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ON SOME CONSEQUENCES OF THE FUNCTIONAL
GENERALIZATION OF THE PARALLELOGRAM IDENTITY

Abstract. The aim of this paper is to unify the partial results, which up to now, have
been dispersed in various publications in order to show the importance of the functional form
of parallelogram identity in mathematics and physics. We study vector spaces admitting
a real non-negative functional which satisfies an identity analogous to the parallelogram
identity in normed vector spaces. We show that this generalized parallelogram identity
also implies an equality analogous to the Cauchy—Schwarz inequality. We study the
consequences of this identity in real and complex vector spaces, in generalized Riesz spaces
and in abelian groups. We give a physical interpretation to these results. For vector spaces
of observables and states, we show that the parallelogram identity implies an inequality
analogous to Heisenberg’s uncertainty principle (HUP), and we show that we can obtain
the standard structure of quantum mechanics from the parallelogram identity, without
assuming from the beginning the HUP. The role of complex numbers in quantum mechanics
is discussed.

0. Introduction

The parallelogram identity (called also the parallelogram law) expresses
an elementary property of a parallelogram telling that the sum of squares
of the lengths of sides is equal to the sum of squares of the lengths of its
diagonals. It can be expressed also as a property of norm in normed vector
spaces. It turns out that if the parallelogram identity holds in a normed
vector space then the norm arises from an inner product—i.e. a normed
vector space satisfying the parallelogram identity is an inner product space.
This was proved by P. Jordan and J. von Neumann in [1| and is called
the Jordan—von Neumann theorem. The Jordan—von Neumann theorem
has a direct physical interpretation—it implies that a normed space with
the parallelogram identity, which is a Banach space, admits a structure of
Hilbert space, and consequently can be used as a model for quantum me-
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chanics. In this model, we have immediately the Cauchy—Schwarz inequal-
ity, which implies Heisenberg’s inequality. In the present paper, we would
like to show that the parallelogram identity even without the structure of
normed vector space implies an inequality which admits a physical interpre-
tation analogous to Heisenberg’s inequality. Our considerations are based
on some earlier papers of the author et. al. We would like to unify these
results and derive physical consequences from them. We will formulate the
parallelogram identity in abstract form for vector space with a functional f
and we will study the consequences of this identity in general vector spaces
(Sec. 1), also in Sec. 2 when the functional f is real semi-continuous at
zero (a norm is an example of such functional), and when the vector space
is a generalized Riesz space or K-space with a probability measure (Sec. 3).
We also consider in Sec. 4 the consequences of the parallelogram identity
in abelian groups (in particular, the addition of vectors in a vector space
provides the structure of abelian group). We will show that in all these
structures the parallelogram identity implies an inequality analogous to the
Cauchy—Schwarz inequality, which can be given a physical interpretation. Fi-
nally in Sec. 5, we will apply our results to the vector spaces of observables
and states in the axiomatic structure of quantum mechanics. We will show
that in these structures the parallelogram identity leads to Heisenberg’s in-
equality, hence to the standard structure of quantum mechanics. We show
why, to obtain Heisenberg’s uncertainty principle for position and momen-
tum observables, it is necessary to assume the structure of a complex vector
space—without complex numbers (i.e. only in real spaces) the uncertainty
principle cannot be derived. We hope that our consideration will show that
quantum mechanics can be considered as a mathematical theory with equa-
tional axioms (the parallelogram identity is expressed in the form of equality).
It is known from mathematical logic that the theories with equational ax-
ioms have a simpler structure - the theorem of Birkhoff can be applied to
them.

1. The parallelogram identity

The parallelogram identity for a parallelogram with the vertices ABCD
can be expressed in the following form:

|AB|* + |BC|* + |CDJ* + |DA]* = |AC|* + |BDJ%.
In the normed spaces, this expression can be written in the form:
20z? + 20yl = |z + y[* + |z — y|*.

As we mentioned above, in normed spaces this identity implies that the norm
arises from an inner product (the Jordan-von Neumann theorem).
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If we put f(x) := |z|?, then the above identity can be written in the
form:

(%) fle+y)+ fle—y) =2f(x) +2f(y)
This is a functional form of the parallelogram identity.

The parallelogram identity is a very strong property. This is seen in the
following theorem, which is a generalization of the Jordan—von Neumann
theorem. With some additional assumption on f (real semi-continuity at zero,
see below) this theorem was proved in [2]. It turns out that the inequality
(##) can be derived even without this additional assumption.

THEOREM 1.1. Let V be a real or complex vector space and f : V — R
a function on V', with positive values for all x # 0, satisfying the above
parallelogram identity () for all x,y € V.. Then the function f satisfies the
following inequality:

(s P ) > 1 +9) — F) — F)P
forallz,yeV.

Substituting a = f(x+y), b = f(z), ¢ = f(y), the inequality (x*) can be
written in the following more symmetrical form:

2(ab + be + ac) > a® + b + 2

or in the form

vab+betac 1

a+b+c T2
This inequality can be interpreted as some kind of the uncertainty rule im-
plied by the parallelogram identity (%). We can also interpret it geometri-

cally.

Proof. Because the idea of the proof of this theorem will be used in the
sequel, we will present this proof. The proof uses some methods from the
original proof of Jordan—von Neumann [1|. First, let us observe that if we
put in (%) z = y = 0, then we obtain f(0) = 0.

Now let

he,w) = L ((f( +9) — F(@) ~ F))

for all z,y € V. It is obvious that h is symmetric.

We will show that h is additive with respect to x and consequently with
respect to y. From (*) we obtain

fl@+y)—flx) = fly) = —flx—y) + f(z) + f(y)
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Putting in (x) x = —y, we obtain f(—y) =
that h(x, y) —h(z,—y) = —h(—=z,y). Fro
+y) = flz—y) = (—f(w—y)+f(90)+f(90))
= 2(f(z + (=y)) = f(2) = f(=y))
= —4h(z, —y) = 4h(z,y).

f(y) for all y € V. This implies
m () we obtain also

Hence we have

(i) fla+y)— fl@—y) = 4h(r,y), forallz,yeV.

Substituting x + z and « — z for  in (), we obtain

flle+y)+2)+ f((z—y) +2) =2f(z + 2) + 2/ (y),
and

fl+y)—2)+ f((z—y) —2) = 2f(x — 2) + 2f(y).
Subtracting side by side and applying (i), we obtain
(ii) hz+y,z)+ h(z —vy,2) = 2h(z, 2).

Putting y = 2 in (ii), we obtain h(2z, z) = 2h(z, z). Substituting x + y
by xo and x — y by yo in (ii), we obtain

h(zo, z) + h(yo, z) = h(2z,2) = h(xo + Yo, 2)-
Hence h is additive with respect to x, and also to y.

This implies that h(2x, z) =2h(x, z). By induction, we infer that h(mz, z)
= mh(x, z) for all non-negative integers m. We also have that h(—mz, z) =
—mh(z,z). Putting mx = y, we obtain h((1/m)y,z) = (1/m)h(y,z) for
m # 0. Hence h(—x,y) = A\h(x,y) for all rational \.

Next putting = y in (%), we obtain f(2z) = 4f(x). Similarly as above
we infer that f(\z) = A\?f(x) for all rational \.

Now for fixed z,y € V, x # 0, we define a function p : R — R as follows:

p(A) = f(Ax +y) = 2h(Az,y) + f(Ax) + f(y),  AeR
We have p(A) > 0 for all A € R. Hence for all rational A\, we have
0 <p(A) = A (x) + 2Mh(z,y) + f(y).

Because for fixed x and y, p()\) is continuous with respect to A (quadratic
form of A for every x # 0), we have

0 < A f(x) + 2Mh(z,y) + f(y),
for all real A,z # 0. Hence the determinant must be non-positive, that is
\h(z,y)|> < f(z)f(y), for arbitrary z,y € V.
(For « = 0 this inequality also holds.)
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Substituting h(z,y) = 3(f(z +y) — f(x) — f(y)), we obtain the thesis of
the theorem. m

2. The functional characterization of inner product

In this section, we will assume some additional condition on the function
f and we will show that then we can obtain the structure of an inner product
space.

DEFINITION 2.1. Let V be a real or complex vector space. Let f be a real
or complex function on V. We say that f is real semi-continuous at zero,
if for every x € V and for every sequence A, of real numbers tending to 0,
lim,, o A, = 0, we have

lim f(\,z) =0.

n—a0

THEOREM 2.2. Let V be a real vector space and f :' V — R a real function
on V which is real semi-continuous in zero with the following properties:

L fz+y)+ flz—y) =2f(x) +2f(y) for all z,y eV,
2. f(x) >0, for x #0.

Then {z,y) = 5(f(z +y) — f(z) — f(y)) is an inner product on V.

We have f(z) = (x,z) for all z € V, and consequently f(x) is continuous
with respect to the topology defined on V' by the norm ||z|| = +/f(z).
On the basis of Theorem 1.1. this implies the Schwarz inequality:

Kz, I < ] ]l

(Of course the Schwarz inequality can be deduced also from the fact that
{x,y) is an inner product on V.)

The above theorem can be generalized to the case of complex vector
spaces.

THEOREM 2.3. Let V be a complex vector space and f : V — R a real
function on V', real semi-continuous at zero, with the following properties:

L flx+y)+ fle—y) =2f(x) +2f(y) forall z,y eV,
2. f(z) >0, forxz #0,
3. f(wz) = f(x), for all |w| = 1.

Then
1

gy = (f(+9) = fw = y) + il +iy) — (o~ i)

is an inner product on V. We have f(zx) = (x,x) for all x € V, and conse-
quently ||x|| = A/ f(z) is a norm on V. The Schwarz inequality also holds.

For the detailed proofs of these theorems, the reader is referred to [2].
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3. The parallelogram identity in generalized K-spaces

with a probability measure

In this section, we will assume some additional structure on the vector
space V and we will show that also in this case, an analog of Cauchy—Schwarz
inequality holds. We also show the role of orthomodularity in vector spaces.
This section is based on [3].

Let V be a partially ordered real vector space. Hence V is a vector space
with a partial order < satisfying the following conditions:

l.ifz>ythenz+ 2> y+ z,
2.ifx>0and Ae R, A > 0 then Ax >0, for all z,y,z€ V.

A binary relation C in V' (we write (z,y) € C' = zCy) is called a com-
mutativity relation in V' if it is reflexive and symmetric. If A is a subset of
V then [A] will denote the set of elements in V' which commute with all the
elements of A. Now we define C(A) := [[A]]. If A = {a} for some a € V,
then instead of C'({a}) we write C(a).

DEFINITION 3.1. A partially ordered vector space V with a commutativity
relation C is called a generalized Riesz space if the following conditions are
satisfied:

1. For every a € V, C(a) is a Riesz subspace of V', i.e. C(a) is a partially
ordered subspace of V' with the order < induced from V (restricted to
C(a)) and such that for any two elements z,y € C(a) the Lu.b. (join)
x vy and g.l.b. (meet) x Ay with respect to the order in C(a) exist and
belong to C(a).

2. There exists 1 € V, which is a unit in every Riesz space C(a) (that is,
1 > z for every z € C(a)).

Before we formulate the third condition, we define an element e € V' to
be basic if e € C(a) for some a € V implies e A (1 — e) = 0, where the g.1.b.
(meet) A is taken in (C(a), <). Hence an element basic in V' is basic in every
Riesz space C(a), to which it belongs. The set of all basic elements in V' will
be called the basis of V' and will be denoted by B(V).

Now we will formulate condition 3:

3. For every triple (e1, ez, e3) of elements of B(V') such that e; + e; < 1 for
i < j, we have e] + ez + ez € B(V).

THEOREM 3.2. The basis B(V') of a generalized Riesz space V' with a com-
mutativity relation C' is an orthomodular partially ordered set (an orthoposet)
with the order < induced from V on B(V') and with the orthocomplementa-
tion e — €' defined by e’ =1 — e for all e € B(V).



On some consequences of the functional generalization of the parallelogram identity 499

Let us recall that an orthoposet (P, <)) is a partially ordered set (P, <)
with a mapping a — a’ called orthocomplementation satisfying the following
conditions:

1. d" = a,

2. a < bimplies &/ < d/,

3.ava =bvd forall abe P,

4. for all ay,a9,...,a, € P such that a; < a;- for ¢ < j, there exists the join
in (P,<),a;vagv:--va,€P,

5. a <bimplies b =a v (a v V')’ (orthomodularity).

DEFINITION 3.3. A generalized Riesz space (V,C) is called a generalized
K-space, if for every a € V, C(a) is a K-subspace of the space V and the basis
B(V) is o-orthoposet, that is (B(V), <) is an orthoposet and if ey, es, ...
€ B(V), where e; + e; < 1 for i # j, then there exists in (B(V), <) the Lu.b.
(join) e; vea v ---€ B(V).

Let us recall that C(a) is a K-subspace of V' (K after Kantorovich), if
C(a) is a complete Dedekind lattice, that is, for every bounded subset of
C(a) there exist in (C(a), <) g.l.b. and L.u.b. (meets and joins).

DEFINITION 3.4. Let V be a generalized K-space and B(V') a basis of V.
A mapping m : B(V) — [0,1] is called a probability measure on B(V) if
m(0) =0, m(1) =1 and m(e; v ez v ...) =m(e1) + m(ez) + ... whenever
eilej (ie. e; <é) fori # j. A set M of probability measures on B(V)
is called full if m(e;) < m(eq) for all m € M implies e; < ey (the converse
implication always holds by orthomodularity).

In generalized K-spaces with a basis, we can use a functional calculus:
namely, for every Borel funcion f : R — R and for each element a € V
we can construct an element f(a) € V. In particular, for every a € V the
element a? is defined and a? € V.

THEOREM 3.5. Let (V,C) be a reqular generalized K-space which basis
B(V) admits a full set M of probability measures. Assume that for all
a,b eV, the parallelogram identity holds:

(a+b)* + (a — b)* = 2a% + 2b%.

Let mg € M be a probability measure on B(V') and m a linear functional
on V extending mg. Then for any a,b € V', we have the following inequality:

m(a®) - m(b%) > %|m([a, b)I?, where [a,b] = (a + b)* —a® — b%.

The space V is called regular, if every probability measure mgy can be
extended to a linear functional m by putting m(a) = { Adu,, where p, is a
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measure on B(R) (Borel subsets of the real line R) defined by
ta(E) =mgohe(E), forevery E € B(R)

(hg is a o-homomorphism from B(R) into B(V') defined by the decomposition
of unity induced by a € C(a)).

4. The parallelogram identity in abelian groups

We can now consider only the structure of an abelian group in a vector
space V' - namely the structure of the additive group of vectors and we will
show that even in such a general structure, the parallelogram identity has
a consequence which admits a physical interpretation. Algebraic structures
on abelian groups were studied in [4].

Let (G, +) be an abelian group. We write z = y if there exists a natural
number n # 0 such that nx = ny.

Let G1 and G4 be abelian groups and let H : G; x G; — G5. We say that
H is symmetric if H(z,y) = H(y,z) for all z,y € G1; H is homogeneous if
nH(z,y) = H(nz,y) = H(x,ny) for all x,y € G; and n € Z. H is additive
if Hx +y,2) = H(x,z) + H(y,z) and H(z,x +y) = H(z,z) + H(z,y) for
all x,y € G1. H is called bilinear if it is additive and homogeneous.

THEOREM 4.1. Let Gy, Go be abelian groups and F : G1 — Go. We define
H:Gy xGy - Gy by H(z,y) = F(x +y) — F(x) — F(y). The following
conditions are equivalent:

1. H(—z,y) = —H(z,y) for all x,y € Gy,
2. H is symmetric and additive,
3. H s homogeneous.

As usual, a mapping F' : G; — G5 is called a quadratic form if there
exists a symmetric bilinear H : G; x G; — G3 such that 2F(z) = H(z,x)
for all z € G.

THEOREM 4.2. The mapping F' : Gy — G2 is a quadratic form if and only
if for all x,y € G1, we have

Fx+vy)+ F(x —y) =2F(x) + 2F (y).

Application to vector spaces. Let V be a real vector space. Then V is an
abelian group with respect to the addition of vectors with some additional
properties (among others x = y if and only if z = y). Hence all results from
the above section holds on V' with = replaced by =. If V7 and V5 are real
vector spaces, then H : V) x Vi — V5 is real homogeneous if AH(x,y) =
H(\x,y) = H(z,\y) for all A e R. H is called real bilinear, if it is additive
and real homogeneous.
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Applying Theorem 4.1 to the abelian group of addition in a vector space,
we obtain the following corollary.

COROLLARY 4.2. Let Vi, Vi, be real topological vector spaces and F : Vi —
Vo be continuous. We define H : Vi x Vi — Vo by H(x,y) = F(z +y) —
F(x) — F(y). Then the following conditions are equivalent:

1. H(—z,y) = —H(z,y) for all x,y € V1,
2. H is symmetric and additive,
3. H s real homogeneous.

5. Applications to quantum mechanics

Heisenberg’s uncertainty principle concerns mutual relations between dis-
persions of some non-compatible quantities (observables) A and B as sta-
tistical states of variables between the dispersion free state of A and the
dispersion free state of B. It is known that this principle can be derived in
the formalism of quantum mechanics in Hilbert space and is a consequence
of Schwarz’s inequality. Namely, if H is a Hilbert space with the inner prod-
uct {-,-y and A and B are self-adjoint (hermitian) operators in H, then for
any ¢ € H in the domains of AB and BA (so that ABy and BAyp are
well-defined) the following inequality holds:

(5.1) iK(AB — BA)p, o)? < {(A—a)*0, o)X(B —b)*¢, ¢),

where a = (A, p), and b = (Byp, p).

In agreement with the standard statistical interpretation of quantum me-
chanics, the quantity ((A — a)?p, ) is the variation of A in the state ¢.
Moreover, if A and B are two self-adjoint operators satisfying the commuta-
tion relation

(5.2) AB — BA = i(h/2m)I
(e.g. A corresponds to the position observable, and B to the momentum

observable, I is the identity operator), then the inequality (5.1) takes the
form

(5.3) (h/4m) ]l < \/var(A, )/ var(B, ¢).
If we introduce a new norm |¢|o = A/h/27|¢||, then (5.3) takes the form
(5-4) lello < v/var(A, )/ var(B, o).

For normalized states |¢| = 1, the inequality (5.3) takes the usual form
of Heisenberg’s uncertainty principle

(5.5) o(A,p)o(B,¢) > h/4m,
where o(A, ), the dispersion of A in the state .
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Now we will write Heisenberg’s inequality in another form. Let us substi-
tute in (5.1) Ay = A—a and By = B—b. We have AB— BA = A1 B — B1 A;.

Now we can write (5.1) in the form

1
(4181 = BiAy)e, ©d2 < (A, X B, 0.

Denoting ma = (A2¢, 0) = (A1p, A1) = |A1p|?, we see that ma can
be interpreted as the second (statistical) moment of the observable A; in the
state . Clearly mq is a function of A; and ¢, so we can write mg = m(Ay, ¢).
Because from now on we will consider only the second moment mo, we can
omit 2 in the subscript ms. Hence for the observables A; and Bj, we obtain
the inequality analogous to (5.4)

(5.6) lello < A/m(Ar, o)v/m(Bi, ),

where [¢|o = (h/47)|¢|. Clearly (5.6) is equivalent to (5.4).

Now we would like to show that this form of Heisenberg’s inequality
can be derived from the general structure without assuming the formalism
of quantum mechanics in Hilbert space. We will show that this inequality
is a consequence of some simple assumptions on the function m(A, ) in-
terpreted as the second moment of A in the state ¢, which is a mapping
m(A,p): V xS — R from the vector space of observables V' and the vector
space S of states into non-negative real numbers (by definition, second mo-
ments are always non-negative). Our assumption will be purely algebraic,
namely, it will be equivalent to the parallelogram identity. Hence, this will
show that Heisenberg’s inequality is also a consequence of the parallelogram
identity.

Before we formulate our next theorem, we will introduce some notation.
Let f(z) be a real function defined on a complex vector space X. Then by
f([z,y]) we will understand a function of two variables defined on X x X
by

F(le.]) = 5(f( +9) ~ f@) ~ f(v), forall 2,y € X.

Now we have the following theorem.

THEOREM 5.1. Let V and S be complex vector spaces and m(A, ) : V x S
— R a real non-negative function with the property:

(5‘7) m([Av _B]WO) = _m([AvB]790)’
for all A, BeV, e S. Then the following inequality holds:
(5.8) m([4, B, ¢)* < m(A, p)m(B, ),

for all A,B eV, ¢ € S. If, in addition, there exist A, B belonging to V
satisfying the following conditions:



On some consequences of the functional generalization of the parallelogram identity 503

I, [p, =%]) = —m([A, B], [¢,%]), for all p,¢ € S,
],CSO) = m([Av B]»SO); when ’C| = 17
], go) 1s real semi-continuous at zero with respect to @,
l,p) >0ifp#0,

then {p, V) = m([A, B], [¢,¢¥])+im([A, B], [, ¢]) defines an inner product
on S, |¢lo = m([A, B], ) is a norm on S and the inequality (5.8) takes the
form

(5.9) lelo < v/m(A, p)v/m(B,¢),  forall peS.

This theorem follows from Theorem 2.3. The inequality (5.9) can be
interpreted as an abstract form of the Heisenberg’s uncertainty principle, for
a detailed discussion of this problem see [5].

Ll e

If we interpret V as the set of all observables of a physical system, S as
the set of all states, and m(A, ¢) as the second moment of A in the state ¢,
then the inequality (5.9) is formally analogous to (5.4), i.e. to Heisenberg’s
uncertainty principle. Hence Heisenberg’s uncertainty principle is implied
by property (5.7). We will show that this property is equivalent to the
parallelogram identity.

Namely, let f,(A) := m(A, ). From the definition of [A, B], the prop-
erty m([A, —B],¢) = —m([A, B], ¢) is equivalent to identity

fo(A+ B) = fo(A) = fo(B) = —(fo(A = B) — fo(A) — f,(B)),
hence to the identity

folA+ B) + fo(A = B) = 2f,(A) + 2f,(B),

which is an abstract form of the parallelogram identity. Analogously, if for
fixed A and B we put ga p(p) := m([A, B],¢), then the property above is
equivalent to the parallelogram identity with respect to the states

9ga.B(@ + V) + gas(e —¥) = 294,B(¢) + 294,8(¢).

Theorem 5.1 allows us to precise which properties of observables and
states are sufficient to assure that the uncertainty principle holds. If m(A, ¢)
is interpreted as the second moment of A in the state ¢, then to obtain the
inequality (5.8) we have to assume the property of the second moment ex-
pressed by the identity m([A, —B], ¢) = —m([A, B], ¢). From the definition
m([A7 B]? (,0) = %((m(A"—B)v (p)—m(A, 90)_m(Bv @))7 we see that ([A7 B]v ()0)
is equal to 0, when m is additive with respect to the addition of observables.
Hence m([A, B], ¢) can be interpreted as some measure of non-additivity of
m with respect to observables (expressed by a property of the second mo-
ment). From Theorem 5.1., it follows that if this non-additive part of the
second moment is odd with respect to the observables then the inequality
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(5.8) holds. For the same reason, if in addition there exists a pair of observ-
ables A, B such that the non-additive part of m([A, B], [¢,]) is odd with
respect to the addition of states then the general form (5.9) of Heisenberg’s
inequality holds.

Hence, Theorem 5.1 shows that the seemingly weak assumption about the
oddness of the non-additive part of the second moment (equivalent to the
parallelogram identity) implies the abstract form of Heisenberg’s uncertainty
principle. This shows once more that the parallelogram identity is not weak,
in fact it is very strong, its physical consequences are very deep.

From this it follows that if we want to have Heisenberg’s uncertainty
principle in the formal structure of quantum mechanics, we have to assume
the axiom about the oddness of the non-additive part of the second moment.
As we have seen above, this is equivalent to assuming that the parallelo-
gram identity holds for the second moment. In this sense, the parallelogram
identity implies Heisenberg’s uncertainty principle - rather a non-expected
conclusion!

Now we will apply Theorem 5.1 to quantum mechanics based on Hilbert
space. Let H be an infinite-dimensional complex Hilbert space and B(H ) the
complex vector space of all bounded operators on H. Let for every A € B(H)
and ¢ € H, m(A, ) := (Ap, Ap). We shall show that the condition (5.7)
from Theorem 5.1 holds. We have

(5:10) m([A, Bl ¢) = ~(m(4 + B), ) ~ m(4,¢) ~ m(B,¢)
= JK(A+ B)p, (A+ B)o) — (Ap, Ag) — (Bp,0))

_ %«Agp, By) + (Bp, Ap)).

Consequently
m([Aa _B]v ()0) = _m([Av B]v 90)

Hence by Theorem 5.1, the inequality (5.8) holds and we have
m([4, B],¢)|* < m(A, p)m(B, ¢).

Now let us go to quantum mechanics and let @) be the self-adjoint op-
erator representing position of a particle (position observable), and P the
self-adjoint operator representing the momentum of this particle (momentum
observable). The operators @ and P are not bounded, but for the vectors
© in the domain of @) and P, the canonical commutation relation holds, i.e.
we have

(5.11) QP — PQ = i(h/2m)I.
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Now let A = i@ and B = P. The derivation (5.10) also holds in this case
(although A and B do not have to be bounded) and we obtain

m([4, Bl¢) = 5 Q¢ Pe) + (P, iQ0) = 5K(PQ ~ QP)g. )

= %K(—i(h/%)f)% ) = (h/Am)p, o) = (h/4) o],

It is clear that the so defined m([A, B], ¢) satisfies all the conditions of
Theorem 5.1. Hence [0 = /m([A, Ble, ) = 1/h/47|¢| is a norm in H
and by Theorem 5.1 the following inequality holds

(5.12) lelo < v/m(A, @)A/m(B,¢) where A=iQ and B = P.

Moreover we have

m(A, ) = (Ap, Ap) = (iQp,iQp) = (Q*p, ¢) and
m(B,¢) = (B, Bo) = (Pp, Pp) = (P%p, ©).

Hence, the above inequality takes the form

(5.13) (h/4Am)lpl* < V<(Q%0, o)V (P20, ).

This inequality implies the analogous inequality for the observables

(P —p) and (Q — q), where p and ¢ the expected values for P and @, respec-
tively. Denoting P* = P —p and Q" = () — p and taking into account that
{(P")2¢, ) = a(P,p) (analogous for @)) are the standard deviations for
P i@ in the state o, we obtain for the normed states |¢| = 1 the inequality

(5.14) o(Q,p)o(P,¢) = h/4m,

which is the original Heisenberg’s uncertainty principle.

Observe that to derive Heisenberg’s uncertainty principle form the par-
allelogram identity, we have to use complex numbers. If we put A = @ and
B = P in the definition of m([A, B], ¢), we would obtain

(615)  m(ABl.p) = m(@ PLg) = 3(QP + PQ)¢, ¢,

hence the anti-commutator of @ and P. (Not commutator when we put
A =1iQ and B = Q). The anti-commutator of @ and P is not constant (does
not satisfy the cannonical commutation relation) and consequently we do not
obtain Heisenberg’s uncertainty relation. However, under the assumptions
of Theorem 5.1, the inequality (5.8) would still hold and we aso have the
following inequality for position and momentum observables

(516) V(@ DNm(P9) > S(QP + PQ)g. o).
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which is useless for physical applications, because the right-hand side of
(5.16) is not bounded from below for ¢ € H, ||| = 1. The question of the
role of complex numbers in quantum mechanics has been discussed in [6].
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