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COMMON FIXED POINT OF FOUR MAPPINGS
SATISFYING IMPLICIT GENERALIZED WEAK
CONTRACTIVE TYPE CONDITION

Abstract. In this paper, common fixed point for four maps using an implicit con-
tractive condition in a complete metric space is proved. Some periodic point results for
such mappings are also obtained. These results extend and generalize several comparable
results in the current literature.

1. Introduction and preliminaries

Alber and Guerre-Delabriere |3| defined weakly contractive maps on
a Hilbert space and established a fixed point theorem for such maps. After-
wards, Rhoades [17] using the notion of weakly contractive maps, obtained
a fixed point theorem in a complete metric space. Dutta et al. |9] generalized
the weak contractive condition and proved a fixed point theorem for a self-
map, which in turn generalizes Theorem 1 in [17] and the corresponding re-
sult in |3]. The study of common fixed points of mappings satisfying certain
contractive conditions has been at the center of rigorous research activity.
The area of common fixed point theory, involving four single valued maps,
began with the assumption that all of the maps commuted. Introducing
weakly commuting maps, Sessa |19] generalized the concept of commuting
maps. Then Jungck generalized this idea, first to compatible mappings [12]
and then to weakly compatible mappings |13]. After then, many fixed point
results have been obtained using weakly compatible mappings on ordinary
metric spaces, (see |2, 6, 7], [21]). On the other hand, Beg and Abbas [5]
obtained a common fixed point theorem extending weak contractive condi-
tion for two maps. In this direction, Zhang and Song [22] introduced the
concept of a generalized ¢-weak contraction condition and obtained a com-
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mon fixed point for two maps. Recently, Doric [8] proved a common fixed
point theorem for generalized (1), p)-weak contractions. The purpose of this
paper is to obtain a common fixed point theorem for four maps that satisfy
contractive condition using implicit condition. Our result extend, unify and
generalize the comparable results in ( [1, 5, [8, 9] and [22]).

For the sake of convenience, we gather some basic definitions and set out
our terminology needed in the sequel.

DEFINITION 1.1. Let f,g: X — X. A point x € X is called fixed point of
fif f(x) = x; coincidence point of a pair (f,g) if fr = gx; common fized
point of a pair (f,g) if x = fo = gz.

F(f),C(f,g) and F(f,g) denote set of all fixed points of f, set of all
coincidence points of the pair (f, g) and the set of all common fixed points
of the pair (f, g), respectively.

We give here only the definition of a weakly compatible map.

DEFINITION 1.2. Let f and g be mappings from a metric space (X, d) into
itself. f and g are said to be weakly compatible if they commute at their
coincidence points, that is, fx = gx for some x € X implies that fgx = gfzx.

DEFINITION 1.3. Define & = {¢ : [0,00) — [0,00) : ¢ is lower semi
continuous, ¢(t) > 0 for all t > 0, ¢(0) = 0} and ¥ = {4 : [0,0) — [0,0) :
1 is continuous and nondecreasing mapping with ¥(¢) = 0 if and only if
t = 0}.

For other related definitions, results and their applications, we refer to
[4], [11], [16], [20], and references mentioned therein.

2. Main results

In what follows, N is the set of all natural numbers and R is the set of
all nonnegative real numbers.

A class of implicit relation. Let O be the set of all continuous functions
0 : R*® - R*, increasing in any coordinate and

0(s, s, s,as,Bs) = s for every «, 5 > 0 such that a + = 2,

0(x,y, z,u,v) > 0 if at least one of the z,y, z,u and v is non zero.

EXAMPLE 2.1. Let 6 : R*® — R* is define by

. U+ v
(i) O(x,y, z,u,v) = max{z,y,z, —}.

rt+yt+tzt+tut+v
5 .

THEOREM 2.2. Let (X,d) be a complete metric space. If f,g,S and T are
self maps of X satisfying:

(ii) O(x,y, z,u,v) =
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(i) f(X) < T(X), g(X) < S(X) and one of the ranges f(X), g(X), T(X)
and S(X) is closed,
(ii) The pairs (f,S) and (g,T) are weakly compatible,

(iii)
(2.1) P(d(fz, 9y)) < P(M(z,y)) — p(M(z,y)),
for each x,ye X, p e ®, p € ¥ holds, where

d(Sz,Ty), d(fz,Sz), )

M(z,y) =146 (
d(gy, Ty), d(Sx,gy),d(fz,Ty)

for every 0 € ©. Then, f,g,S andT have a unique common fixed point
m X.

Proof. Let zy be an arbitrary point in X. Choose a point z; € X such that
1Yo = fzo = Tx1. This can be done, since the range of T' contains the range
of f. Similarly, a point xo € X can be chosen such that y; = gr1 = Sxzo
as g(X) € S(X). Continuing this process, we obtain a sequence {y,} in X
such that yon, = fwo, = Twon1 and Yon11 = gT2n1 = Swopn 2.

First, we show that {y,} is a Cauchy sequence in X. Consider two cases.

1. If for some n, ¥, = Yn+1, then y,11 = ypyo. If not, then for n = 2m,
where m € N, we have

M(z2m42, T2m+1)
_ (d(5$2m+2,Tﬂ?2m+1), d(fram+2, STom+2), )

d g$2m+1,T932m+1), d(5$2m+279$2m+1)7 d(f$2m+2,Tl“2m+1)

(
_9 d(Y2m+1:Y2m), d(Y2m+25Y2m+1),
d(Y2m+1,Y2m), AY2m+1, Y2m+1), A(Y2m+2, Y2m)

_ 0, d(Y2m+2, Y2m+1)s
O> Oad(y2m+2>y2m)

Since d(yom, Y2m+2) < d(Y2m> Yom+1) + d(Y2m+1, Yom+2) = d(Y2m+1, Y2m+2)-
By property of # and using the above inequality we obtain that

d(Yom+2, Yom+1)s Ad(Y2m+2, Y2m+1); )

M (x2m+2, Tam1) < 0
" " d(Y2m+2, Y2m+1), AY2m+2, Yam+1), Ad(Y2m+2; Y2m+1)

= d(Y2m+2, Y2m+1)-
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Now (2.1) gives

Y(d(yam+2, Yom+1)) = Y(d(fr2m+2, gT2m+1))
< P(M(z2mt2, Tam+1)) — (M (22m+2, Tom+1))
< Y(d(yam+2; Yom+1)) — (M (T2m+2, T2m+1))
< Y(d(y2m+2; Y2m+1)),

which is a contradiction. Hence we must have y,+1 = yn42, when n is even.
Following the similar arguments to those given above, it is noted that this
equality holds in case n is odd. Therefore, in any case for all those n for
which y, = yn+1 holds, we always obtain y,11 = yn+2. Repeating above
process inductively, one obtains 4, = y,.%, for all £ > 1. Therefore, in this
case {y,} turns out to be eventually a constant sequence and hence a Cauchy
one.

2. If y, # yns1, for every positive integer n, then for n = 2m + 1, for
some m € N|
M(z2m42, T2m+1)
) d(S:U2m+27 T1U2m+1), d(f132m+2, S.’L‘Qm+2),
d(922m+1, Txom+1), d(STami2, 9%T2m+1), d(fromr2, Txom1)
_ o [ Wrmr1,v2m), d(y2m+2, Yom1),
d(Y2m+1,Y2m), 0, d(Y2m+2:Y2m)
If d(yom, Yom+1) < d(Y2m+1,Y2m+2), by property 6 and using the above in-
equality we get
M(x2m42, T2m+1)

d(Y2m+1, Yom+2), d(Y2m+1,Y2m+2), )
d(Y2m+1, Y2m+2), 0, d(Y2m; Yom+1) + d(Y2m+1, Yom+2)
<9 (d(92m+17y2m+2)7 d(Y2m+1, Y2m+2), )
— \d(y2m+1:y2m+2); 0,2d(Yam+1, Yom+2)
= d(Y2m+1, Y2m+2)-
From (2.1), we obtain

V(d(yam+2, Yom+1)) = V(d(fr2m+2, 9T2m+1))
< P(M(z2m+2, Tam+1)) — (M (T2m+2, Vom+1))
< Y(d(y2m+2, Y2m+1)) — P(M (T2m+2, Tam+1))
< Y(d(y2m+2; Y2m+1));
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which gives a contradiction. Thus d(yam, Y2m+1) > d(Y2m+1, Y2m+2), by prop-
erty 6 we get

(2'2) M(x2m+2ax2m+1)

<0 (d(y2m+17y2m+2)7 d(Y2m+1, Y2m+2), )
B )y 0,d(Y2m, Yom+1) + d(Yom+1, Y2m+2)
<9 (d(meay2m+l)v d(Y2m, Y2m+1), )

a d(y2m: Y2m+1)s 0,2d(Y2m, Y2m+1)

= d(y2m, Y2m+1)-

d(3/2m+1, Yom+2

Therefore

M (z2m+2, T2m+1) < d(Y2m+1, Y2m)-

Hence from (2.1), we get

Y(d(Yn+1,Yn)) = Y(d(fTn+1, 920n))

< w(M(an, In ) - @(M(xn—i-l, xn))

< P(M(T2m+2, Tam+1)) — P(M (T2m42, Tam))
< (d(Yam+1,Y2m)) — (M (T2m+2, T2m+1))
< (d(Yn, Yn—-1))-

Following the similar arguments to those given above, we conclude the same
inequality when n is taken as even integer. Consequently, we have

,l/}(d(yn-‘rla yn)) < w(d(ynu yn—l)), fOI' all n Z 17

which further implies that d(yn+1, Yn) <d(Yn, yn—1). Therefore, {d(yn+1,yn)}
is a strictly decreasing sequence which is bounded below by 0. Therefore
there exists r > 0 such that d(yn+1,yn) — 7 as n — oco. From (2.2), for
T = Tpy1 and y = x, for n = 2m + 1, we obtain

M(xn+17 mn) = M<$2m+27 x2m+1)

<9 d(Y2m+1,Y2m), d(Y2m+2,Yo2m+1),
N d(Yom+1,Y2m), 0,2d(Y2m+1,Yom)

Therefore,
r, T
im M(zpi1,2,) <0 =
n—00 (Tn+1,n) <T7 0,27")
Thus
(2.3) lim (M (2n+1,25)) < 9(r).

n—o0
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Now (2.1), (2.3) and lower semicontinuity of ¢ give

lim sup ¥(d(Yn+1,Yn))

n—0o0

< lim sup w(M(xn-&-l; xn)) - hmniggo 90(M(xn+17 xn))

n—o0

and ¥ (r) < (r) — ¢(r). Therefore r = 0, and

(2.4) Jim d(yni1,9n) = 0.

Because of (2.4), to show {y,}n>1 to be a Cauchy sequence in X, it is suffi-
cient to show that {y2,}n>1 is Cauchy in X. If not, there is an ¢ > 0, and
there exists even integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > k such
that

d(an(k:)ay2m(k)) > e and d(an(k)vam(k)—Q) < €.
Now (2.4) and inequality
€ < d(Yan(k) Yom(k))
< d(Yan(k) Yomk)—2) + AY2m k)15 Yom(k)—2) + AY2mk)—15 Y2m(k))

implies that

2. lim d =

(2.5) Jim d(yam(r): Yan(r) = €
Also, (2.4) and inequality

A(Yam k) Y2nk) < AYam(k)> Yomk)+1) + A Y2m(k)+15 Yan(k))
gives that e < klim d(Y2m(k)+1> Y2n(k)), While (2.5) and inequality
—00

A(Yam(k)+15 Y2n(k) < AY2mk)+1> Y2mk)) + AYamk)s Y2n(k))
yields limy—,c0 d(Yom (k) +1 Y2n(r)) < €. Hence
(26) klggo d(me(k)-‘rlvan(k)) =€
Similarly, we obtain
(2.7) kh_{rolo d(f‘/Qm(k))an(k)fl) = kh_{lslo d(QZn(lc)fly?hm(k)Jrl) =€
Now from definition of M and from (2.4), (2.5), (2.6), (2.7), replacing x,y
M(xZn(k) ) 1’2m(k)+1)
_ of W5%200 T22mmy+1),  d(f@an(w), STaner)),
d(9T2m k) +1: TPom(k)+1)s ASTank)s 9T2mk)+1)s A Ton(k), TTom (k) +1)

(d(yZn E)—1> Yom(k )) d(an(k)J/Qn(k)fl)y

( )

(Yo (k +lay2m(k)) d(?/Qn(kz)—hme(k)H),d(y%(k),y2m(k))



402 S. Sedghi, N. Shobe, M. Abbas

Thus

€, €
lim M < ) =e
kLHolo (x2n(k)7x2m(k)+l) = 0( > €

€, €€
Putting = = Zg,,(x) and ¥ = Top (k)41 in (2.1), we obtain

V(A(Y2n(k)s Yomr)+1)) = V(A(fTon k), 9T2m(k)+1))

<M (952n $2m(k)+1)) - @(M(xzn(k)axm(k)ﬂ)),

which, on taking limit as k — oo, implies that

(2.8) ¥(e) < P(e) — @(e).
As (2.8) gives a contradiction when € > 0, it follows that {y2, }»>1 is a Cauchy
sequence in X. Since X is complete, there exists a point z € X such that

limy, o ¥n = 2. The second step of the proof is to show that z is the fixed
point for maps f and S. It is clear that

lim y, = lim yo, = lim yo,41 = lim fzo, = lim gxo,41
= lim Szo,19 = lim Rro,i1 = 2.

Assuming S(X) is closed, there exists u € X such that z = Su. We claim
that fu = z. If not then

d(Su, Tront1), d(fu, Su),

d(gzont1, Txons1), d(Su, groni1), d(fu, Txons1)
-9 d(ZaTx2n+1)a d(f )

d(922n+1, Tont1), d(z,922n11), d(fu, Tro,41)

M (u, xon4+1) = 0 (

As n — o0 we have

lim M (u,zop4+1) =0 (

n—oo

Since limy, o0 M (u, Top+1) # 0, from (2.1) we obtain
Y(d(fu, grans1)) < V(M (u, xont1)) — (M (u, 22n41)),

which, on taking limit as n — oo, gives
w(d(f% Z)) S w(d(f% Z)) - QO(nh_I)IOlOM(U, x2n+1))7

a contradiction with d(fu,z) > 0. Hence fu = z. Therefore fu = Su = z.
Since the maps f and S are weakly compatible, we have fz= fSu=Sfu=S5z
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Next we claim that fz = z. If not, then

d(Sz,Tron+1), d(fz,5z),

M(z, z9ps1) = 6

(2, %2n41) (d (5z,9%2n41),d (fZ,Tﬂﬁan))
(
(

w (d f2.Toone),  d(fz,f2),
d

gTon+1, Tan-‘rl)y d fZ 9$2n+1) (fZ, Tx2n+1)> .
As n — o0 we have

: _ (fz Z)? 07
iy Mz ans1) = 6 (o, d(fz 7). d(f, z))
<9<< 2), d(f2,2), )
d(fzz2), d(fz 2),d(fz 2)

=d(fz,z).
Since limy, o0 M (2, x2n41) # 0, and again by (2.1)

@b(d(fz, gl‘?”-‘rl)) < ¢(M(Z7 $2n+1)) - @(M(Zv x2n+1))7
which, on taking limit as n — oo gives the contradiction

Ib(d(fz, z)) < w(d(fzv Z)) - (P(nlgrgo M(Z7 $2n+1))'

Therefore fz = z.

The next step is to show that z is also fixed point for maps ¢ and T.
Since f(X) < T(X), there is some v in X such that fz = Twv. Then
fz=Tv =5z =2 We claim that gv = z. If gv # 2z then from (2.1), we
have

9gToan+1, T$2n+1)7 d

~~ ~—~ o~

d(z, gv) = d(fz,gv) < Y(M(z,v)) — (M (z,v)),

where
M(z,0) = 9( (Sz,Tv), d(fz,S=z), >
d(gv,Tv), d(Sz,gv),d(fz,Tv)
((g 2), d(g, 2), )
— \d(gv,2), d(gv, 2),d(gv, 2)
= d(gv, 2).
Thus

P(d(z, gv)) < ¥(d(z, gv)) — p(M(z,v))
gives a contradiction. Therefore z = gv. Hence gv = Tv = z. By weak
compatibility of mappings g and T, we obtain gz = ¢gTv = TTv = T=z.
Finally, we claim that gz = z. If gz # 2 then (2.1) gives

P(d(z, 92)) = ¥(d(fz,92)) < V(M(z,2)) — o(M(z, 2)),
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where
M(z.2) = 0 (d(Sz ,Tz), d(fz,Sz), )
d(gz,Tz), d(Sz,gz),d(fz,Tz)
oy (d(z 92). d(z,92) )
— \d(2,92), d(z,92),d(z, g2)
=d(z,g2).
Therefore

P(d(z,92)) < Y(d(z,92)) — p(M(2, 2))

gives a contradiction. Hence, fz = gz = Sz = Tz = z. Similar analysis is
valid for the case in which 7'(X) is closed, as well as for the cases in which
f(X) or g(X) is closed, since f(X) < T(X) and g(X) < S(X).

As uniqueness of common fixed point z easily follows from the inequal-
ity (2.1), the proof is completed. =

COROLLARY 2.3. Let (X,d) be a complete metric space. If h, f,g,S and
T are self maps of X satisfying:

(1) h be one to one continuous mapping such that it commutes with f, g, S, T,
(ii) hf(X) € RT(X), hg(X) S hS(X) and one of the ranges hf(X), hg(X),
RT(X) and hS(X) is closed,
(iii) the pairs (hf,hS) and (hg, hT) are weakly compatible,
(iv)
(2.9) (d(hfz, hgy)) < Y(M(z,y)) — o(M(z,y)),
for each x,ye X, pe ®, ¢p € ¥ holds, where
d(hSz,hTy), d(hfz,hSz),
M(z,y) =0 )
d(hgy, hTy), d(hSx,hgy),d(hfz,hTy)

for every 0 € ©. Then h, f,g,S and T have a unique common fixed point
m X.

—

Proof. By Theorem hf, hg,hS and hT have a unique common fixed
point z € X. Since h is one to one, from hfz = hgz = hSz = hTz = z, it
follows that fz = gz = Sz = Tz. We claim that fz = 2. If fz # 2z then
from hffz= f(hfz) = fz and (2.9) gives

W(d(fz,2)) = P(d(hf [z, hgz)) < (M(fz,2)) — o(M(fz,2)),
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where

hSfz,hTz), d(hffz,hSfz),
hgz,hTz), d(hSfz,hgz),d(hffz,hTz)

fz,82),
Sz,2),d(fz, z)

—~ —~~ ~  —~
N
N
~—
U

fz,2),
fz,2),d(fzz2)
=d(fz,z).
Therefore
V(d(fz,2)) < P(d(fz2) — e(M(fz2))
gives a contradiction. Hence, fz =gz =Sz=Tz=hz=2.n
As a consequence of Theorem [2.2] we obtain the following result proved
in [1].
COROLLARY 2.4. Let (X,d) be a complete metric space. If f,g,S and T
are self maps of X satisfying:
(i) f(X)<ST(X), g(X) < S(X) and one of the ranges f(X), g(X), T(X)
and S(X) is closed,
(i) the pairs (f,S) and (g,T) are weakly compatible,
(iif)
Y(d(fz, gy)) < P(M(z,y)) — (M (z,y)),
for each x,ye X, pe ®, » € U holds where

M(z,y) = max{d(Sz,Ty),d(fz, Sz),d(gy, Ty), %(d(S% gy) +d(fz,Ty))}.

Then f,g,S and T have a unique common fized point in X.

Proof. If we define 0(z,y, z,u,v) = max{z,y, z, “JQ”’} then all conditions

of Theorem hold, thus f, g, S and T have a unique common fixed point
inX. m

COROLLARY 2.5. Let (X,d) be a complete metric space. Let f and g be
self maps of X such that one of the ranges f(X), g(X) is closed. If

Pd(fr,gy)) < p(M(z,y)) — (M (z,y)),
for each z,ye X, pe ®, ¢ € U, where

Mz,y) =6 (d(x,w, d(fz,z), ) |
d(gy,y), d(z,gy),d(fz,y)
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for every 0 € O, then f and g have a unique common fixed point in X.
Moreover, any fized point of f is a fixed point of g and conversely.

Proof. Take S and T as identity maps on X. From Theorem fand g
have a unique common fixed point. Now suppose that z is a fixed point of f
and z # gz. From (2.1), we have

P(d(z,92)) = ¥(d(fz,92))

where
Mz, ) = (d(z,z>, d(f2,2), )
’ A9z, ), d(z,92), d(f = 2)
y (d(z,gz» (= 92) )
— \d(gz,2), d(z,9z),d(z, gz)
=d(z,9z)
Therefore

P(d(z, 92)) < P(d(z,92)) — (M (z, 2)),
which is a contradiction by virtue of a property of ¢. Hence z = gz. Using

a similar argument, we have that any fixed point of g is also a fixed point

Off. ]

COROLLARY 2.6. Let (X,d) be a complete metric space. Let f and g be
self maps of X such that one of the ranges f™(X), g"(X) is closed. Let

(2.10) (d(f"x, g"y)) < P(M(x,y)) — (M (2,y)),
for each z,ye X, pe @, p € U, where

d a(f™
M(,’L', y) — 0 <x7 y)? (f x? x)? ,
d(g"y,y), d(z,g"y),d(f"z,y)
for every 8 € © where m,n are fixed positive integers. Then f and g have a

unique common fized point in X. Moreover, any fized point of f is a fized
point of g and conversely.

Proof. By Corollary f™ and ¢g"™ have a unique common fixed point z.
On the other hand, f™(fz) = f(f™z) = fz. By Corollary fz is a fixed
point of ¢". Hence fz = z. It then follows that z is a common fixed point
of f and g. Suppose that z is a fixed point of f. Then z is a fixed point
of f™. By Corollary z is a fixed point of ¢g". From the uniqueness of
the common fixed point of f™ and g¢", it follows that z is a fixed point of g.
In a similar manner it can be shown that any fixed point of g is also a fixed
point of f. Condition (2.10) implies the uniqueness of z. m
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The following corollary extends the result of [22]

COROLLARY 2.7. Let (X,d) be a complete metric space. If f and g are self
mappings of X into itself such that one of the ranges f(X), g(X) is closed
and

d(fx,gy) < M(z,y) — o(M(z,y)),
for each z,y € X, p € ®, where

M y):0<d<x,y>, d(fx,z), )
’ d(gy,y), d(z,gy),d(fz,y) )’

for every 0 € © then f and g have a unique common fized point in X.

Proof. Take ¢ = I, an identity map on [0,00), and S and T as identity
maps on X in Theorem .

COROLLARY 2.8. Let (X,d) be a complete metric space. If f is a self
mapping of X into itself such that the range f(X) is closed. If

for each z,ye X, pe ®, p € U and where

Mz,y) = 6 (d(m,w, d(fx,), ) |
d(fy,y), dz, fy),d(fz,y)

for every 8 € ©. Then, f has a unique fived point in X.

COROLLARY 2.9. Let (X,d) be a complete metric space, and f : X — X
be a mapping such that the range f(X) is closed. If for all z,y € X,

d(fx7 fy) < M(a:,y) - (p(M(l‘,y)),

where ¢ : [0,00) — [0,00) is a lower semi-continuous function with (t) > 0
forte (0,00), p(0) =0, and

M(a,y) = max{d(z, ), d(f,2), d(fy,0), 5 (dla, fo) + ()}
Then f has a unique fixed point in X.

3. Mappings with properties P

It is an obvious fact that if 7" is a map which has a fixed point p, then p is
also a fixed point of T for every natural number n. However the converse is
false. For example, consider, X = [0,1], and T defined by Tx = 1 —z. Then
T has a unique fixed point at %, but every even iterate of T is the identity
map, which has every point of [0,1] as a fixed point. On the other hand,
if X = [0,7], Tx = cosz, then every iterate of T has the same fixed point
as T ( [10], |15]) . Rhoades and Abbas |18| considered mappings satisfying
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a contractive condition of integral type for which fixed points and periodic
points coincide.

DEFINITION 3.1. (Property P [15]) Let T be a self-mapping of metric
space with fixed point set F(T') # (). Then T is said to have property P if
F(T™) = F(T), for each n € N. Equivalently, a mapping has property P if
every periodic point is a fixed point.

THEOREM 3.2. Let (X,d) be a complete metric space and f be a self map-
ping of X into itself such that the range f(X) is closed. If

for each x,y e X, pe ®, ¢ € U, where

]\4’(3:.7 y) — 9 d(w7 y)7 d(f‘r7 x)? ,
d(fy,y), d(z, fy),d(fz,y)
for every 0 € ©, then f has property P.

Proof. From Corollary f has a unique fixed point. Therefore, F(f™)
# (), for each positive integer m > 1. Fix a positive integer n > 1 and let
z e F(f"). Using (2.1) and the definition of P,

D(d(z, f2)) = D(d(f"z, [PT2) S @M 2, f72)) = (M (F" 2, f72),
where
B fn 1Z fn )’ d(f"z,f"’lz),
M( " 1 , n =0
(f z f ) ( fn+1z fn )7 d(fn_lz,fn+12),d(fn2,fnz)>

(
(

_ 9< (f""%,2), d(z f*"2), )
d(fz2),  d(f"z f2).d(z2) )

Either (1) d(f"'z,2) > d(z, fz), or (2) d(f" '2,2) < d(z, fz). Suppose
that (1) is true. Then from above inequality, we have
Y(d(z, f2)) = w(d(f"z, f72))
<YP(d(f"'2,2)) = w(d(f" 2, f12))

< ¥(d(z, fz)),
which is a contradiction. Therefore, (2) is true, and above inequality becomes
Y(d(z, f2)) < P(d(z, f2)) — ¢(d(z, [2)),

which implies that ¢(d(z, fz)) < 0, or that z = fz. Therefore, f has pro-
perty P. =
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