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DIRECT ESTIMATE FOR SOME OPERATORS OF
DURRMEYER TYPE IN EXPONENTIAL WEIGHTED SPACE

Abstract. In the present paper, we investigate the convergence and the approximation
order of some Durrmeyer type operators in exponential weighted space. Furthermore, we
obtain the Voronovskaya type theorem for these operators.

1. Introduction
O. Agratini considered in [1] the operator

Lnpfqpxq “ 2´nx
8
ÿ

k“0

pnxqk
2kk!

f

ˆ

k

n

˙

, x ≥ 0,

where paq0 “ 1, paqk “ apa ` 1q ¨ ¨ ¨ pa ` k ´ 1q, k P N “ t1, 2, . . .u, a P R.
Author established an asymptotic formula and some quantitative estimates
for the rate of convergence of the operator Ln.

In the present paper, we introduce two operators of Durrmeyer type
related to the operator Ln ([2]). We define the operator Mα,t by

Mα,tpf ;xq “Mαpf ; t, xq “

ż 8

0
fpsqKαpt, x, sq ds, x ≥ 0, t ą 0, α ≥ 0,

where

Kαpt, x, sq “
1

t

8
ÿ

k“0

pk

ˆ

x

t

˙

qαk

ˆ

s

t

˙

,

pkpuq “ 2´upuqk
1

2kk!
, qαk puq “

e´uuα`k

Γpα` k ` 1q
,
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k P N0 “ t0, 1, 2, . . .u, u ≥ 0, α ≥ 0, and the operator Sα,t by

Sα,tpf ;xq “ Sαpf ; t, xq “ fp0q2´
x
t `

ż 8

0
fpsqHαpt, x, sq ds,

where

Hαpt, x, sq “
1

t

8
ÿ

k“1

pk

ˆ

x

t

˙

qαk´1

ˆ

s

t

˙

, x ≥ 0, t ą 0, α ≥ 0.

It is clear that these operators are linear and positive. The similar
operators for the Szász-Mirakjan type operator ([4], [5]) was considered by
S. M. Mazhar and V. Totik in [3] and by E. Wachnicki in [6].

The aim of this paper is to study the approximation properties of Mα,t

and Sα,t in the set of all continuous functions on r0,`8q such that fpxq “
O pepxq, p ≥ 0. In our considerations 1

t plays a role of n and we consider
approximation when tÑ 0`.

It would be interesting to investigate approximation properties of opera-
tors Mα,t, Sα,t in the space Lp.

2. Auxiliary results
In this section, we give some lemmas and properties which will be useful

later in proofs of the main results.
We will consider the set Ep, p ≥ 0, of functions f defined and continuous

in r0,`8q such that |fpxq| ≤ Cf e
px for x P r0,`8q, where Cf is a constant

depending on f . In Ep we consider the norm:

}f}Ep “ sup
xPr0,`8q

ˇ

ˇe´pxfpxq
ˇ

ˇ .

Note that if p ≤ q then Ep Ă Eq and }f}Eq ≤ }f}Ep .
We introduce the weighted modulus of continuity of function f P Ep.

The first order modulus of continuity ω1pf, p, δq:

ω1pf, p, δq “ sup
x,u,v≥0
|u´v|≤δ

e´px|fpx` uq ´ fpx` vq|

and the second order modulus of continuity (modulus of smoothness)
ω2pf, p, δq:

ω2pf, p, δq “ sup
x,u,v≥0
|u´v|≤δ

e´px|fpx` 2uq ´ 2fpx` u` vq ` fpx` 2vq|, δ ≥ 0.

When p “ 0, we write ω1pf, δq, ω2pf, δq. The following properties hold:

sup
x≥0

0≤h≤δ

e´px|fpx` hq ´ fpxq| ≤ ω1pf, p, δq,(1)
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sup
x≥0

0≤u`v≤δ

e´px|fpx` 2pu` vqq ´ 2fpx` u` vq ` fpxq| ≤ ω2pf, p, δq,(2)

ω1pf, p, λδq ≤ p1` λqω1pf, p, δq, δ ≥ 0, λ ≥ 0.(3)

Using properties of the gamma function, we obtain

(4)
ż 8

0
srepse´

s
t

´s

t

¯α`k
ds “

tr`1Γpα` k ` r ` 1q

p1´ tpqα`k`r`1
,

where k, r P N, α ≥ 0 and 0 ă t ă 1
p for p ą 0, and 0 ă t ă 8 for p “ 0. We

have

(5)
ˆ

1

1´ a

˙z

“

8
ÿ

k“0

pzqk
k!

ak, |a| ă 1, z ≥ 0.

Using this and pzqk`1 “ zpz ` 1qk, k P N0, we can write

(6)
8
ÿ

k“0

pzqk
k!

akkr “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ˆ

1

1´ a

˙z

for r “ 0,
ˆ

1

1´ a

˙z`1

za for r “ 1,
ˆ

1

1´ a

˙z`2
`

z2a2 ` za
˘

for r “ 2,
ˆ

1

1´ a

˙z`3
`

z3a3 ` 3z2a2 ` za2 ` za
˘

for r “ 3,
ˆ

1

1´ a

˙z`4
`

z4a4 ` 6z3a3 ` 7z2a2

` za` 4z2a3 ` za3 ` 4za2
˘

for r “ 4.

Let erptq “ tr, r P N0. From (4), (5), (6), we have the following lemmas.

Lemma 2.1. For t ą 0, x ≥ 0 and α ≥ 0, it holds

Mαpe0; t, xq “ 1, Mαpe1; t, xq “ x` pα` 1qt,

Mαpe2; t, xq “ x2 ` p2α` 5qxt` t2pα` 1qpα` 2q,

Mαpe3; t, xq “ x3 ` p3α` 12qx2t` p3α2 ` 18α` 29qxt2

` t3pα` 1qpα` 2qpα` 3q,

Mαpe4; t, xq “ x4 ` p4α` 22qx3t` p6α2 ` 54α` 131qx2t2

`p4α3 ` 42α2 ` 154α` 206qxt3

` t4pα` 1qpα` 2qpα` 3qpα` 4q.

Lemma 2.2. For t ą 0, x ≥ 0 and α ≥ 0, we have

Sαpe0; t, xq “ 1, Sαpe1; t, xq “ x` tα
´

1´ 2´
x
t

¯

,
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Sαpe2; t, xq “ x2 ` 2tx` p2α` 1qxt` t2αpα` 1q
´

1´ 2´
x
t

¯

,

Sαpe3; t, xq “ x3 ` p3α` 9qx2t` p3α2 ` 12α` 14qxt2

` t3αpα` 1qpα` 2q
´

1´ 2´
x
t

¯

,

Sαpe4; t, xq “ x4 ` p4α` 18qx3t` p6α2 ` 42α` 83qx2t2

`p4α3 ` 40α2 ` 82α` 90qxt3

` t4αpα` 1qpα` 2qpα` 3q
´

1´ 2´
x
t

¯

.

If we define the function φx,r (r P N0, x ≥ 0) by φx,rptq “ pt´xqr then, by
Lemma 2.1 and Lemma 2.2, one can get the following results, immediately.

Lemma 2.3. For t ą 0, x ≥ 0 and α ≥ 0, it holds

Mαpφx,0; t, xq “ 1, Mαpφx,1; t, xq “ pα` 1qt,

Mαpφx,2; t, xq “ 3xt` t2pα` 1qpα` 2q,

Mαpφx,4; t, xq “ 27x2t2 ` p6α2 ` 110α` 182qxt3

` t4pα` 1qpα` 2qpα` 3qpα` 4q.

Lemma 2.4. For t ą 0, x ≥ 0 and α ≥ 0, we have

Sαpφx,0; t, xq “ 1, Sαpφx,1; t, xq “ tα
´

1´ 2´
x
t

¯

,

Sαpφx,2; t, xq “
´

3` 2α2´
x
t

¯

xt` t2αpα` 1q
´

1´ 2´
x
t

¯

,

Sαpφx,4; t, xq “ 4α2´
x
t x3t`

´

27´ 6αpα` 1q2´
x
t

¯

x2t2

`

´

28α2 ` 74α` 90` 4αpα` 1qpα` 2q2´
x
t

¯

xt3

` t4αpα` 1qpα` 2qpα` 3q
´

1´ 2´
x
t

¯

.

Observe that operators Mα, Sα preserve the constant functions. If α “ 0
then the operator Sα preserves the linear functions.

In the sequel, the following functions will be meaningful:

frptq “ erptqe
pt “ trept, ψx,rptq “ φx,rptqe

pt “ pt´ xqrept, r P N0, p, x ≥ 0.

Now, we find operators Mα, Sα for the function fr and ψx,r for r “ 0, 1, 2
and p ą 0. In the case p “ 0, it is clear that fr “ er, ψx,r “ φx,r.

At this point, we assume 0 ă t ă 1
2p . Then 0 ă 1

2p1´tpq ă 1. From the
definitions of Mα, Sα and from (4), we obtain

Mαpfr; t, xq “
tr2´

x
t

p1´ tpqα`r`1

8
ÿ

k“0

`

x
t

˘

k

2kk!p1´ tpqk
¨

Γpα` k ` r ` 1q

Γpα` k ` 1q
,



340 G. Krech, E. Wachnicki

Sαpfr; t, xq “ 2´
x
t frp0q `

tr2´
x
t

p1´ tpqα`r

8
ÿ

k“1

`

x
t

˘

k

2kk!p1´ tpqk
¨

Γpα` k ` rq

Γpα` kq

for r P N0.

From this and (6), we have the following lemmas, which we shall apply
to the proofs of the main theorems.

Lemma 2.5. Let α ≥ 0, x ≥ 0, 0 ă t ă 1
2p . Let A “

´

1´tp
1´2tp

¯x{t
. Then

Mαpf0; t, xq “
A

p1´ tpqα`1
, Mαpf1; t, xq “

Apx` tpα` 1qp1´ 2tpqq

p1´ tpqα`2p1´ 2tpq
,

Mαpf2; t, xq “
A

p1´ tpqα`3p1´ 2tpq2
`

x2 ` p2α` 3´ 4αtp´ 8tpqxt

`t2pα` 1qpα` 2qp1´ 2tpq2
˘

,

Mαpψx,0; t, xq “Mαpf0; t, xq “
A

p1´ tpqα`1
,

Mαpψx,1; t, xq “
A
`

3ptx´ 2t2p2x` tpα` 1qp1´ 2tpq
˘

p1´ tpqα`2p1´ 2tpq
,

Mαpψx,2; t, xq “
At

p1´ tpqα`3p1´ 2tpq2
`

x2tp2p2tp´ 1q2

`xp3` 8tp´ pα` 1qp6tp` 16t2p2 ´ 8t3p3qq

` tpα` 1qpα` 2qp1´ 2tpq2
˘

.

Lemma 2.6. Let α ≥ 0, x ≥ 0, 0 ă t ă 1
2p . Let A “

´

1´tp
1´2tp

¯x{t
. Then

Sαpf0; t, xq “ 2´
x
t `

1

p1´ tpqα

´

A´ 2´
x
t

¯

,

Sαpf1; t, xq “
1

p1´ tpqα`1p1´ 2tpq

´

Ax` αtp1´ 2tpq
´

A´ 2´
x
t

¯¯

,

Sαpf2; t, xq “
1

p1´ tpqα`2p1´ 2tpq2
`

Ax2 `Ap3´ 4tp` 2αp1´ 2tpqxt

`t2αpα` 1qp1´ 2tpq2
´

A´ 2´
x
t

¯¯

,

Sαpψx,0; t, xq “ Sαpf0; t, xq “ 2´
x
t `

1

p1´ tpqα

´

A´ 2´
x
t

¯

,

Sαpψx,1; t, xq “ ´2´
x
t x`

1

p1´ tpqα`1p1´ 2tpq

`

3Atpx´ 2At2p2x

`2´
x
t xp1´ tpqp1´ 2tpq ` αtp1´ 2tpq

´

A´ 2´
x
t

¯¯

,
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Sαpψx,2; t, xq “
1

p1´ tpqα`2p1´ 2tpq2
“

Ax2p4t4p4 ´ 12t3p3 ` 9t2p2q

`Ap3´ 4tp` 2αp1´ 2tpqqxt

` t2αpα` 1qp1´ 2tpq2
´

A´ 2´
x
t

¯

´ 2αxtp1´ 2tpq2p1´ tpq
´

A´ 2´
x
t

¯

´ 2´
x
t x2p1´ tpq2p1´ 2tpq2

ı

` x22´
x
t .

Now, we prove the auxiliary inequalities.

Lemma 2.7. If 0 ă p ă q then for

(7) 0 ă t ă
1

4p

ˆ

3´

c

1`
8p

q

˙

ă
1

2p
,

the inequality
A ≤ eqx for x ≥ 0

holds.

Proof. Let I “
´

0, 1
4p

´

3´
b

1` 8p
q

¯¯

. We observe that if 0 ă p ă q then

3´
a

1` 8p{q ą 0 and I is not empty. If t P I then

p1´ tpqp1´ 2tpq ą
p

q

and consequently

(8)
p

p1´ tpqp1´ 2tpq
ă q.

Let fptq “ ln 1´tp
1´2tp ´ tq for 0 ≤ t ă 1

2p . According to the properties of
f , in view of (8), we conclude that f is decreasing in I Y t0u. Therefore,
fptq ă fp0q for t P I. From this, it follows that

e
x
t
ln 1´tp

1´2tp ≤ eqx,

for x ≥ 0 and t P I, which completes the proof of Lemma 2.7.

Similarly, we can prove the following lemma.

Lemma 2.8. If p ą 0 and α ≥ 0 then for 0 ă t ă 1
2p , the inequality

epx ≤ A ≤ A

p1´ tpqα

holds.



342 G. Krech, E. Wachnicki

3. Approximation theorems
In this section, we state the Voronovskaya type theorem. Then we com-

pute the rate of convergence of the operators Mα, Sα. To achieve this, we
use the first and the second order modulus of continuity.

At the beginning of this section, we give some properties of the operator
norm of Mα and Sα, α ≥ 0.

Theorem 3.9. Let 0 ă p ă q. For t P I, the operator Mα,t maps Ep into
Eq and

(9) ||Mα,tpfq||Eq
≤ 2α`1}f}Ep .

In the case p “ 0, the operator Mα,t maps E0 into itself and

(10) ||Mα,tpfq||E0
≤ }f}E0 , t ą 0.

Proof. Let 0 ă p ă q. We have

|Mα,tpf ;xq| “ |Mαpf ; t, xq| ≤Mαp|f |; t, xq ≤ }f}EpMαpf0; t, xq

“ }f}Ep

A

p1´ tpqα`1
.

Since 0 ă 1
1´tp ă 2 for 0 ă t ă 1

2p , we obtain (9), by Lemma 2.7. Using
Mαpe0; t, xq “ 1 (Lemma 2.1), we check at once that (10) holds.

In the similar fashion, we prove the following inequalities.

Theorem 3.10. If 0 ă p ă q then for t P I, the operator Sα,t maps Ep
into Eq and

(11) ||Sα,tpfq||Eq
≤ 2α}f}Ep .

In the case p “ 0, the operator Sα,t maps E0 into itself and

(12) ||Sα,tpfq||E0
≤ }f}E0 , t ą 0.

Proof. Let 0 ă p ă q. By Lemma 2.6, we can write

|Sα,tpf ;xq| “ |Sαpf ; t, xq| ≤ Sαp|f |; t, xq ≤ }f}EpSαpf0; t, xq

“ }f}Ep

„

2´
x
t `

A´ 2´
x
t

p1´ tpqα



.

Analogously to the proof of Theorem 3.9, we have

2´
x
t `

A´ 2´
x
t

p1´ tpqα
≤ 2´

x
t ` 2α

´

eqx ´ 2´
x
t

¯

“ 2αeqx ` 2´
x
t p1´ 2αq ≤ 2αeqx,

since 2´
x
t p1´ 2αq ≤ 0. This gives the result.

Next, we are interested in some approximation theorems.
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Theorem 3.11. Let f P Ep, p ≥ 0. Then

lim
tÑ0`

Mαpf ; t, xq “ fpxq, lim
tÑ0`

Sαpf ; t, xq “ fpxq

and the convergence is uniform on every compact subset of r0,`8q.

Proof. Let ε ą 0 and let x ≥ 0. Since f is continuous at the point x, there
exists δ ą 0 such that

|fpsq ´ fpxq| ă ε for |s´ x| ă δ.

Let p ą 0. If |s´ x| ≥ δ then

|fpsq ´ fpxq| ≤ }f}Ep pe
ps ` epxq ≤ }f}Ep pe

ps ` epxq
ps´ xq2

δ2
.

Therefore

|fpsq ´ fpxq| ≤ ε` }f}Ep pe
ps ` epxq

ps´ xq2

δ2
,

for an arbitrary s P r0,`8q and δ ą 0. From this, it follows

(13) |Mαpf ; t, xq ´ fpxq| ≤Mα p|f ´ fpxq|; t, xq ≤ εMαpe0; t, xq

`
}f}Ep

δ2
pMα pψx,2; t, xq ` e

pxMα pφx,2; t, xqq .

By Lemma 2.3, we have

Mα pφx,2; t, xq “ tp3x` tpα` 1qpα` 2qq,

thus limtÑ0` Mα pφx,2; t, xq “ 0. Using Lemma 2.5, we get

lim
tÑ0`

Mα pψx,2; t, xq “ 0.

Hence, in view of (13), we obtain

(14) lim
tÑ0`

Mαpf ; t, xq “ fpxq.

Let 0 ≤ a ă b. If x P ra, bs and 0 ă t ă 1
2p then 3x ` tpα ` 1qpα ` 2q is

bounded. Similarly,

A

p1´ tpqα`3p1´ 2tpq2
“

x2tp2p2tp´ 1q2 ` x p3` 8tp´ pα` 1q

ˆ
`

6tp` 16t2p2 ´ 8t3p3
˘˘

` tpα` 1qpα` 2qp1´ 2tpq2
‰

is bounded for x P ra, bs and t P I. By Lemma 2.3, Lemma 2.5 and (13), we
can deduce that (14) holds uniformly on ra, bs.

In the case p “ 0 and for the operator Sα, the proof follows similarly.

The next step is to establish the Voronovskaya type theorem.
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Theorem 3.12. If f P Ep, p ≥ 0, is twice differentiable at some point
x ≥ 0 then

lim
tÑ0`

Mαpf ; t, xq ´ fpxq

t
“ pα` 1qf 1pxq `

3

2
xf2pxq,(15)

lim
tÑ0`

Sαpf ; t, xq ´ fpxq

t
“ αf 1pxq `

3

2
xf2pxq.(16)

Proof. We use the Taylor expansion

fpsq “ fpxq ` ps´ xqf 1pxq `
1

2
ps´ xq2f2pxq ` εps, xqps´ xq2,

where limsÑx εxpsq “ limsÑx εps, xq “ 0 and εx P Ep. Hence, by Lemma 2.3,
we can write

Mαpf ; t, xq “Mα pεxφx,2; t, xq ` fpxq ` pα` 1qtf 1pxq

`
1

2
f2pxq

`

3tx` 2t2pα` 1qpα` 2q
˘

.

In order to prove (15), it is sufficient to obtain

(17) lim
tÑ0`

Mα pεxφx,2; t, xq

t
“ 0.

Recalling the Cauchy-Schwarz inequality, we can infer

|Mα pεxφx,2; t, xq| ≤
b

Mα pε2x; t, xqMα pφx,4; t, xq.

Using Lemma 2.3, we get
Mα pφx,4; t, xq

t2
“ 27x2 `

`

6α2 ` 110α` 182
˘

xt

` t2pα` 1qpα` 2qpα` 3qpα` 4q.

In view of Theorem 3.11, we conclude that limtÑ0` Mα

`

ε2x; t, x
˘

“ 0. There-
fore, we have (17).

The proof of (16) follows similarly.

Corollary 3.13. If f satisfies the assumptions of Theorem 3.12 then

Mα pf ; t, xq “ fpxq `Optq, Sα pf ; t, xq “ fpxq `Optq

as tÑ 0`.

In the sequel, we state the approximation order of the operators Mα and
Sα, α ≥ 0.

Theorem 3.14. If f P Ep then for p ≥ 0, it holds

|Mαpf ; t, xq ´ fpxq| ≤ 2epxω1 pf ; p, δq ,(18)
|Sαpf ; t, xq ´ fpxq| ≤ 2epxω1 pf ; p, δ1q ,(19)
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for t ą 0, x ≥ 0, where

δ “
a

3tx` t2pα` 1qpα` 2q,

δ1 “

c

´

3` 2α2´
x
t

¯

xt` t2αpα` 1q
´

1´ 2´
x
t

¯

.

Proof. Using the property of modulus of continuity, we can write

|fpsq ´ fpxq| ≤ epx
ˆ

1`
ps´ xq2

δ2

˙

ω1pf ; p, δq,

for arbitrary s, x P r0,`8q and an arbitrary δ ą 0. Therefore,

|Mαpf ; t, xq ´ fpxq| ≤ epxω1pf ; p, δq

ˆ

Mαpe0; t, xq `
1

δ2
Mαpφx,2; t, xq

˙

.

Hence, by Lemma 2.1 and Lemma 2.3, we have

|Mαpf ; t, xq ´ fpxq| ≤ epxω1pf ; p, δq

ˆ

ˆ

1`
3xt` t2pα` 1qpα` 2q

δ2

˙

.

Choosing δ “
a

3xt` t2pα` 1qpα` 2q, we obtain (18).
The proof of (19) follows similarly.

In the following, we are going to prove another estimate. We will use the
second order modulus of smoothness.

Lemma 3.15. Let f P Ep be a function of C2 in r0,`8q and let f 1, f2 P Ep.
If T is a linear and positive operator, which maps Ep into Eq, 0 ≤ p ≤ q,
such that T pe0q “ e0, then

(20) |T pfqpxq ´ fpxq| ≤ |f 1pxq||T pφx,1qpxq| ` }f2}Ep

ˆ

1

p2
T pf0qpxq

´
1

p2
epx ´

1

p
epxT pφx,1qpxq

˙

,

if p ą 0 and

(21) |T pfqpxq ´ fpxq| ≤ |f 1pxq||T pφx,1qpxq| `
1

2
}f2}E0 T pφx,2qpxq,

if p “ 0.

Proof. We can write

fpsq “ fpxq ` ps´ xqf 1pxq `

ż s

x

ż z

x
f2puq du dz.
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Therefore,

|T pfqpxq ´ fpxq| ≤ |f 1pxq||T pφx,1qpxq| ` }f2}EpT pλxqpxq,

where

λxpsq “

ż s

x

ż z

x
epu du dz “

$

’

&

’

%

1

p2
peps ´ epxq ´

1

p
epxps´ xq, for p ą 0,

1

2
ps´ xq2, for p “ 0.

Hence we get (20) and (21).

Now, we give the following results which will be used in the proof of the
next theorem. We will use the Steklov mean (see [3])

fhpxq “
4

h2

ż h
2

0

ż h
2

0
r2fpx` u` vq ´ fpx` 2pu` vqqs du dv.

Let p ≥ 0. Note that if f P Ep then fh P Ep. Therefore

fhpxq ´ fpxq “
4

h2

ż h
2

0

ż h
2

0
r2fpx` u` vq ´ fpx` 2pu` vqq ´ fpxqs du dv.

Using this and (2), we obtain

e´px |fhpxq ´ fpxq| ≤ ω2pf ; p, hq.

Hence

(22) ||fh ´ f ||Ep
≤ ω2pf ; p, hq.

We observe that if f is continuous then

f 1hpxq “
4

h2

„

2

ż h
2

0

ˆ

f

ˆ

x` v `
h

2

˙

´ fpx` vq

˙

dv

´
1

2

ż h
2

0
pfpx` 2v ` hq ´ fpx` 2vqq dv



.

From this, we have

(23) |f 1hpxq| ≤
5

h
epxω1pf, p, hq

and

f 1hpxq “
4

h2

„

2

ż x`h

x`h
2

fpzq dz ´ 2

ż x`h
2

x
fpzq dz ´

1

4

ż x`2h

x`h
fpzq dz

`
1

4

ż x`h

x
fpzq dz



.
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Note that fh is the function of C2 in r0,`8q and

f2hpxq “
1

h2

„

8fpx` hq ´ 16f

ˆ

x`
h

2

˙

` 8fpxq ´ fpx` 2hq

` 2fpx` hq ´ fpxq



.

We observe that if f P Ep then f2h P Ep and

(24)
ˇ

ˇ

ˇ

ˇf2h
ˇ

ˇ

ˇ

ˇ

Ep
≤ 9

h2
ω2pf ; p, hq.

Theorem 3.16. If f P Ep, 0 ă p ă q, then

}Mα,tpfq ´ f}Eq ≤ Cω2pf, p,
?
tq ` 5pα` 1q

?
t ω1pf, p,

?
tq,(25)

}Sα,tpfq ´ f}Eq ≤ Cω2pf, p,
?
tq ` 5α

?
t ω1pf, p,

?
tq,(26)

for t P I, where I is the interval defined in the proof of Lemma 2.7, C denotes
some positive constant depending only on α and p.

Proof. We can write

|Mαpf ; t, xq ´ fpxq| ≤Mα p|f ´ fh|; t, xq ` |Mα pfh ´ fhpxq; t, xq|

` |fhpxq ´ fpxq|.

Using Lemma 3.15, (23), (24) and

Mαpφx,1; t, xq “ pα` 1qt,

Mαpf0; t, xq “
A

p1´ tpqα`1
,

we get

|Mα pfh ´ fhpxq; t, xq| ≤
5

h
epxpα` 1qt ω1pf, p, hq `

9

h2
ω2pf, p, hq

ˆ

„

1

p2

ˆ

A

p1´ tpqα`1
´ epx

˙

´
1

p
epxpα` 1qt



,

for x ≥ 0, h ą 0 and 0 ă t ă 1
2p . From Theorem 3.9 and from (22), we have

Mα p|f ´ fh|; t, xq ≤ 2α`1eqx}f ´ fh}Ep ≤ 2α`1eqxω2pf, p, hq.

Hence, we obtain

|Mαpf ; t, xq ´ fpxq| ≤
„

epx ` 2α`1eqx `
9

h2

ˆ

´
1

p
epxpα` 1qt

`
1

p2

ˆ

A

p1´ tpqα`1
´ epx

˙˙

ω2pf, p, hq

`
5

h
epxpα` 1qt ω1pf, p, hq,
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for x ≥ 0, h ą 0 and 0 ă t ă 1
2p . Choosing h “

?
t, we have

|Mαpf ; t, xq ´ fpxq| ≤
„

epx ` 2α`1eqx `
9

t

ˆ

´
1

p
epxpα` 1qt

`
1

p2

ˆ

A

p1´ tpqα`1
´ epx

˙˙

ω2pf, p,
?
tq

` 5epxpα` 1q
?
t ω1pf, p,

?
tq,

for x ≥ 0, 0 ă t ă 1
2p .

Note that there exists C1 ą 0 such that
e´qx

tp2

ˆ

A

p1´ tpqα`1
´ epx

˙

´
1

p
e´pq´pqxpα` 1q ≤ C1,

for t P I, x ≥ 0. Therefore,

}Mα,tpfq ´ f}Eq ≤ Cω2pf, p,
?
tq ` 5pα` 1q

?
t ω1pf, p,

?
tq,

for t P I, where C “ C1 ` 1` 2α`1.
Similarly we can prove (26).

From (26), we obtain the next result at once.

Corollary 3.17. If f P Ep, 0 ă p ă q, then

}S0,tpfq ´ f}Eq ≤ Cω2pf ; p,
?
tq, for t P I.

Now, we discuss the case p “ 0. Using the same method as in the proof
of Theorem 3.16, we have the following estimations.

Theorem 3.18. If f P E0 then

|Mαpf ; t, xq ´ fpxq| ≤
ˆ

2`
27

2
x`

9t

2
pα` 1qpα` 2q

˙

ω2pf,
?
tq

` 5pα` 1q
?
t ω1pf,

?
tq,

|Sαpf ; t, xq ´ fpxq| ≤
ˆ

2`
9

2
p3` 2αqx`

9t

2
αpα` 1q

˙

ω2pf,
?
tq

` 5α
?
t ω1pf,

?
tq,

for x ≥ 0, t ą 0.

Corollary 3.19. If f P E0 then

|S0pf ; t, xq ´ fpxq| ≤
ˆ

2`
27

2
x

˙

ω2pf,
?
tq, for x ≥ 0, t ą 0.
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