p1, cq 1 c

p1, 1q 1 1

It is easy to see that the subalgebra of TT2 generated by these two
elements is isomorphic to BˆTˆBˆT3 ˆBˆTˆB, since the element c
cannot be obtained in T by doing operations on 0 and 1, so in the axes of
the product where the functions gi only take the value 0 or 1, the generated
subalgebra is isomorphic to B.

For the free L3-algebra with n generators, it is easy to calculate how
many axes are isomorphic to B (that is, 2n of them) and the rest of them
are isomorphic to T so FL3pnq “ B2n ˆT3n´2n .

3.2. Free monadic extensions

Definition 3.1. An ML3-algebra L is a free monadic extension of a L3-
algebra A (noted L “ FMEL3pAq) if:

L1) A is a subalgebra of L,
L2) L is the monadic subalgebra generated by A,
L3) every homomorphism of L3-algebras g from A to an ML3-algebra C can

be extended to a (necessarily unique) monadic homomorphism f from L
to C.

Now we briefly review the construction of free monadic extensions of
finite L3-algebras given in [13] and that was based on P. Halmos’ method for
boolean algebras presented in [7].
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Definition 3.2. An hemimorphism is a map from an L3-algebra A to an
L3-algebra A1 such that for all x, y P A:

h1q hp0q “ 0, h2q hpx_ yq “ hpxq _ hpyq,
h3q hp∇xq “ ∇hpxq, h4q hp∆xq “ ∆hpxq,
h5q hp1q “ 1.

Definition 3.3. Given algebras A,A1, we say that an homomorphism y
precedes the hemimorphism v if for all x P A, ypxq ≤ vpxq. We denote this
with y ≤ v.

Lemma 3.1. [13] In a finite, non trivial L3-algebra A, every hemimorphism
from A to T is the join of all the homomorphisms preceding it.

Starting with a finite L3-algebra A “ Bj ˆTk, we build FMEL3pAq as
follows.

Note that the boolean elements form a boolean algebra, which we denote by
BpAq and in this case is isomorphic toBj`k. Each of the atoms of this boolean
algebra determine an homomorphism from A to T. Let Y “ HomL3pA,Tq,
which by the previous consideration has j ` k elements. Let V be the set
of all hemimorphisms from A to T. By Lemma 3.1, each hemimorphism is
the join of all the homomorphisms preceding it, so we can calculate that
V has 2j`k ´ 1 elements and if X “ tpy, vq : y P Y, v P V, y ≤ vu then
|X| “ pj ` kq2j`k´1.

Let L be the L3-algebra:

L “
ź

py,vqPX

vpAq.

We let XB “ tpy, vq P X : vpAq “ Bu and XT “ XzXB. A is immersed in
L through the monomorphism h that for each a P A and each coordinate
py, vq P X yields the element

hapy, vq “ ypaq.

The quantifier D is defined for all p P L through the formula

Dppy, vq “
ł

tppu, vq : u P Y, u ≤ vu.

In particular, for a P A, using Lemma 3.1, we get

(1) Dhapy, vq “
ł

u≤v

phaqpu, vq “
ł

u≤v

upaq “ vpaq.

Then L “ FMEL3phpAqq is isomorphic to

Bj¨2j´1
ˆTpj`kq¨2

j`k´1´j¨2j´1
.
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In particular, if we take A to be FL3pnq, which is isomorphic to
B2n ˆT3n´2n , we get that L constructed as above is isomorphic to

B2p2
n`n´1q

ˆT3n¨2p3
n´1q´2p2

n`n´1q
.

This is then FMEL3pFL3pnqq, which turns out to be FML3pnq, and is
generated by the elements hpg1q, . . . , hpgnq, where g1, . . . , gn are the free
generators of FL3pnq.

Example 3.2. When n “ 1, we have a single generator g “ p0, c, 1q for
FL3p1q, which is isomorphic to BˆTˆB. We can describe the set X as
follows: Let Y “ ty1, y2, y3u, where each yi is the 0 homomorphism having
as kernel the principal filter generated by one of the atoms of BpAq. We can
build the set V of hemimorphisms as joins of homomorphisms:

V “ ty1, y2, y3, v1 “ y1 _ y2, v2 “ y1 _ y3, v3 “ y2 _ y3, v4 “ y1 _ y2 _ y3u.

The elements of X and the values of hgpxq, for each x P X, are in the
following table:

x hpgqpxq

py1, y1q 0

py1, v1q 0

py1, v2q 0

py1, v4q 0

py2, y2q c

py2, v1q c

py2, v3q c

py2, v4q c

py3, y3q 1

py3, v2q 1

py3, v3q 1

py3, v4q 1

So we have the coordinates of hpgq in L “ BˆTˆBˆT5 ˆB2 ˆT2.

4. Free MMI3-algebras
In [6], it is proved that the free MMI3-algebras with n generators

FMMI3pnq can be obtained from FML3pnq. If a1, a2, . . . , an, are a set of
free generators of FML3pnq then

(2) FMMI3pnq “
n
ď

i“1

r∆@aiq.
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Here as usual, ryq denotes the set of all the elements x of the algebra such
that y ≤ x.

We are using as generators for FML3pnq the images under h of the gen-
erators of FL3pnq that we described in Section 3.1. Using equation (1), we
compute ∆@hgipy, vq “ ∆ „ D „ hgipy, vq “ ∆ „ vp„ giq.

vp„ giq “

$

’

&

’

%

0, iff y˚p„ giq “ 0, for all y˚ ≤ v
1, iff y˚p„ giq “ 1, for some y˚ ≤ v
c, otherwise.

vp„ giq “

$

’

&

’

%

0, iff y˚pgiq “ 1, for all y˚ ≤ v
1, iff y˚pgiq “ 0, for some y˚ ≤ v
c, otherwise.

„ vp„ giq “

$

’

&

’

%

1, iff y˚pgiq “ 1, for all y˚ ≤ v
0, iff y˚pgiq “ 0, for some y˚ ≤ v
c, otherwise.

∆ „ vp„ giq “

#

1, iff y˚pgiq “ 1, for all y˚ ≤ v
0, otherwise.

Example 4.1. Coming back to FML3p1q from Example 3.2, the following
table shows the value of ∆@hg and intermediate computation steps:

x hpgq vp„ gq „ vp„ gq ∆ „ vp„ gq

py1, y1q 0 1 0 0

py1, v1q 0 1 0 0

py1, v2q 0 1 0 0

py1, v4q 0 1 0 0

py2, y2q c c c 0

py2, v1q c 1 0 0

py2, v3q c c c 0

py2, v4q c 1 0 0

py3, y3q 1 0 1 1

py3, v2q 1 1 0 0

py3, v3q 1 c c 0

py3, v4q 1 1 0 0



Free monadic Tarski and MMI3-algebras 517

Next, we want to compute the number of elements in r∆@hgiq. Since this
is an increasing subset of an MMI3-algebra, we know it is of the form 2b ¨ 3t.
Since the coordinates of ∆@hgi are all 0 or 1, b is the number of coordinates
equal to 0 on boolean axes and t on the three-valued ones. To count those
null coordinates, we consider the complementary sets

Rpiq “ tpy, vq P X : y˚pgiq “ 1 for all y˚ ≤ vu.
To calculate the cardinal of Rpiq, we count the number of homomorphisms

y P Y such that ypgiq “ 1. Since there are n generators, there are 3n

homomorphisms, from which a third, that is 3n´1, are 1 when valued at gi.
By Lemma 3.1, to count the hemimorphisms in these conditions, we take all
the ways we can choose j homomorphisms from among those 3n´1, so

|Rpiq| “
3n´1
ÿ

j“1

ˆ

3n´1

j

˙

j “ 3n´1 ¨ 23
n´1´1.

Notice that the value we obtained here does not depend on the index i,
so |Rpiq| “ |Rpjq| for all 1 ≤ i, j ≤ n.

To discriminate between the boolean axes and the three-valued ones, we
define RpiqB “ RpiqXXB and RpiqT “ RpiqzR

piq
B . From the 3n´1 ¨23

n´1´1 pairs in
Rpiq, how many are in XB? FML3pnq has 3n axes, from which 2n are boolean
axes and in 2n´1 of them the coordinates of gi are 1, so reasoning as above
we obtain

|R
piq
B | “

2n´1
ÿ

j“1

ˆ

2n´1

j

˙

¨ j “ 22
n´1`n´2

and therefore
|R
piq
T | “ 3n´1 ¨ 23

n´1´1 ´ 22
n´1`n´2.

From the above calculations, we get:

(3) |r∆@hgiq| “ 2|XB|´|R
piq
B | ¨ 3|XT|´|R

piq
T |.

Again, the values obtained for |RpiqB | and |R
piq
T |, do not depend on the

index i.
By the inclusion-exclusion principle, we now calculate

(4)
ˇ

ˇ

ˇ

n
ď

i“1

r∆@hgiq
ˇ

ˇ

ˇ
“

n
ÿ

i“1

p´1qi`1
ÿ

1≤j1ă...ăji≤n

ˇ

ˇ

ˇ

i
č

s“1

r∆@hgjsq
ˇ

ˇ

ˇ
.

Using the remark following Example 4.1, we calculate
ˇ

ˇ

ˇ

i
č

s“1

r∆@hgjsq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

”

i
ł

s“1

∆@hgjs

ıˇ

ˇ

ˇ
“ 2bpn,i,j1,...,jiq ¨ 3tpn,i,j1,...,jiq,
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where for each 1 ≤ i ≤ n,

bpn, i, j1, . . . , jiq “ |XB| ´

ˇ

ˇ

ˇ

i
ď

s“1

R
pjsq
B

ˇ

ˇ

ˇ
,

tpn, i, j1, . . . , jiq “ |XT| ´

ˇ

ˇ

ˇ

i
ď

s“1

R
pjsq
T

ˇ

ˇ

ˇ
.

Using the inclusion-exclusion principle,

ˇ

ˇ

ˇ

i
ď

s“1

R
pjsq
B

ˇ

ˇ

ˇ
“

i
ÿ

h“1

p´1qh`1
ÿ

1≤j1ă...ăjh≤n

ˇ

ˇ

ˇ

h
č

s“1

R
pjsq
B

ˇ

ˇ

ˇ
.

So we need to compute |
Şh

s“1R
pjsq
B |. It is easy to see that

h
č

s“1

R
pjsq
B “ tpy, vq P XB : for all y˚ ≤ v, y˚pgj1q “ ¨ ¨ ¨ “ y˚pgjhq “ 1u.

For each h and j1, . . . , jh, the number of homomorphisms y˚ satisfying the
condition is 2n´h, and following the previous reasoning, the number of
elements in

Şh
s“1R

pjsq
B is

vpn, hq “ 2n´h ¨ 22
n´h´1 “ 22

n´h`n´h´1,

and again this number is independent from the chosen j1, j2, . . . , jh, so we
may as well take the first h indices and calculate:

ˇ

ˇ

ˇ

i
ď

s“1

R
psq
B

ˇ

ˇ

ˇ
“

i
ÿ

h“1

p´1qh`1
ˆ

i

h

˙

ˇ

ˇ

ˇ

h
č

j“1

R
pjq
B

ˇ

ˇ

ˇ
,

bpn, iq “ 22
n`n´1 ´

i
ÿ

h“1

p´1qh`1
ˆ

i

h

˙

vpn, hq “
i
ÿ

h“0

p´1qh
ˆ

i

h

˙

vpn, hq.

In a similar way, we compute |
Şh

j“1R
pjq
T | “ |

Şh
j“1R

pjq| ´ |
Şh

j“1R
pjq
B |. For

this we first note that
ˇ

ˇ

ˇ

h
č

j“1

Rpjq
ˇ

ˇ

ˇ
“

3n´h
ÿ

s“1

ˆ

3n´h

s

˙

¨ s “ 3n´h ¨ 23
n´h´1 “ upn, hq.

Now using again the inclusion-exclusion principle,

ˇ

ˇ

ˇ

i
ď

s“1

R
psq
T

ˇ

ˇ

ˇ
“

i
ÿ

s“1

p´1qs`1
ˆ

i

s

˙

ˇ

ˇ

ˇ

s
č

j“1

R
pjq
T

ˇ

ˇ

ˇ
,
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and since
ˇ

ˇ

ˇ

s
č

j“1

R
pjq
T

ˇ

ˇ

ˇ
“ upn, sq ´ vpn, sq “ 3n´s ¨ 23

n´s´1 ´ 2n´s ¨ 22
n´s´1,

we get that
ˇ

ˇ

ˇ

i
ď

s“1

R
psq
T

ˇ

ˇ

ˇ
“

i
ÿ

s“1

p´1qs`1
ˆ

i

s

˙

pupn, sq ´ vpn, sqq.

Since we also have |XT| “ |X| ´ |XB| “ 3n ¨ 23
n´1´ 22

n`n´1 “ upn, 0q ´
vpn, 0q, we can write:

tpn, iq “
i
ÿ

s“0

p´1qs
ˆ

i

s

˙

pupn, sq ´ vpn, sqq.

Finally, we can put all together:

|FMMI3pnq| “
ˇ

ˇ

ˇ

n
ď

i“1

r∆@hgiq
ˇ

ˇ

ˇ
“

n
ÿ

i“1

p´1qi`1
ÿ

1≤j1ă...ăji≤n

ˇ

ˇ

ˇ

i
č

s“1

r∆@hgjsq
ˇ

ˇ

ˇ

“

n
ÿ

i“1

p´1qi`1
ˆ

n

i

˙

2bpn,iq ¨ 3tpn,iq,

where

bpn, iq “
i
ÿ

h“0

p´1qh
ˆ

i

h

˙

22
n´h`n´h´1

and

tpn, iq “
i
ÿ

h“0

p´1qh
ˆ

i

h

˙

3n´h ¨ 23
n´h´1 ´ 22

n´h`n´h´1.

Example 4.2. For n “ 1, we just use the coordinates of ∆@hg that we
calculated in Example 4.1. FML3p1q is isomorphic to B4 ˆT8, and ∆@hg is
1 only at one of its boolean axes. Therefore |FMMI3p1q| “ 23 ¨ 38.

For n “ 2 we calculate |r∆@hg1q X r∆@hg2q| “ |r∆@hg1 _∆@hg2q|.

p∆@hg1 _∆@hg2qpy, vq “ 1 iff y˚pg1q “ 1 or y˚pg2q “ 1 for all y˚ ≤ v.
This is, iff py, vq P Rp1q YRp2q.

|Rp1q YRp2q| “ |Rp1q| ` |Rp2q| ´ |Rp1q XRp2q|.

Since there is only one homomorphism y˚ such that y˚pg1q “ y˚pg2q “ 1,
we obtain |Rp1q XRp2q| “ 1.

Therefore,
|Rp1q YRp2q| “ 2 ¨ 3 ¨ 23´1 ´ 1 “ 23.

Using a similar reasoning, |Rp1qB XR
p2q
B | “ 1.
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Then

|FMMI3p2q| “ 2 ¨ 2|XB|´|RB| ¨ 3|XT|´|RT| ´ 2|XB|´|R
p1q
B YR

p2q
B | ¨ 3|XT|´|R

p1q
T YR

p2q
T |,

where |XB| “ 22 ¨ 22
2´1 “ 32; |XT| “ |X| ´ |XB| “ 32 ¨ 23

2´1 ´ 22 ¨ 22
2´1 “

25 ¨ p9 ¨ 23 ´ 1q “ 2272; |RB| “ 22
2´1`2´2 “ 22 “ 4; |RT| “ 32´1 ¨ 23

2´1´1 ´

22
2´1`2´2 “ 3 ¨ 4´ 4 “ 8.
The unions are computed as follows: |Rp1qB YR

p2q
B | “ |R

p1q
B |`|R

p2q
B |´|R

p1q
B X

R
p2q
B | “ 4`4´1 “ 7; |Rp1qT YR

p2q
T | “ |R

p1qYRp2q|´|R
p1q
B YR

p2q
B | “ 23´7 “ 16,

so replacing with the corresponding figures, we finally get:

|FMMI3p2q| “ 2 ¨ 232´4 ¨ 32272´8´ 232´7 ¨ 32272´16 “ 2 ¨ 228 ¨ 32264´ 225 ¨ 32256.

5. Conclusions
We have presented a new method to determine the structure and number

of elements of the free MMI3-algebras with a finite number of generators.
This method is interesting because it provides with easier formulas than those
presented in [6] (those formulas can also be seen in the abstract published
in [1]), as well as an explicit description of the generators and minimal
elements of those algebras.

As a byproduct of the construction presented here, one may also obtain
the structure and generators of the free monadic Tarski algebras FMT pnq,
using a different method from those used in [5] and [12]. In order to do this,
one starts with the free boolean algebra, which can be obtained using Cohn’s
theorem and then calculate its free monadic extension just as in [7]. The set
XT is then empty and the calculations of the sets XB and RpiqB stand, so we
get as in [12]:

|FMT pnq| “
n
ÿ

i“1

p´1qi`1
ˆ

n

i

˙

2
ři

h“0p´1q
hp ihq2

2n´h`n´h´1
.

We hope to extend some of these results to other varieties of interest.
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