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ON SOME CONSEQUENCES OF THE FUNCTIONAL
GENERALIZATION OF THE PARALLELOGRAM IDENTITY

Abstract. The aim of this paper is to unify the partial results, which up to now, have
been dispersed in various publications in order to show the importance of the functional form
of parallelogram identity in mathematics and physics. We study vector spaces admitting
a real non-negative functional which satisfies an identity analogous to the parallelogram
identity in normed vector spaces. We show that this generalized parallelogram identity
also implies an equality analogous to the Cauchy–Schwarz inequality. We study the
consequences of this identity in real and complex vector spaces, in generalized Riesz spaces
and in abelian groups. We give a physical interpretation to these results. For vector spaces
of observables and states, we show that the parallelogram identity implies an inequality
analogous to Heisenberg’s uncertainty principle (HUP), and we show that we can obtain
the standard structure of quantum mechanics from the parallelogram identity, without
assuming from the beginning the HUP. The role of complex numbers in quantum mechanics
is discussed.

0. Introduction
The parallelogram identity (called also the parallelogram law) expresses

an elementary property of a parallelogram telling that the sum of squares
of the lengths of sides is equal to the sum of squares of the lengths of its
diagonals. It can be expressed also as a property of norm in normed vector
spaces. It turns out that if the parallelogram identity holds in a normed
vector space then the norm arises from an inner product—i.e. a normed
vector space satisfying the parallelogram identity is an inner product space.
This was proved by P. Jordan and J. von Neumann in [1] and is called
the Jordan–von Neumann theorem. The Jordan–von Neumann theorem
has a direct physical interpretation—it implies that a normed space with
the parallelogram identity, which is a Banach space, admits a structure of
Hilbert space, and consequently can be used as a model for quantum me-
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chanics. In this model, we have immediately the Cauchy–Schwarz inequal-
ity, which implies Heisenberg’s inequality. In the present paper, we would
like to show that the parallelogram identity even without the structure of
normed vector space implies an inequality which admits a physical interpre-
tation analogous to Heisenberg’s inequality. Our considerations are based
on some earlier papers of the author et. al. We would like to unify these
results and derive physical consequences from them. We will formulate the
parallelogram identity in abstract form for vector space with a functional f
and we will study the consequences of this identity in general vector spaces
(Sec. 1), also in Sec. 2 when the functional f is real semi-continuous at
zero (a norm is an example of such functional), and when the vector space
is a generalized Riesz space or K-space with a probability measure (Sec. 3).
We also consider in Sec. 4 the consequences of the parallelogram identity
in abelian groups (in particular, the addition of vectors in a vector space
provides the structure of abelian group). We will show that in all these
structures the parallelogram identity implies an inequality analogous to the
Cauchy–Schwarz inequality, which can be given a physical interpretation. Fi-
nally in Sec. 5, we will apply our results to the vector spaces of observables
and states in the axiomatic structure of quantum mechanics. We will show
that in these structures the parallelogram identity leads to Heisenberg’s in-
equality, hence to the standard structure of quantum mechanics. We show
why, to obtain Heisenberg’s uncertainty principle for position and momen-
tum observables, it is necessary to assume the structure of a complex vector
space—without complex numbers (i.e. only in real spaces) the uncertainty
principle cannot be derived. We hope that our consideration will show that
quantum mechanics can be considered as a mathematical theory with equa-
tional axioms (the parallelogram identity is expressed in the form of equality).
It is known from mathematical logic that the theories with equational ax-
ioms have a simpler structure - the theorem of Birkhoff can be applied to
them.

1. The parallelogram identity
The parallelogram identity for a parallelogram with the vertices ABCD

can be expressed in the following form:

|AB|2 ` |BC|2 ` |CD|2 ` |DA|2 “ |AC|2 ` |BD|2.

In the normed spaces, this expression can be written in the form:

2}x}2 ` 2}y}2 “ }x` y}2 ` }x´ y}2.

As we mentioned above, in normed spaces this identity implies that the norm
arises from an inner product (the Jordan–von Neumann theorem).
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If we put fpxq :“ }x}2, then the above identity can be written in the
form:

p˚q fpx` yq ` fpx´ yq “ 2fpxq ` 2fpyq.

This is a functional form of the parallelogram identity.
The parallelogram identity is a very strong property. This is seen in the

following theorem, which is a generalization of the Jordan–von Neumann
theorem. With some additional assumption on f (real semi-continuity at zero,
see below) this theorem was proved in [2]. It turns out that the inequality
p˚˚q can be derived even without this additional assumption.

Theorem 1.1. Let V be a real or complex vector space and f : V Ñ R
a function on V , with positive values for all x ‰ 0, satisfying the above
parallelogram identity p˚q for all x, y P V . Then the function f satisfies the
following inequality:

p˚˚q fpxqfpyq ≥ 1

4
|fpx` yq ´ fpxq ´ fpyq|2

for all x, y P V .

Substituting a “ fpx` yq, b “ fpxq, c “ fpyq, the inequality p˚˚q can be
written in the following more symmetrical form:

2pab` bc` acq ≥ a2 ` b2 ` c2

or in the form ?
ab` bc` ac

a` b` c
≥ 1

2
.

This inequality can be interpreted as some kind of the uncertainty rule im-
plied by the parallelogram identity p˚q. We can also interpret it geometri-
cally.

Proof. Because the idea of the proof of this theorem will be used in the
sequel, we will present this proof. The proof uses some methods from the
original proof of Jordan–von Neumann [1]. First, let us observe that if we
put in p˚q x “ y “ 0, then we obtain fp0q “ 0.

Now let

hpx, yq “
1

2
ppfpx` yq ´ fpxq ´ fpyqq,

for all x, y P V . It is obvious that h is symmetric.
We will show that h is additive with respect to x and consequently with

respect to y. From p˚q we obtain

fpx` yq ´ fpxq ´ fpyq “ ´fpx´ yq ` fpxq ` fpyq.
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Putting in p˚q x “ ´y, we obtain fp´yq “ fpyq for all y P V . This implies
that hpx, yq “ ´hpx,´yq “ ´hp´x, yq. From p˚q we obtain also

fpx` yq ´ fpx´ yq “ 2p´fpx´ yq ` fpxq ` fpxqq

“ ´2pfpx` p´yqq ´ fpxq ´ fp´yqq

“ ´4hpx,´yq “ 4hpx, yq.

Hence we have

piq fpx` yq ´ fpx´ yq “ 4hpx, yq, for all x, y P V .

Substituting x` z and x´ z for x in p˚q, we obtain

fppx` yq ` zq ` fppx´ yq ` zq “ 2fpx` zq ` 2fpyq,

and
fppx` yq ´ zq ` fppx´ yq ´ zq “ 2fpx´ zq ` 2fpyq.

Subtracting side by side and applying (i), we obtain

piiq hpx` y, zq ` hpx´ y, zq “ 2hpx, zq.

Putting y “ x in (ii), we obtain hp2x, zq “ 2hpx, zq. Substituting x ` y
by x0 and x´ y by y0 in (ii), we obtain

hpx0, zq ` hpy0, zq “ hp2x, zq “ hpx0 ` y0, zq.

Hence h is additive with respect to x, and also to y.
This implies that hp2x, zq“2hpx, zq. By induction, we infer that hpmx, zq

“ mhpx, zq for all non-negative integers m. We also have that hp´mx, zq “
´mhpx, zq. Putting mx = y, we obtain hpp1{mqy, zq “ p1{mqhpy, zq for
m ‰ 0. Hence hp´x, yq “ λhpx, yq for all rational λ.

Next putting x “ y in p˚q, we obtain fp2xq “ 4fpxq. Similarly as above
we infer that fpλxq “ λ2fpxq for all rational λ.

Now for fixed x, y P V , x ‰ 0, we define a function p : RÑ R as follows:

ppλq “ fpλx` yq “ 2hpλx, yq ` fpλxq ` fpyq, λ P R.

We have ppλq ≥ 0 for all λ P R. Hence for all rational λ, we have

0 ≤ ppλq “ λ2fpxq ` 2λhpx, yq ` fpyq.

Because for fixed x and y, ppλq is continuous with respect to λ (quadratic
form of λ for every x ‰ 0), we have

0 ≤ λ2fpxq ` 2λhpx, yq ` fpyq,

for all real λ, x ‰ 0. Hence the determinant must be non-positive, that is

|hpx, yq|2 ≤ fpxqfpyq, for arbitrary x, y P V.

(For x “ 0 this inequality also holds.)



On some consequences of the functional generalization of the parallelogram identity 497

Substituting hpx, yq “ 1
2pfpx` yq ´ fpxq ´ fpyqq, we obtain the thesis of

the theorem.

2. The functional characterization of inner product
In this section, we will assume some additional condition on the function

f and we will show that then we can obtain the structure of an inner product
space.

Definition 2.1. Let V be a real or complex vector space. Let f be a real
or complex function on V . We say that f is real semi-continuous at zero,
if for every x P V and for every sequence λn of real numbers tending to 0,
limnÑ8 λn “ 0, we have

lim
nÑ8

fpλnxq “ 0.

Theorem 2.2. Let V be a real vector space and f : V Ñ R a real function
on V which is real semi-continuous in zero with the following properties:

1. fpx` yq ` fpx´ yq “ 2fpxq ` 2fpyq for all x, y P V ,
2. fpxq ą 0, for x ‰ 0.

Then xx, yy :“ 1
2pfpx` yq ´ fpxq ´ fpyqq is an inner product on V .

We have fpxq “ xx, xy for all x P V , and consequently fpxq is continuous
with respect to the topology defined on V by the norm }x} “

a

fpxq.
On the basis of Theorem 1.1. this implies the Schwarz inequality:

|xx, yy|2 ≤ }x} }y}.
(Of course the Schwarz inequality can be deduced also from the fact that
xx, yy is an inner product on V .)

The above theorem can be generalized to the case of complex vector
spaces.

Theorem 2.3. Let V be a complex vector space and f : V Ñ R a real
function on V , real semi-continuous at zero, with the following properties:

1. fpx` yq ` fpx´ yq “ 2fpxq ` 2fpyq for all x, y P V ,
2. fpxq ą 0, for x ‰ 0,
3. fpωxq “ fpxq, for all |ω| “ 1.

Then

xx, yy “
1

4
ppfpx` yq ´ fpx´ yqq `

1

4
ippfpx` iyq ´ fpx´ iyqq

is an inner product on V . We have fpxq “ xx, xy for all x P V , and conse-
quently }x} “

a

fpxq is a norm on V . The Schwarz inequality also holds.

For the detailed proofs of these theorems, the reader is referred to [2].
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3. The parallelogram identity in generalized K-spaces
with a probability measure
In this section, we will assume some additional structure on the vector

space V and we will show that also in this case, an analog of Cauchy–Schwarz
inequality holds. We also show the role of orthomodularity in vector spaces.
This section is based on [3].

Let V be a partially ordered real vector space. Hence V is a vector space
with a partial order ≤ satisfying the following conditions:

1. if x ≥ y then x` z ≥ y ` z,
2. if x ≥ 0 and λ P R, λ ≥ 0 then λx ≥ 0, for all x, y, z P V .

A binary relation C in V (we write px, yq P C ” xCy) is called a com-
mutativity relation in V if it is reflexive and symmetric. If A is a subset of
V then rAs will denote the set of elements in V which commute with all the
elements of A. Now we define CpAq :“ rrAss. If A “ tau for some a P V ,
then instead of Cptauq we write Cpaq.

Definition 3.1. A partially ordered vector space V with a commutativity
relation C is called a generalized Riesz space if the following conditions are
satisfied:

1. For every a P V , Cpaq is a Riesz subspace of V , i.e. Cpaq is a partially
ordered subspace of V with the order ≤ induced from V (restricted to
Cpaq) and such that for any two elements x, y P Cpaq the l.u.b. (join)
x_ y and g.l.b. (meet) x^ y with respect to the order in Cpaq exist and
belong to Cpaq.

2. There exists 1 P V , which is a unit in every Riesz space Cpaq (that is,
1 ≥ x for every x P Cpaq).

Before we formulate the third condition, we define an element e P V to
be basic if e P Cpaq for some a P V implies e^ p1´ eq “ 0, where the g.l.b.
(meet) ^ is taken in pCpaq,≤q. Hence an element basic in V is basic in every
Riesz space Cpaq, to which it belongs. The set of all basic elements in V will
be called the basis of V and will be denoted by BpV q.

Now we will formulate condition 3:

3. For every triple pe1, e2, e3q of elements of BpV q such that ei ` ej ≤ 1 for
i ≤ j, we have e1 ` e2 ` e3 P BpV q.

Theorem 3.2. The basis BpV q of a generalized Riesz space V with a com-
mutativity relation C is an orthomodular partially ordered set pan orthoposetq
with the order ≤ induced from V on BpV q and with the orthocomplementa-
tion eÑ e1 defined by e1 “ 1´ e for all e P BpV q.
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Let us recall that an orthoposet pP,≤,1 q is a partially ordered set pP,≤q
with a mapping aÑ a1 called orthocomplementation satisfying the following
conditions:

1. a2 “ a,
2. a ≤ b implies b1 ≤ a1,
3. a_ a1 “ b_ b1 for all a, b P P ,
4. for all a1, a2, . . . , an P P such that ai ≤ a1

j for i ≤ j, there exists the join
in pP,≤q, a1 _ a2 _ ¨ ¨ ¨ _ an P P ,

5. a ≤ b implies b “ a_ pa_ b1q1 (orthomodularity).

Definition 3.3. A generalized Riesz space pV,Cq is called a generalized
K-space, if for every a P V,Cpaq is a K-subspace of the space V and the basis
BpV q is σ-orthoposet, that is pBpV q,≤,1 q is an orthoposet and if e1, e2, . . .
P BpV q, where ei` ej ≤ 1 for i ‰ j, then there exists in pBpV q,≤q the l.u.b.
(join) e1 _ e2 _ ¨ ¨ ¨ P BpV q.

Let us recall that Cpaq is a K-subspace of V (K after Kantorovich), if
Cpaq is a complete Dedekind lattice, that is, for every bounded subset of
Cpaq there exist in pCpaq,≤q g.l.b. and l.u.b. (meets and joins).

Definition 3.4. Let V be a generalized K-space and BpV q a basis of V .
A mapping m : BpV q Ñ r0, 1s is called a probability measure on BpV q if
mp0q “ 0, mp1q “ 1 and mpe1 _ e2 _ . . .q “ mpe1q `mpe2q ` . . . whenever
eiKej (i.e. ei ≤ e1

j) for i ‰ j. A set M of probability measures on BpV q
is called full if mpe1q ≤ mpe2q for all m P M implies e1 ≤ e2 (the converse
implication always holds by orthomodularity).

In generalized K-spaces with a basis, we can use a functional calculus:
namely, for every Borel funcion f : R Ñ R and for each element a P V
we can construct an element fpaq P V . In particular, for every a P V the
element a2 is defined and a2 P V .

Theorem 3.5. Let pV,Cq be a regular generalized K-space which basis
BpV q admits a full set M of probability measures. Assume that for all
a, b P V , the parallelogram identity holds:

pa` bq2 ` pa´ bq2 “ 2a2 ` 2b2.

Let m0 PM be a probability measure on BpV q and m a linear functional
on V extending m0. Then for any a, b P V , we have the following inequality:

mpa2q ¨mpb2q ≥ 1

4
|mpra, bsq|2, where ra, bs “ pa` bq2 ´ a2 ´ b2.

The space V is called regular, if every probability measure m0 can be
extended to a linear functional m by putting mpaq “

ş

λdµa, where µa is a
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measure on BpRq (Borel subsets of the real line R) defined by

µapEq “ m0 ˝ hapEq, for every E P BpRq

(ha is a σ-homomorphism from BpRq into BpV q defined by the decomposition
of unity induced by a P Cpaqq.

4. The parallelogram identity in abelian groups
We can now consider only the structure of an abelian group in a vector

space V - namely the structure of the additive group of vectors and we will
show that even in such a general structure, the parallelogram identity has
a consequence which admits a physical interpretation. Algebraic structures
on abelian groups were studied in [4].

Let pG,`q be an abelian group. We write x ” y if there exists a natural
number n ‰ 0 such that nx “ ny.

Let G1 and G2 be abelian groups and let H : G1ˆG1 Ñ G2. We say that
H is symmetric if Hpx, yq ” Hpy, xq for all x, y P G1; H is homogeneous if
nHpx, yq ” Hpnx, yq ” Hpx, nyq for all x, y P G1 and n P Z. H is additive
if Hpx ` y, zq ” Hpx, zq `Hpy, zq and Hpz, x ` yq ” Hpz, xq `Hpz, yq for
all x, y P G1. H is called bilinear if it is additive and homogeneous.

Theorem 4.1. Let G1, G2 be abelian groups and F : G1 Ñ G2. We define
H : G1 ˆ G1 Ñ G2 by Hpx, yq “ F px ` yq ´ F pxq ´ F pyq. The following
conditions are equivalent:

1. Hp´x, yq ” ´Hpx, yq for all x, y P G1,
2. H is symmetric and additive,
3. H is homogeneous.

As usual, a mapping F : G1 Ñ G2 is called a quadratic form if there
exists a symmetric bilinear H : G1 ˆ G1 Ñ G2 such that 2F pxq ” Hpx, xq
for all x P G1.

Theorem 4.2. The mapping F : G1 Ñ G2 is a quadratic form if and only
if for all x, y P G1, we have

F px` yq ` F px´ yq ” 2F pxq ` 2F pyq.

Application to vector spaces. Let V be a real vector space. Then V is an
abelian group with respect to the addition of vectors with some additional
properties (among others x ” y if and only if x “ y). Hence all results from
the above section holds on V with ” replaced by “. If V1 and V2 are real
vector spaces, then H : V1 ˆ V1 Ñ V2 is real homogeneous if λHpx, yq “
Hpλx, yq “ Hpx, λyq for all λ P R. H is called real bilinear, if it is additive
and real homogeneous.
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Applying Theorem 4.1 to the abelian group of addition in a vector space,
we obtain the following corollary.

Corollary 4.2. Let V1, V2 be real topological vector spaces and F : V1 Ñ
V2 be continuous. We define H : V1 ˆ V1 Ñ V2 by Hpx, yq “ F px ` yq ´
F pxq ´ F pyq. Then the following conditions are equivalent:

1. Hp´x, yq “ ´Hpx, yq for all x, y P V1,
2. H is symmetric and additive,
3. H is real homogeneous.

5. Applications to quantum mechanics
Heisenberg’s uncertainty principle concerns mutual relations between dis-

persions of some non-compatible quantities (observables) A and B as sta-
tistical states of variables between the dispersion free state of A and the
dispersion free state of B. It is known that this principle can be derived in
the formalism of quantum mechanics in Hilbert space and is a consequence
of Schwarz’s inequality. Namely, if H is a Hilbert space with the inner prod-
uct x¨, ¨y and A and B are self-adjoint (hermitian) operators in H, then for
any ϕ P H in the domains of AB and BA (so that ABϕ and BAϕ are
well-defined) the following inequality holds:

p5.1q
1

4
|xpAB ´BAqϕ,ϕy|2 ≤ xpA´ aq2ϕ,ϕyxpB ´ bq2ϕ,ϕy,

where a “ xAϕ,ϕy, and b “ xBϕ,ϕy.
In agreement with the standard statistical interpretation of quantum me-

chanics, the quantity xpA ´ aq2ϕ,ϕy is the variation of A in the state ϕ.
Moreover, if A and B are two self-adjoint operators satisfying the commuta-
tion relation

p5.2q AB ´BA “ iph{2πqI

(e.g. A corresponds to the position observable, and B to the momentum
observable, I is the identity operator), then the inequality (5.1) takes the
form

p5.3q ph{4πq}ϕ} ≤
a

varpA,ϕq
a

varpB,ϕq.

If we introduce a new norm }ϕ}0 “
a

h{2π}ϕ}, then (5.3) takes the form

p5.4q }ϕ}0 ≤
a

varpA,ϕq
a

varpB,ϕq.

For normalized states }ϕ} “ 1, the inequality (5.3) takes the usual form
of Heisenberg’s uncertainty principle

p5.5q σpA,ϕqσpB,ϕq ≥ h{4π,

where σpA,ϕq, the dispersion of A in the state ϕ.
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Now we will write Heisenberg’s inequality in another form. Let us substi-
tute in (5.1) A1 “ A´a and B2 “ B´b. We have AB´BA “ A1B1´B1A1.
Now we can write (5.1) in the form

1

4
|xpA1B1 ´B1A1qϕ,ϕy|

2 ≤ xA2
1ϕ,ϕyxB

2
1ϕ,ϕy.

Denoting m2 “ xA
2
1ϕ,ϕy “ xA1ϕ,A1ϕy “ }A1ϕ}

2, we see that m2 can
be interpreted as the second (statistical) moment of the observable A1 in the
state ϕ. Clearlym2 is a function of A1 and ϕ, so we can writem2 “ mpA1, ϕq.
Because from now on we will consider only the second moment m2, we can
omit 2 in the subscript m2. Hence for the observables A1 and B1, we obtain
the inequality analogous to (5.4)

p5.6q }ϕ}0 ≤
a

mpA1, ϕq
a

mpB1, ϕq,

where }ϕ}0 “ ph{4πq}ϕ}. Clearly (5.6) is equivalent to (5.4).
Now we would like to show that this form of Heisenberg’s inequality

can be derived from the general structure without assuming the formalism
of quantum mechanics in Hilbert space. We will show that this inequality
is a consequence of some simple assumptions on the function mpA,ϕq in-
terpreted as the second moment of A in the state ϕ, which is a mapping
mpA,ϕq : V ˆS Ñ R from the vector space of observables V and the vector
space S of states into non-negative real numbers (by definition, second mo-
ments are always non-negative). Our assumption will be purely algebraic,
namely, it will be equivalent to the parallelogram identity. Hence, this will
show that Heisenberg’s inequality is also a consequence of the parallelogram
identity.

Before we formulate our next theorem, we will introduce some notation.
Let fpxq be a real function defined on a complex vector space X. Then by
fprx, ysq we will understand a function of two variables defined on X ˆ X
by

fprx, ysq “
1

2
pfpx` yq ´ fpxq ´ fpyqq, for all x, y P X.

Now we have the following theorem.

Theorem 5.1. Let V and S be complex vector spaces and mpA,ϕq : V ˆS
Ñ R a real non-negative function with the property:

p5.7q mprA,´Bs, ϕq “ ´mprA,Bs, ϕq,

for all A,B P V , ϕ P S. Then the following inequality holds:

p5.8q |mprA,Bs, ϕq|2 ≤ mpA,ϕqmpB,ϕq,

for all A,B P V , ϕ P S. If, in addition, there exist A, B belonging to V
satisfying the following conditions:
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1. mprA,Bs, rϕ,´ψsq “ ´mprA,Bs, rϕ,ψsq, for all ϕ,ψ P S,
2. mprA,Bs, cϕq “ mprA,Bs, ϕq, when |c| “ 1,
3. mprA,Bs, ϕq is real semi-continuous at zero with respect to ϕ,
4. mprA,Bs, ϕq ą 0 if ϕ ‰ 0,

then xϕ,ψy “ mprA,Bs, rϕ,ψsq`imprA,Bs, rϕ, iψsq defines an inner product
on S, }ϕ}0 “ mprA,Bs, ϕq is a norm on S and the inequality (5.8) takes the
form

p5.9q }ϕ}0 ≤
a

mpA,ϕq
a

mpB,ϕq, for all ϕ P S.

This theorem follows from Theorem 2.3. The inequality (5.9) can be
interpreted as an abstract form of the Heisenberg’s uncertainty principle, for
a detailed discussion of this problem see [5].

If we interpret V as the set of all observables of a physical system, S as
the set of all states, and mpA,ϕq as the second moment of A in the state ϕ,
then the inequality (5.9) is formally analogous to (5.4), i.e. to Heisenberg’s
uncertainty principle. Hence Heisenberg’s uncertainty principle is implied
by property (5.7). We will show that this property is equivalent to the
parallelogram identity.

Namely, let fϕpAq :“ mpA,ϕq. From the definition of rA,Bs, the prop-
erty mprA,´Bs, ϕq “ ´mprA,Bs, ϕq is equivalent to identity

fϕpA`Bq ´ fϕpAq ´ fϕpBq “ ´pfϕpA´Bq ´ fϕpAq ´ fϕpBqq,

hence to the identity

fϕpA`Bq ` fϕpA´Bq “ 2fϕpAq ` 2fϕpBq,

which is an abstract form of the parallelogram identity. Analogously, if for
fixed A and B we put gA,Bpϕq :“ mprA,Bs, ϕq, then the property above is
equivalent to the parallelogram identity with respect to the states

gA,Bpϕ` ψq ` gA,Bpϕ´ ψq “ 2gA,Bpϕq ` 2gA,Bpψq.

Theorem 5.1 allows us to precise which properties of observables and
states are sufficient to assure that the uncertainty principle holds. IfmpA,ϕq
is interpreted as the second moment of A in the state ϕ, then to obtain the
inequality (5.8) we have to assume the property of the second moment ex-
pressed by the identity mprA,´Bs, ϕq “ ´mprA,Bs, ϕq. From the definition
mprA,Bs, ϕq “ 1

2ppmpA`Bq, ϕq´mpA,ϕq´mpB,ϕqq, we see that prA,Bs, ϕq
is equal to 0, when m is additive with respect to the addition of observables.
Hence mprA,Bs, ϕq can be interpreted as some measure of non-additivity of
m with respect to observables (expressed by a property of the second mo-
ment). From Theorem 5.1., it follows that if this non-additive part of the
second moment is odd with respect to the observables then the inequality
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(5.8) holds. For the same reason, if in addition there exists a pair of observ-
ables A,B such that the non-additive part of mprA,Bs, rϕ,ψsq is odd with
respect to the addition of states then the general form (5.9) of Heisenberg’s
inequality holds.

Hence, Theorem 5.1 shows that the seemingly weak assumption about the
oddness of the non-additive part of the second moment (equivalent to the
parallelogram identity) implies the abstract form of Heisenberg’s uncertainty
principle. This shows once more that the parallelogram identity is not weak,
in fact it is very strong, its physical consequences are very deep.

From this it follows that if we want to have Heisenberg’s uncertainty
principle in the formal structure of quantum mechanics, we have to assume
the axiom about the oddness of the non-additive part of the second moment.
As we have seen above, this is equivalent to assuming that the parallelo-
gram identity holds for the second moment. In this sense, the parallelogram
identity implies Heisenberg’s uncertainty principle - rather a non-expected
conclusion!

Now we will apply Theorem 5.1 to quantum mechanics based on Hilbert
space. LetH be an infinite-dimensional complex Hilbert space and BpHq the
complex vector space of all bounded operators onH. Let for every A P BpHq
and ϕ P H, mpA,ϕq :“ xAϕ,Aϕy. We shall show that the condition (5.7)
from Theorem 5.1 holds. We have

mprA,Bs, ϕq “ ´pmpA`Bq, ϕq ´mpA,ϕq ´mpB,ϕqq(5.10)

“
1

2
pxpA`Bqϕ, pA`Bqϕy ´ xAϕ,Aϕy ´ xBϕ,ϕyq

“
1

2
pxAϕ,Bϕy ` xBϕ,Aϕyq.

Consequently
mprA,´Bs, ϕq “ ´mprA,Bs, ϕq.

Hence by Theorem 5.1, the inequality (5.8) holds and we have

|mprA,Bs, ϕq|2 ≤ mpA,ϕqmpB,ϕq.

Now let us go to quantum mechanics and let Q be the self-adjoint op-
erator representing position of a particle (position observable), and P the
self-adjoint operator representing the momentum of this particle (momentum
observable). The operators Q and P are not bounded, but for the vectors
ϕ in the domain of Q and P , the canonical commutation relation holds, i.e.
we have

p5.11q QP ´ PQ “ iph{2πqI.
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Now let A “ iQ and B “ P . The derivation (5.10) also holds in this case
(although A and B do not have to be bounded) and we obtain

mprA,Bs, ϕq “
1

2
pxiQϕ, Pϕy ` xPϕ, iQϕyq “

1

2
ixpPQ´QP qϕ,ϕy

“
1

2
ixp´iph{2πqIqϕ,ϕy “ ph{4πqxϕ,ϕy “ ph{4πq}ϕ}2.

It is clear that the so defined mprA,Bs, ϕq satisfies all the conditions of
Theorem 5.1. Hence }ϕ}0 “

a

mprA,Bsϕ,ϕq “
a

h{4π}ϕ} is a norm in H
and by Theorem 5.1 the following inequality holds

p5.12q }ϕ}0 ≤
a

mpA,ϕq
a

mpB,ϕq where A “ iQ and B “ P.

Moreover we have

mpA,ϕq “ xAϕ,Aϕy “ xiQϕ, iQϕy “ xQ2ϕ,ϕy and

mpB,ϕq “ xBϕ,Bϕy “ xPϕ, Pϕy “ xP 2ϕ,ϕy.

Hence, the above inequality takes the form

p5.13q ph{4πq}ϕ}2 ≤
a

xQ2ϕ,ϕy
a

xP 2ϕ,ϕy.

This inequality implies the analogous inequality for the observables
pP ´ pq and pQ´ qq, where p and q the expected values for P and Q, respec-
tively. Denoting P^ “ P ´ p and Q^ “ Q´ p and taking into account that
a

xpP^q2ϕ,ϕy “ σpP,ϕq (analogous for Q) are the standard deviations for
P i Q in the state ϕ, we obtain for the normed states }ϕ} “ 1 the inequality

p5.14q σpQ,ϕqσpP,ϕq ≥ h{4π,

which is the original Heisenberg’s uncertainty principle.
Observe that to derive Heisenberg’s uncertainty principle form the par-

allelogram identity, we have to use complex numbers. If we put A “ Q and
B “ P in the definition of mprA,Bs, ϕq, we would obtain

p5.15q mprA,Bs, ϕq “ mprQ,P s, ϕq “
1

2
xpQP ` PQqϕ,ϕy,

hence the anti-commutator of Q and P . (Not commutator when we put
A “ iQ and B “ Q). The anti-commutator of Q and P is not constant (does
not satisfy the cannonical commutation relation) and consequently we do not
obtain Heisenberg’s uncertainty relation. However, under the assumptions
of Theorem 5.1, the inequality (5.8) would still hold and we aso have the
following inequality for position and momentum observables

p5.16q
a

mpQ,ϕq
a

mpP,ϕq ≥ 1

2
xpQP ` PQqϕ,ϕy,
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which is useless for physical applications, because the right-hand side of
(5.16) is not bounded from below for ϕ P H, }ϕ} “ 1. The question of the
role of complex numbers in quantum mechanics has been discussed in [6].
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