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AN ITERATIVE METHOD FOR SYMMETRIC POSITIVE
SEMIDEFINITE LINEAR SYSTEM OF EQUATIONS

Abstract. In this paper, a new two-step iterative method for solving symmetric
positive semidefinite linear system of equations is presented. A sufficient condition for the
semiconvergence of the method is also given. Some numerical experiments are presented
to show the efficiency of the proposed method.

1. Introduction
Consider the linear system of equations

(1) Ax “ b,

where A P Rnˆn is singular and x, b P Rn with b known and x unknown.
We assume that the system (1) is solvable, i.e., it has at least one solution.
We frequently meet these kind of linear systems when we solve the actual
problems in statistics, economics, differential equations, image and signal
processing. For example, finite difference formulations of the Neumann prob-
lem and those for elastic bodies with free surfaces and Poisson’s equation on
a sphere and with periodic boundary conditions result in singular linear sys-
tem of equations [2]. Also, the stationary probability distribution vector of
a finite homogeneous Markov chain is a solution of a singular linear system
of equations [2, 10]. Motivated by work in this area, we focus our attention
on linear system of equations with symmetric positive semidefinite coefficient
matrix and propose a two-step stationary iterative method for solving (1).

If A is split into A “M ´N , where M is nonsingular, then a stationary
iterative method for solving (1) can be described as follows

(2) xm`1 “M´1Nxm `M
´1b, m “ 0, 1, . . . .

Here the matrix T “ M´1N is called the iteration matrix of the method.
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It is well known that for nonsingular systems, the iterative method (2) is
convergent if the spectral radius of T is less than 1, i.e., ρpT q ă 1. In this
case, for any initial guess x0 the method converges to the exact solution of (1)
[1, 2, 6, 7, 12]. For singular systems, the method is called semiconvergent if
(2) converges to a solution of (1) for every initial guess x0. By [2], it is well
known that the iterative method (2) is semiconvergent if and only if

• ρpT q “ 1;
• indexpI ´ T q “ 1, which means that

rankpI ´ T q “ rankpI ´ T q2;

• if µ P σpT q with |µ| “ 1, then µ “ 1, i.e.,

υpT q “ t|µ|, µ P σpT q, µ ‰ 1u ă 1,

where σpT q is spectrum of T .

The semiconvergence of the the iterative method (2) has been investi-
gated in many papers (for example see [3, 5, 11, 15]). Several theorems
concerning semiconvergence of (2) have been presented by Song in [11].
Also, semiconvergence of extrapolated iterative methods have been discussed
in [9, 10, 15].

This paper is organized as follows. In Section 2, the new method is
presented and its semiconvergence and its convergence properties are given.
Numerical experiments are given in Section 3. Section 4, is devoted to some
concluding remarks.

2. New method and its semiconvergence properties
Let A be a symmetric positive semidefinite matrix. We write Eq. (1) in

the following form

αx` βx`Ax “ pα` βqx` b,

where α, β P R. Then, we define the iterative procedure

(3) pαI `Aqxm`1 “ pα` βqxm ´ βxm´1 ` b, m “ 1, 2, . . . ,

where x0 and x1 are two initial guesses and I is the identity matrix of order
n. Let α ą 0. In this case, the matrix αI `A is symmetric positive definite
and therefore, (3) can be written in the form

(4) xm`1 “ pαI `Aq
´1ppα` βqxm ´ βxm´1 ` bq, m “ 1, 2, . . . .

By some simple manipulation it can be seen that the pm` 1q-th iteration of
this procedure can be written as

#

ym “ pαI `Aq
´1ppβI ´Aqxm ´ βxm´1 ` bq,

xm`1 “ xm ` ym,
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which is equivalent to

(5)

#

ym “ pαI `Aq
´1prm ` βpxm ´ xm´1qq,

xm`1 “ xm ` ym,

where rm “ b´ Axm. In [8], Salkuyeh and Fahim have used this procedure
for refining an approximate solution of a symmetric positive definite linear
system of equations. Next, we discuss the semiconvergence of the proposed
method for solving (1) with symmetric positive semidefinite coefficient ma-
trix A. We first present the following lemma which is similar to Lemma 5.8
in [1].

Lemma 1. The second-degree equation z2 ´ rz ` s “ 0, where r and s are
real, has roots z1 and z2 with maximum moduli z0 “ maxt|z1|, |z2|u ≤ 1 if
and only if |s| ≤ 1 and |r| ≤ 1` s.

Proof. Assume first that z0 ≤ 1. Then, from z1z2 “ s, we have

|s| “ |z1||z2| ≤ z20 ≤ 1.

Now we consider two following cases:
Case 1. If r2 ă 4s, then

|r| ă 2
?
s ≤ 1` s.

Case 2. If r2 ≥ 4s, then

z0 “
1

2
|r| `

1

2
|r2 ´ 4s|

1
2 .

We claim that |r| ≤ 1` s. Otherwise |r| ą 1` s, and we have

z0 “
1

2
|r| `

ˇ

ˇ

ˇ

ˇ

ˆ

r

2

˙2

´ s

ˇ

ˇ

ˇ

ˇ

1
2

ą
1

2
p1` sq `

ˇ

ˇ

ˇ

ˇ

ˆ

1` s

2

˙2

´ s

ˇ

ˇ

ˇ

ˇ

1
2

“ 1,

which is a contradiction.
Conversely, assume that |s| ≤ 1 and |r| ≤ 1` s. Then

z0 “
1

2
|r| `

ˇ

ˇ

ˇ

ˇ

ˆ

r

2

˙2

´ s

ˇ

ˇ

ˇ

ˇ

1
2

≤ 1

2
p1` sq `

ˇ

ˇ

ˇ

ˇ

ˆ

1` s

2

˙2

´ s

ˇ

ˇ

ˇ

ˇ

1
2

“
1

2
p1` sq `

1

2
|1´ s| “ 1.

So the proof is completed.
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Now, we state and prove the following theorem.

Theorem 1. Let A be a symmetric positive semidefinite matrix and α ą 0.
Then the iterative method defined by p5q is semiconvergent with any initial
guesses x0 and x1 if |β| ă α.

Proof. Consider the iterative method (5) and suppose that

wm`1 “

˜

xm`1

xm

¸

.

Then, we have

wm`1 “

ˆ

pα` βqpαIn `Aq
´1

´βpαIn `Aq
´1

In 0

˙

wm `

ˆ

pαIn `Aq
´1b

0

˙

,

or

(6) wm`1 “ Awm ` C, m “ 0, 1, . . . ,

where

A “

˜

pα` βqpαIn `Aq
´1 ´βpαIn `Aq

´1

In 0

¸

, C “

˜

pαIn `Aq
´1b

0

¸

,

in which In is the identity matrix of order n. It is easy to see that charac-
teristic polynomial of A can be written as

ź

λPσpAq

det

˜

α`β
α`λ ´ µ ´

β
α`λ

1 ´µ

¸

“ 0,

where µ P σpAq (see [1], page 173). This relation shows that for every
λ P σpAq, we have

(7) µ2 ´ γµ` δ “ 0,

where

γ “
α` β

α` λ
, δ “

β

α` λ
.

Since the eigenvalues of A are nonnegative, from |β| ă α we obtain

|δ| “
|β|

α` λ
ă

α

α` λ
≤ 1,

and

|γ| “

ˇ

ˇ

ˇ

ˇ

α` β

α` λ

ˇ

ˇ

ˇ

ˇ

≤ α` β

α` λ
“

α

α` λ
`

β

α` λ
≤ 1` δ.

Hence, according to Lemma 1, we have

(8) maxt|µ1|, |µ2|u ≤ 1,
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where µ1 and µ2 are the roots of (7). Now, let

µ “ eiθ “ cos θ ` i sin θ

be a root of (7) where i is the imaginary unit. Substituting this into Eq. (7),
yields

(9) sin 2θ ´ γ sin θ “ 0,

and

(10) cos 2θ ´ γ cos θ ` δ “ 0,

where 0 ≤ θ ă 2π. From (9), it follows that

sin θ “ 0, or cos θ “
γ

2
.

If cos θ “ γ
2 then from (10), we see that

2 cos2 θ ´ 1´ γ cos θ ` δ “ 0ñ δ “ 1.

But, δ cannot be equal to 1, since from |β| ă α and λ ≥ 0, we have

|δ| “
|β|

α` λ
ă 1.

Now let sin θ “ 0. In this case µ “ cos θ “ ˘1. If µ “ ´1, then from (7) we
have 1 ` γ ` δ “ 0, which is impossible, since γ ≥ 0 and δ ≥ 0. Therefore,
ρpAq “ 1 and if |µ| “ 1 then µ “ 1, i.e., υpAq ă 1.

Now, it is enough to show that indexpI´Aq “ 1, or equivalently rankpI´
Aq “ rankpI ´Aq2. Let p “ 2n. We have

Ip ´A “

˜

In ´ pα` βqpαIn `Aq
´1 βpαIn `Aq

´1

´In In

¸

(11)

“

˜

pαIn `Aq
´1pA´ βInq βpαIn `Aq

´1

´In In

¸

“

˜

pαIn `Aq
´1 0

0 In

¸˜

A´ βIn βIn

´In In

¸

,

where Ir is the identity matrix of order r. Let

S “

˜

pαIn `Aq
´1 0

0 In

¸

, T “

˜

A´ βIn βIn

´In In

¸

.

Since S is a nonsingular matrix, from (11) we have

rankpIp ´Aq “ rankpST q

“ rank

˜

A´ βIn βIn

´In In

¸

“ rank

˜

A βIn

0 In

¸

“ n` rankpAq.



Iterative method for symmetric positive semidefinite linear system of equations 487

On the other hand,

rankpI ´Aq2 “ rankpST ST q “ rankpT ST q.
Straightforward computation reveals that

T ST “

˜

pA´βInqpαIn`Aq
´1pA´βInq´βIn βpA´βInqpαIn`Aq

´1`βIn

´pαIn`Aq
´1pA´βInq´In ´βpαIn`Aq

´1`In

¸

.

Since A´ βIn commutes with pαIn `Aq´1, it follows that

T ST “

˜

pαIn `Aq
´1pA´ βInq

2 ´ βIn βpαIn `Aq
´1pA´ βInq ` βIn

´pαIn `Aq
´1pA´ βInq ´ In ´βpαIn `Aq

´1 ` In

¸

“

˜

pαIn `Aq
´1 0

0 pαIn `Aq
´1

¸

ˆ

˜

pA´ βInq
2 ´ βpαIn `Aq βpA´ βInq ` βpαIn `Aq

´pA´ βInq ´ pαIn `Aq ´β ` pαIn `Aq

¸

“

˜

pαIn `Aq
´1 0

0 pαIn `Aq
´1

¸

ˆ

˜

A2 ´ 3βA` βpβ ´ αqIn 2βA` βpα´ βqIn

´2A` pβ ´ αqIn A` pα´ βqIn

¸

.

Assume that Ri and Ci denote the ith block-row and block-column of the
matrix A, respectively. Then, we have

rankpT ST q

“ rank

˜

A2 ´ 3βA` βpβ ´ αqIn 2βA` βpα´ βqIn

´2A` pβ ´ αqIn A` pα´ βqIn

¸

R1:“R1´βR2
ÝÑ

“ rank

˜

A2 ´ βA βA

´2A` pβ ´ αqIn A` pα´ βqIn

¸

C1:“C1`C2
ÝÑ

“ rank

˜

A2 βA

´A A` pα´ βqIn

¸

C2:“C1`C2
ÝÑ

“ rank

˜

A2 βA`A2

´A pα´ βqIn

¸

C1:“C1`
1

α´β
AˆC2

ÝÑ

“ rank

˜

A2p α
α´β In `Aq βA`A2

0 pα´ βqIn

¸

“ n` rankpA2q “ n` rankpAq.
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Here, it is mentioned that rankpAq “ rankpA2q and α ´ β ‰ 0. Therefore,
the proof of this theorem is completed.

For β “ 0, Eq. (5) is reduced to

(12)

#

ym “ pαI `Aq
´1rm,

xm`1 “ xm ` ym,

which is equivalent to the method presented by Wu et al. in [13] for refining
an approximate solution of ill-conditioned symmetric positive definite linear
system of equation. According to Theorem 1, this method is semiconvergent
with any initial guess x0 for symmetric positive semidefinite linear system
of equations. In practice, for an initial guess x0, we first compute x1 us-
ing (12) and then xm, m “ 2, 3, . . . , are computed via (5). Moreover, the
computation of ym in (12) are done by the Cholesky factorization of αI `A.

3. Numerical experiments
All the numerical results presented in this section were computed by a

MATLAB code in double precision. We use
}rm}2
}r0}2

ă 10´10,

as the stopping criterion, where rk “ b´Axk. For each example, we report
the forward stability factors (see [4], for more details) for the computed
solutions xm and the exact solution x˚ to (1), i.e.

ηm “
}xm ´ x˚}2
κpAq}x˚}2

,

where

(13) κpAq “ }A}2}A
:}2,

in which A: is the pseudoinverse (the Moore-Penrose inverse) of A [6].

Example 1. Consider the linear system of equations Ax “ b, where

A “

¨

˚

˚

˚

˚

˚

˚

˝

3 1 0 0 1

1 4 1 1 1

0 1 1 1 1

0 1 1 1 1

1 1 1 1 3

˛

‹

‹

‹

‹

‹

‹

‚

, b “

¨

˚

˚

˚

˚

˚

˚

˝

5

8

4

4

7

˛

‹

‹

‹

‹

‹

‹

‚

.

The matrix A is symmetric positive semidefinite with κpAq “ 9.90 and b “
Ap1, 1, 1, 1, 1qT . Hence, this system is solvable and x˚ “ p1, 1, 1, 1, 1qT is
a solution of this system. Let x0 be the zero vector, α “ 0.5 and β “ 0.1. In



Iterative method for symmetric positive semidefinite linear system of equations 489

this case, the method is semiconvergent in 17 iterations, and the approximate
solution is

x17 “

¨

˚

˚

˚

˚

˚

˚

˝

0.99999999966640

1.00000000029093

0.99999999942429

0.99999999942429

1.00000000050225

˛

‹

‹

‹

‹

‹

‹

‚

.

Here we have η17 “ 4.76 ˆ 10´11. For the same initial guess, α “ 0.5 and
β “ 0, the method is semiconvergent in 25 iterations

x25 “

¨

˚

˚

˚

˚

˚

˚

˝

0.99999999965409

1.00000000030173

0.99999999940301

0.99999999940301

1.00000000052074

˛

‹

‹

‹

‹

‹

‹

‚

and we have η25 “ 4.94ˆ 10´11.
We now change the entry p1, 1q of A to 106. In this case, we have κpAq “

1.17 ˆ 106. All of the other assumptions are as before. The method with
α “ 0.5 and β “ 0.1 is semiconvergent in 7 iterations, and the computed
solution is

x7 “

¨

˚

˚

˚

˚

˚

˚

˝

1.00000000004902

0.99998472311991

1.00004250039264

1.00004250039264

0.99996625348584

˛

‹

‹

‹

‹

‹

‹

‚

.

Here, the forward stability factor is η7 “ 2.70 ˆ 10´11. If we set α “ 0.5
and β “ 0 then the method is semiconvergent in 9 iterations and we have
η9 “ 2.52 ˆ 10´11. Moreover, the provided approximate solution by the
proposed method is

x9 “

¨

˚

˚

˚

˚

˚

˚

˝

0.99999999995425

1.00001594593278

0.99996004378370

0.99996004378370

1.00002979926269

˛

‹

‹

‹

‹

‹

‹

‚

.

An observation which can be posed here is that the computed solution for
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the latter system of linear equations is less accurate than the previous one,
since it is more ill-conditioned.
Example 2. Consider the nˆ n matrix

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1

1 2 2 1

1 2 3 2 1
. . . . . . . . . . . . . . .

1 2 3 2 1

1 2 3 2

1 2 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It can be seen that this matrix is symmetric positive semidefinite for every
n P N. Let b “ Ap1, 1, . . . , 1qT . In this case, x˚ “ p1, 1, . . . , 1qT is a solution
of the system Ax “ b. The condition number of A, number of iterations
for the semiconvergence (denoted by “Iters"), and the corresponding forward
stability factor of the proposed method with pα, βq “ p0.5, 0.45q and pα, βq “
p0.5, 0q for four values of n are given in Table 1. All of the assumptions are
as the previous example. For n “ 40, we have found that the system has an
another solution of the form

x̃˚ “
1

27
p26 27 28 26 27 28 . . . 26 27 28 26qT P R40,

and the method with the zero initial guess converges to it. Now let
x0 “ p0 1 0 1 . . . 0 1qT P R40.

In this case, with pα, βq “ p0.5, 0.45q the method converges to x˚ in 186 it-
erations (η186 “ 3.83ˆ 10´11) and with pα, βq “ p0.5, 0q it converges in 1398
iterations (η1398 “ 4.86 ˆ 10´11). As we observe, the proposed method is
quite suitable for linear system of equations with symmetric positive semidef-
inite coefficient matrix. Moreover, the proposed method is superior to the
method proposed by Wu et al. in [13].

Table 1. Numerical results for Example 2.

n 20 40 60 80
κpAq 4.80ˆ 102 1.99ˆ 103 4.52ˆ 103 7.77ˆ 103

Iters ( β “ 0 ) 385 908 2649 4202
ηm 9.26ˆ 10´11 9.71ˆ 10´11 9.81ˆ 10´11 9.86ˆ 10´11

Iters (β “ 0.45 ) 148 150 204 318
ηm 9.16ˆ 10´11 2.03ˆ 10´11 9.25ˆ 10´11 9.66ˆ 10´11
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Example 3. Let

B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1

q 0 p

0 q 0 p
. . . . . . . . .

q 0 p

1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Rnˆn,

where p, q ą 0 and p` q “ 1. This matrix is singular (see [15]). We assume
that A “ 106e1e

T
1 `B

TB, where e1 is the first column of the identity matrix
of order n, b “ Ap1, 1, . . . , 1qT , and p “ 0.5. Therefore x˚ “ p1, 1, . . . , 1qT
is a solution of this system. Obviously, A is symmetric positive semidefi-
nite. Number of iterations (“Iters”) for the semiconvergence with α “ 0.5
and three values of β (“ 0, 0.2 and 0.4 ) are given in Table 2. The con-
dition number of the matrices and the forward stability factors (in paren-
thesis) are also presented in this table. As we see the systems of linear
equations are very ill-conditioned and the method is quite suitable to solve
them.

Table 2. Numerical results for Example 3.

Iters (ηm)
n κpAq β “ 0 β “ 0.2 β “ 0.4

500 1.01ˆ 1011 215(4.34ˆ 10´14) 129(4.35ˆ 10´14) 42(4.41ˆ 10´14)
1000 4.05ˆ 1011 215(7.67ˆ 10´15) 129(7.68ˆ 10´15) 42(7.79ˆ 10´15)
1500 9.11ˆ 1011 215(2.78ˆ 10´15) 129(2.78ˆ 10´15) 42(2.83ˆ 10´15)
2000 1.62ˆ 1012 215(1.36ˆ 10´15) 129(1.36ˆ 10´15) 42(2.38ˆ 10´15)

4. Conclusion
In this paper, we have presented a new two-step iterative method for

solving system of linear equations with symmetric positive semidefinite coef-
ficient matrix. The proposed method involves two parameters and we have
found a region for the semiconvergence of the method. Numerical results
presented in this paper show that the method is efficient.
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