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AN ITERATIVE METHOD FOR SYMMETRIC POSITIVE
SEMIDEFINITE LINEAR SYSTEM OF EQUATIONS

Abstract. In this paper, a new two-step iterative method for solving symmetric
positive semidefinite linear system of equations is presented. A sufficient condition for the
semiconvergence of the method is also given. Some numerical experiments are presented
to show the efficiency of the proposed method.

1. Introduction
Consider the linear system of equations

(1) Az =0,

where A € R™*" is singular and z,b € R" with b known and x unknown.
We assume that the system is solvable, i.e., it has at least one solution.
We frequently meet these kind of linear systems when we solve the actual
problems in statistics, economics, differential equations, image and signal
processing. For example, finite difference formulations of the Neumann prob-
lem and those for elastic bodies with free surfaces and Poisson’s equation on
a sphere and with periodic boundary conditions result in singular linear sys-
tem of equations |2|. Also, the stationary probability distribution vector of
a finite homogeneous Markov chain is a solution of a singular linear system
of equations |2, [10]. Motivated by work in this area, we focus our attention
on linear system of equations with symmetric positive semidefinite coefficient
matrix and propose a two-step stationary iterative method for solving .

If A is split into A = M — N, where M is nonsingular, then a stationary
iterative method for solving can be described as follows

(2) Tmy1 = M Nay, + M7, m=0,1,....
Here the matrix T = M~IN is called the iteration matrix of the method.
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It is well known that for nonsingular systems, the iterative method is
convergent if the spectral radius of T is less than 1, i.e., p(T) < 1. In this
case, for any initial guess xy the method converges to the exact solution of
[1, 2 6, 7, |12]. For singular systems, the method is called semiconvergent if
converges to a solution of for every initial guess zg. By [2], it is well
known that the iterative method is semiconvergent if and only if
o p(T) =1
e index(I —T) = 1, which means that
rank(I — T) = rank(I — T)?;
o if yeo(T) with |pu| =1, then u =1, i.e.,
u(T) ={[pl,pea(T),p+1} <1,
where o(T) is spectrum of 7.

The semiconvergence of the the iterative method has been investi-
gated in many papers (for example see |3, 5, 11, [15]). Several theorems
concerning semiconvergence of have been presented by Song in [11].
Also, semiconvergence of extrapolated iterative methods have been discussed
in |9} |10} [15].

This paper is organized as follows. In Section 2, the new method is
presented and its semiconvergence and its convergence properties are given.

Numerical experiments are given in Section 3. Section 4, is devoted to some
concluding remarks.

2. New method and its semiconvergence properties
Let A be a symmetric positive semidefinite matrix. We write Eq. in
the following form

axr + Br + Az = (o + B)z + b,
where «a, 8 € R. Then, we define the iterative procedure
(3) (al + A)zms1 = (@ + B)Tm — Brm—1 + b, m=12...,

where xg and ;1 are two initial guesses and [ is the identity matrix of order
n. Let a > 0. In this case, the matrix af + A is symmetric positive definite
and therefore, (3]) can be written in the form

(4) Tm+1 = (OZI—FA)_l((OZ—Fﬁ)l‘m—ﬁiBm,l—I—b), m = 172a""

By some simple manipulation it can be seen that the (m + 1)-th iteration of
this procedure can be written as

{ Ym = (@ + A" ((BI — Az, — 1 +b),

Tm+1 = Tm + Ym,
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which is equivalent to

{ Ym = (oI + A) (1 + B(Tm — Tm-1)),

Tm+1 = Tm + Ym,

(5)

where 7, = b — Azy,. In [8], Salkuyeh and Fahim have used this procedure
for refining an approximate solution of a symmetric positive definite linear
system of equations. Next, we discuss the semiconvergence of the proposed
method for solving (1) with symmetric positive semidefinite coefficient ma-
trix A. We first present the following lemma which is similar to Lemma 5.8
in [1].

LEMMA 1. The second-degree equation z° —rz + s = 0, where r and s are
real, has roots z1 and ze with mazimum moduli zg = max{|z1|, |z2|} < 1 if
and only if |s| <1 and |r| <1+ s.

2

Proof. Assume first that zg < 1. Then, from 2129 = s, we have
2
|s| = |z1l[z2] < 25 < 1.

Now we consider two following cases:
Case 1. If r? < 4s, then

Ir] < 24/s<1+s.
Case 2. If r? > 4s, then
1 1
zp = §|r\ + 5\7“2 —43]%.

We claim that |r| < 1+ s. Otherwise |r| > 1 + s, and we have

2
Lo l(2) =
L1 A
079 2

1 1 2
>2(1+s)+‘< J2FS> —s

which is a contradiction.
Conversely, assume that |s| <1 and |r| <1+ s. Then

2
zzl\r]—i— ) -
07 9 2

1 1 2
2(1+s)+‘( ;S> -5

1 1

So the proof is completed. =

1
2

N

N[

IN
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Now, we state and prove the following theorem.

THEOREM 1. Let A be a symmetric positive semidefinite matriz and a > 0.
Then the iterative method defined by 18 semiconvergent with any initial
guesses xy and x1 if |5] < a.

Proof. Consider the iterative method and suppose that

Tm+1
Wm+1 = .
Tm
Then, we have

W1 = <(a+ﬁ)(a1n + A7 —Bad, + A)” )wm n <(odn + A)” b) ’

I, 0 0
or
(6) Wmt1 = Awy +C, m=0,1,...,
where
e ((a + B)(al, + At —B(al, + A)1> e <(a[n + A)1b> |
I, 0 0

in which I, is the identity matrix of order n. It is easy to see that charac-
teristic polynomial of A can be written as

atf __B_
[] det (w a a“) =0,
Aea(A) 1 —H

where p € o(A) (see |1], page 173). This relation shows that for every
A€ o(A), we have

(7) PP —yu+6=0,
where
_a+p B
a+ N a+ A
Since the eigenvalues of A are nonnegative, from || < a we obtain
51—

a+XA a4+
and
a+f a+f Qo I}
M=oy Sarr " aaxtarastt

Hence, according to Lemma 1, we have

(8) max{] ], [pal} <1,
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where p1 and po are the roots of . Now, let

O = cosf +isinf

p=e
be a root of where ¢ is the imaginary unit. Substituting this into Eq. ,
yields

9) sin26 — ysiné = 0,
and
(10) cos 26 —ycosh + 6 =0,

where 0 < 6 < 27. From @D, it follows that
sind =0, or cosf = %
If cos§ = % then from , we see that
2c082°0 —1—~cosl+0=0=08=1.
But, § cannot be equal to 1, since from |5| < o and A > 0, we have

_ 18l
|6]—a+>\<1.

Now let sinf = 0. In this case g = cos@ = +1. If u = —1, then from (7)) we
have 1 + v + § = 0, which is impossible, since v > 0 and § > 0. Therefore,
p(A) =1 and if |u| =1 then p =1, i.e., v(A) < 1.

Now, it is enough to show that index(I—.A) = 1, or equivalently rank(I—
A) = rank(I — A)?. Let p = 2n. We have

(11) I — A= I, — (a+ B)(al, + A~ Blad, + A)~!
P L A
_ (@l + HTHA= L) Slaly +A)7
_ - h

(L, +A)7 0\ [A-BL B
B 0 I, -1, I, )’

where I, is the identity matrix of order r. Let

S_(mh+A)10>7 T_(A—Mﬁﬁ%).
0 I, -1, I,

Since S is a nonsingular matrix, from we have
rank(I, — A) = rank(ST)

A—-pI, B, A Bl
= rank b b = rank b =n + rank(A).
-1, I, 0 I,
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On the other hand,
rank(I — A)? = rank(STST) = rank(TST).
Straightforward computation reveals that

(A=BL)(aln+A) " (A=BL) L, B(A=PL)(al,+A) "'+,
_(aln—l_A)il(A_BIn)_In —B(Oéfn-l—A)*l—i—[n '
Since A — 1, commutes with (al, + A)*l, it follows that

(Oéln + A)il(A - BIn)Q - /BIn B(ajn + A)il(A - /BIn> + BIn
—(ady, + A)7YWA - BL,) — I, —B(al, + AL+ 1,

[ (aly+ A)7! 0
a 0 (al, + A)~!

y ((A — B1n)* = Blaly + A) B(A— L)+ Blody + A))

TST = (

7'87':(

—(A - B1L,) — (al, + A) B+ (al, + A)

| (oL, + AT 0
a 0 (al, + A)~!

(A 3BAFB(B— ) 28A+ Bla—B),
—2A+ (B —a)l, A+ (a—pP)I, '
Assume that R; and C; denote the ith block-row and block-column of the
matrix A, respectively. Then, we have
rank(TST)

= rank A? = 3BA+ B(B — ), 2BA+ Bla—B)I, Ri=R1-fR,
—24+ (8- o)l A+ (a-p)I,

_ ( A2 — BA BA ) C1:=C14+Cqo
= rank —
24+ (B-a), A+ (a—pP)I,

= rank A* A Coi=C1iCh
-A A+ (a-pB)I,
A% BA4 A? C1:=C1+;15A%Cy
= rank —
—A (a - ﬁ)In
A2, + A) BA+ A2
= rank o—p
0 (a - /B)In
= n + rank(A?) = n + rank(A).
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Here, it is mentioned that rank(A) = rank(A?) and a — 3 # 0. Therefore,
the proof of this theorem is completed. =

For g =0, Eq. is reduced to
{ Ym = (al + A)7lr,,

Tm+1 = Tm + Ym,

(12)

which is equivalent to the method presented by Wu et al. in [13] for refining
an approximate solution of ill-conditioned symmetric positive definite linear
system of equation. According to Theorem 1, this method is semiconvergent
with any initial guess x( for symmetric positive semidefinite linear system
of equations. In practice, for an initial guess xg, we first compute x; us-
ing and then z,,, m = 2,3,..., are computed via . Moreover, the
computation of y,, in are done by the Cholesky factorization of al + A.

3. Numerical experiments
All the numerical results presented in this section were computed by a
MATLAB code in double precision. We use
|72
Iroll2
as the stopping criterion, where rp, = b — Axy. For each example, we report

the forward stability factors (see |4], for more details) for the computed
solutions x,, and the exact solution x. to , ie.

< 10719,

Lo =l
" Al

where
(13) R(A) = |All2| AT,
in which AT is the pseudoinverse (the Moore-Penrose inverse) of A [6].

ExXAMPLE 1. Consider the linear system of equations Ax = b, where

31 0 01 5
14 1 11 8
A=10 1 1 1 1], b=14
01 1 11 4
11 1 1 3 7

The matrix A is symmetric positive semidefinite with x(A) = 9.90 and b =
A(1,1,1,1,1)T. Hence, this system is solvable and =, = (1,1,1,1,1)7 is
a solution of this system. Let xy be the zero vector, « = 0.5 and 5 = 0.1. In
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this case, the method is semiconvergent in 17 iterations, and the approximate
solution is
0.99999999966640

1.00000000029093
r17 = | 0.99999999942429
0.99999999942429
1.00000000050225

Here we have 117 = 4.76 x 1071, For the same initial guess, a = 0.5 and
B =0, the method is semiconvergent in 25 iterations

0.99999999965409

1.00000000030173

To5 = | 0.99999999940301

0.99999999940301

1.00000000052074

and we have 75 = 4.94 x 10711,

We now change the entry (1, 1) of A to 10°. In this case, we have k(A) =
1.17 x 108. All of the other assumptions are as before. The method with
a = 0.5 and f = 0.1 is semiconvergent in 7 iterations, and the computed

solution is
1.00000000004902
0.99998472311991
7 = | 1.00004250039264
1.00004250039264
0.99996625348584
Here, the forward stability factor is n; = 2.70 x 1071, If we set o = 0.5
and 8 = 0 then the method is semiconvergent in 9 iterations and we have

ny = 2.52 x 1071, Moreover, the provided approximate solution by the
proposed method is

0.99999999995425
1.00001594593278
x9 = | 0.99996004378370
0.99996004378370
1.00002979926269

An observation which can be posed here is that the computed solution for
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the latter system of linear equations is less accurate than the previous one,
since it is more ill-conditioned.

ExXAMPLE 2. Consider the n x n matrix

1 1 1
1 2 2 1
1 2 3 2 1
A=
1 2 3 2 1
2 3 2
1 2 2

It can be seen that this matrix is symmetric positive semidefinite for every
neN. Let b= A(1,1,...,1)T. In this case, z, = (1,1,...,1)T is a solution
of the system Az = b. The condition number of A, number of iterations
for the semiconvergence (denoted by “Iters"), and the corresponding forward
stability factor of the proposed method with (o, §) = (0.5,0.45) and (o, 8) =
(0.5,0) for four values of n are given in Table 1. All of the assumptions are
as the previous example. For n = 40, we have found that the system has an
another solution of the form

= 2%(26 27 28 26 27 28 ... 26 27 28 26)T e R,

and the method with the zero initial guess converges to it. Now let
zo=(0101...01)T eR™,

In this case, with (a, 8) = (0.5,0.45) the method converges to x in 186 it-
erations (1186 = 3.83 x 10711) and with («, 8) = (0.5,0) it converges in 1398
iterations (11398 = 4.86 x 107!1). As we observe, the proposed method is
quite suitable for linear system of equations with symmetric positive semidef-
inite coeflicient matrix. Moreover, the proposed method is superior to the
method proposed by Wu et al. in [13].

Ty

Table 1. Numerical results for Example 2.

n 20 40 60 80
k(A) 4.80 x 102 1.99 x 10° 4.52 x 10? 7.77 x 10°
Iters (3 =0) 385 908 2649 4202

N 9.26 x 107" 9.71 x 107" 9.81 x 107 9.86 x 107!
Iters (8 = 0.45 ) 148 150 204 318

N, 9.16 x 107" 2.03x 107" 9.25 x 107 9.66 x 107!
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EXAMPLE 3. Let

o O
K O =
o3

B = e R™"

q 0 p
1 0

where p,q > 0 and p + ¢ = 1. This matrix is singular (see |15]). We assume
that A = 106616{ + BT B, where e; is the first column of the identity matrix
of order n, b = A(1,1,...,1)T, and p = 0.5. Therefore z, = (1,1,...,1)T
is a solution of this system. Obviously, A is symmetric positive semidefi-
nite. Number of iterations (“Iters”) for the semiconvergence with a = 0.5
and three values of 5 (= 0,0.2 and 0.4 ) are given in Table 2. The con-
dition number of the matrices and the forward stability factors (in paren-
thesis) are also presented in this table. As we see the systems of linear
equations are very ill-conditioned and the method is quite suitable to solve
them.

Table 2. Numerical results for Example 3.

Tters (nm)

n K(A) B=0 B =02 B =04
500  1.01 x 10" | 215(4.34 x 107*)  129(4.35 x 1071*)  42(4.41 x 107*)
1000 4.05 x 10 | 215(7.67 x 107'%)  129(7.68 x 107'°)  42(7.79 x 107'%)
1500  9.11 x 10 | 215(2.78 x 107'%)  129(2.78 x 107 '%)  42(2.83 x 10~ '?)
2000 1.62 x 10'% | 215(1.36 x 107%)  129(1.36 x 107'°)  42(2.38 x 10~ %)

4. Conclusion

In this paper, we have presented a new two-step iterative method for
solving system of linear equations with symmetric positive semidefinite coef-
ficient matrix. The proposed method involves two parameters and we have
found a region for the semiconvergence of the method. Numerical results
presented in this paper show that the method is efficient.
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