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DIRECT ESTIMATE FOR SOME OPERATORS OF
DURRMEYER TYPE IN EXPONENTIAL WEIGHTED SPACE

Abstract. In the present paper, we investigate the convergence and the approximation
order of some Durrmeyer type operators in exponential weighted space. Furthermore, we
obtain the Voronovskaya type theorem for these operators.

1. Introduction

O. Agratini considered in [I] the operator

La(a) =27 3 (10 (’“) 220,

kL
k:02k. n

where (a)o =1, (a)y =ala+1)---(a+k—1), ke N={1,2,...}, aeR.
Author established an asymptotic formula and some quantitative estimates
for the rate of convergence of the operator L,,.

In the present paper, we introduce two operators of Durrmeyer type
related to the operator Ly, (|2]). We define the operator M, + by

o0
Moi(fix) = Mo(fit,x) = J f(s)Kqy(t,z,8)ds, x>0, t>0, a>0,
0

where

1 efuua+k
Mo+ k+1)
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keNo=1{0,1,2,...}, u >0, a >0, and the operator S, ; by

Satlfi7) = Salfst,z) = F(0)27F + f F(s) Halt, 2, 5) ds,

where

H,(t,z,s) Zpk< )qk 1(j>,x20,t>0,a20.

It is clear that these operators are linear and positive. The similar
operators for the Szasz-Mirakjan type operator ([4], [5]) was considered by
S. M. Mazhar and V. Totik in [3] and by E. Wachnicki in [6].

The aim of this paper is to study the approximation properties of M, ¢
and S, in the set of all continuous functions on [0, +0) such that f(z) =
O (eP*), p > 0. In our considerations % plays a role of n and we consider
approximation when ¢t — 0F.

It would be interesting to investigate approximation properties of opera-
tors My, Sa, in the space LP.

2. Auxiliary results

In this section, we give some lemmas and properties which will be useful
later in proofs of the main results.

We will consider the set F,, p > 0, of functions f defined and continuous
in [0, +00) such that |f(x)| < CfeP* for x € [0, +0), where C} is a constant
depending on f. In E, we consider the norm:

IflE, = sup |e7™f(z)].

z€[0,+00)

Note that if p < ¢ then E, c E, and | f|g, < | fllE,-
We introduce the weighted modulus of continuity of function f € FE,.
The first order modulus of continuity wy (f, p,d):

wl(.ﬂp’ 5) = Ssup €_p$|f(.’E + U) - f(.CL' + U)|
x,u,v>0
lu—v|<d
and the second order modulus of continuity (modulus of smoothness)

w2(f7p75):
wa(fyp,0) = sup e P|f(x+2u) —2f(x +u+v)+ flx+2v)], § >0.

z,u,v>0
|lu—v|<d
When p = 0, we write wi(f,0), wa(f,d). The following properties hold:
(1) sup e "*|f(z + h) — f(2)] < wi(f,p,0),
x>0

0<h<§
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() sup e PUf(z+ 2(u+v)) = 2f(x +u+0) + f2)] < walf,p,0),
0<utuss

(3) wi(f,p, A0) < (1 4+ Nwi(f,p,0), >0, A>0.
Using properties of the gamma function, we obtain

fc s (f)wk _ ' (a+k+7r+1)

r_ps ,—
seet t (1_tp)a+k+r+1 ’

(4)

Wherek,reN,QZOand0<t<%forp>0,and0<t<oof0rp=0. We
have

0

z e} Z) X
(5) (1_a> Z St lal <1220
k=0
Using this and (2)g+1 = 2(z + 1)k, k € Ng, we can write
1
f =0
<1 ) or r ,
< ) for r =1,
1-—
i(z) kr—<<1 > za +za) for r = 2,
k=0 !
a (1 ) 2%’ + 32%a* + za® + za) for r = 3,
<1 ) ( at + 623a3 + 72%a?
—a
+za+422a3+za3+4za2) for r = 4.

Let e,(t) = t", r € Nyg. From , , @, we have the following lemmas.
LEMMA 2.1. Fort >0, x > 0 and o > 0, it holds

My (eg;t,x) =1, My(er;t,z) = o+ (a+ 1)t,

M, (eg;t, ) = 2% + (20 + 5)at + t*(a + 1) (a + 2),

My (ez;t, ) = 2% + (3a + 12)2°t + (3a® + 18 + 29)xt?
+t3(a+1)(a+2)(a+3),

My(eq;t, ) = 2* + (da + 22)2°t + (602 + 5da + 131)2%t>
+ (40® + 420% + 154 + 206)xt>
+tta+ 1) (a+2)(a+3)(a+4).

LEMMA 2.2. Fort> 0, x> 0 and o > 0, we have

Saleo;t,x) =1, Sy(erst,x) =z + ta (1 — 27%> ,
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Sa(e;t, ) = 2 + 2t + (2o + 1)t + t2a(a + 1) (1 - 2_%> ,

Sa(ezit,z) = 2% + (3a + 9)2%t + (302 + 12a + 14)xt?
+Bala+ 1) (o + 2) (1 - 2*%) ,

Sy(eq;t,z) =zt + (da + 18)x3t + (602 + 420 + 83)2t?
+ (403 + 4002 + 82ar + 90)xt?
+tia(a+1)(a+2)(a+3) (1 - 2*%> :

If we define the function ¢, (r € Ng, z > 0) by ¢4 ,(t) = (t—x)" then, by
Lemma [2.] and Lemma [2.2] one can get the following results, immediately.
LEMMA 2.3. Fort> 0, x>0 and o > 0, it holds

Ma(¢w,0;t7$> = 17 Ma(¢x,1;t7x) = (Oé + 1)ta

My (pzo;t, ) = 3at + t*(a + 1) (a + 2),

My (pra;t, x) = 272 + (602 + 110 + 182)xt?
+tta+ D) (a+2)(a+3)(a+4).

LEMMA 2.4. Fort> 0, x > 0 and o > 0, we have
Salbuoit;®) =1, Saldrait.a) =ta (1-277),
Sa(¢z2:t,T) = (3 + 2042_%) ot + t2a(a + 1) <1 — 2‘%> ,
Sa(¢gait,x) = 402"t a3t + (27 — 6a(a + 1)2_%) 2212
+ (2802 + 7da + 90 + dafa + 1)(a + 2)2—%) ot
+tta(a+ 1)(a + 2)(a + 3) (1 - 2*%) .

Observe that operators M., S, preserve the constant functions. If & = 0
then the operator S, preserves the linear functions.

In the sequel, the following functions will be meaningful:
fr() = ep(t)e?’ =17, 4y, (t) = gup(t)e? = (t —x)"e”, r e No, p,x > 0.
Now, we find operators M, S, for the function f, and v, for r = 0,1,2
and p > 0. In the case p = 0, it is clear that f, = e;, ¥z, T = ¢gr

At this point, we assume 0 < ¢ < 5. Then 0 < W < 1. From the
definitions of M, S, and from (4] . we obtaln

2 (e Tle+k+r+1)

Ma(fr§t7$) = (1 tp)a-‘rr-i-l 2 Qkkl(l — tp) F(Oé +k+ 1) ’
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ot & (%)k Dla+k+r)
2 2k k| '

Sa(fT;tax) = 2_?f7’(0) + (1 _ tp)a-‘r?" = (1 — tp)k F(Oé + k')

for r € Ny.

From this and @, we have the following lemmas, which we shall apply
to the proofs of the main theorems.

Jt
LEMMA 2.5. Leta >0, 20,0 <t < b Let A= (Hp)x . Then

1—2tp
' _ A _ Az +ta+1)(1 - 2tp))
Melfortoe) = (e Melbb) = 24— o o)
A
Mo (f2it, ) = (1= ip)o+3(1 = 2ip)? (x2 + (200 + 3 — 4datp — 8tp)xt

+t% (o + 1) (e + 2)(1 — 2tp)?)
Ma(trgit,) = Mo t.2) = =
A (3ptz — 2t*p*x + t(a + 1)(1 — 2tp))
(1 —tp)o+2(1 — 2tp) ’
At
(1 —tp)>+3(1 — 2tp)?
+ (3 + 8tp — (o + 1) (6tp + 16t%p? — 8t3p?))
+t(a+ 1) (a+2)(1—2tp)?).

Ma(wx,l; t, $) =

Mo (g oit, ) = (z*tp*(2tp — 1)

z/t
LEMMA 2.6. Leta >0, 20,0 <t< 5. Let A= ({55) . Then

Sa(fost,@) =27¢ + (1_1@& (A B 2_%> ’

1 .
Sa(fist,x) = (1= tp)ori(1 = 2ip) (Ax + at(1 — 2tp) <A - 2‘?)) 7
Sa(fo;t,x) = = tp)o“é(l TE (Aal?2 + A(3 — 4tp + 2a(1 — 2tp)at

+t2a(a + 1)(1 — 2tp)? (A - 2—%>) :

_z 1 _z
Sa(Vz0:t,x) = Sal(fost,x) =271 + W (A— 2 t) )

1
(1 —tp)*+i(1 - 2tp) (

+27 7 z(1 — tp)(1 — 2tp) + at(1 — 2tp) (A - 2’%)) )

Sa(wx,ﬂ t, I’) = _2_%-’5 + 3Atp£[f — 2At2p2$
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1
(1 —tp)*+2(1 — 2tp)?
+ A(3 — 4tp + 2a(1 — 2tp))xt

+t2a(a +1)(1 — 2tp)? (A — 2‘%)

Sa(Vz2;t,x) = [Az?(4t'p* — 126%p° + 9t2p?)

|8

—2at(1 — 2tp)%(1 — tp) (A —27

)

—27E (1 - tp)2(1 - 2p)* | + 2?27
Now, we prove the auxiliary inequalities.
LEMMA 2.7. If0 < p < q then for
8p

1 1
7 O<t<—(3—Q/1+— | <—,
@) 4p< Q> 2p

the inequality
A<e? forxz >0

holds.

Proof. Let I = (0, ﬁ (3 —A/1+ %7)). We observe that if 0 < p < ¢ then
3—4/1+8p/q >0 and I is not empty. If t € I then

(1 tp)(1—2tp) > ¥
q
and consequently

(8) b

(1 —tp)(1 - 2tp)

Let f(t) = In 11:557 —tqgfor 0 <t < %. According to the properties of
f, in view of (8), we conclude that f is decreasing in I U {0}. Therefore,

f(t) < f(0) for ¢t € I. From this, it follows that

<q.

T 1—tp
et In 75,5 < e

for > 0 and t € I, which completes the proof of Lemma .
Similarly, we can prove the following lemma.

LEMMA 2.8. If p> 0 and a > 0 then for 0 <t < ﬁ, the inequality

Pt < A ——
- T (1=tp)

holds.
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3. Approximation theorems

In this section, we state the Voronovskaya type theorem. Then we com-
pute the rate of convergence of the operators M,, S,. To achieve this, we
use the first and the second order modulus of continuity.

At the beginning of this section, we give some properties of the operator
norm of M, and S,, a > 0.

THEOREM 3.9. Let 0 < p < gq. Forte I, the operator M, maps E, into
E, and
q

(9) 1Mot (NI, <227 f18,-
In the case p = 0, the operator My maps Eq into itself and
(10) [ Mat(Nllg, < Ifl5, t>0.

Proof. Let 0 < p < ¢q. We have

[Ma i (f; %) = [Ma(f;t,2)] < Ma(lf];t,2) < [[f] 5, Ma(fos t, )
A
= HfHEpW
Since 0 < 1—711:1) <2for0<t< %, we obtain (9)), by Lemma . Using

Mg (ep;t,z) = 1 (Lemma [2.1)), we check at once that holds. =

In the similar fashion, we prove the following inequalities.

THEOREM 3.10. If 0 < p < q then for t € I, the operator S maps E,
into Eq and

(11) 1Sat(Nlg, <2°1f|E,-
In the case p = 0, the operator So maps Eqy into itself and
(12) Sat (N gy < IflEe, t>0.

Proof. Let 0 < p < ¢q. By Lemma [2.6] we can write
Sai(f;2)| = 1Sa(f3t, )| < Sallfl;t @) <[ flE,Salfot, x)

. A-27%
= 2_7 .
e 2%+ o]
Analogously to the proof of Theorem [3.9] we have
_=z A— 2_% _=z _ =z
2t+mf2 t+2a(eqm_2 i)

— 201 4 977 (1 —2%) < 2997,
since 277 (1 — 2%) < 0. This gives the result. m

Next, we are interested in some approximation theorems.
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THEOREM 3.11. Let f € E,, p>0. Then
im Mo(fit,x) = f(z), lm Su(fit,z) = f(x)
t—0+ t—0+
and the convergence is uniform on every compact subset of [0, +00).

Proof. Let ¢ > 0 and let > 0. Since f is continuous at the point x, there
exists 0 > 0 such that

|f(s) = f(z)] <e for |s—z| <.
Let p> 0. If |s — 2| > § then

RY
£(6) — F@)] < [l (& + o) < | £, (@ + ) B0

Therefore
2

76— F@) < & + 11, (4 ) B0

for an arbitrary s € [0, +00) and ¢ > 0. From this, it follows
(13)  [Ma(fit @) — f(2)] < Mo (|f — f(@)[;t,2) < eMa(eo;t, )

HfH2Ep (Mg (z2;t, ) + €P* My (¢z,2;t, 7)) .

S

By Lemma [2.3] we have
My (¢z2;t,2) = t(37 + t(a + 1)(a + 2)),
thus lim; g+ My (¢z2;t, ) = 0. Using Lemma we get
tEI[]):l+ Ma (1/}1‘,2; t7 I‘) = 0

Hence, in view of , we obtain
(14) lim M,(f;t,z) = f(x).

t—0+

Let 0 <a<b Ifxefab and 0 <t < % then 3z + t(a + 1)(a + 2) is
bounded. Similarly,

S|

(1 —tp)*?(1 — 2tp)?
x (6tp + 16t°p* — 8t°p”)) + t(a + 1) (ar + 2)(1 — 2tp)?]

is bounded for z € [a,b] and t € I. By Lemma [2.3] Lemma [2.5] and (13)), we
can deduce that holds uniformly on [a, b].

In the case p = 0 and for the operator Sy, the proof follows similarly. =

22 p? (2tp — 1)* + 2 (3 + 8tp — (a + 1)

The next step is to establish the Voronovskaya type theorem.
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THEOREM 3.12. If f € E,, p > 0, is twice differentiable at some point
x > 0 then

a3 PSR e,
(16) tli%lJr Sa(f;t>5§)_f($) _ af’(x)Jr%xf”(x).

Proof. We use the Taylor expansion

f(s) = f(@) + (s — ) f'(z) + %(8 —2)*f"(x) + (s, 2)(s —x)?,

where lim,_,; ,(s) = lims_,, £(s,2) = 0 and €, € E,. Hence, by Lemma
we can write

Ma(.ﬂt:x) = M, (€x¢x,2§ t, .Z') + f(x) + (a + 1)tf/(x)
1
+ §f”(a:)(3t:c +2t% (o + 1) (a + 2)).
In order to prove , it is sufficient to obtain

Ma TYYr ;t7
(17) lim Mo (€023, 7)
t—0+ t

= 0.
Recalling the Cauchy-Schwarz inequality, we can infer
|Ma (5x¢x,2§ t, $)| < \/Moa (5%; t, SU) M, (¢x,4; t, x)

Using Lemma [2.3] we get

Ma (¢x74; t, 1')
t2

=272% + (6a® + 1100 + 182) at

+t2(a+ 1) (a+2)(a+3)(a+4).

In view of Theorem , we conclude that lim; g+ M, (6925; t, :E) = (. There-
fore, we have ([17)).
The proof of follows similarly. =

COROLLARY 3.13. If f satisfies the assumptions of Theorem [3.12] then
Mo (fit,z) = f(z) + O(t), Sa(fit,x) = f(z)+O(1)
ast — 0%,

In the sequel, we state the approximation order of the operators M, and
Sa, a > 0.

THEOREM 3.14. If f € E, then for p > 0, it holds
(18) [Ma(f;t,x) — fz)| < 2w (f;p,0),
(19) |Sa(f7t,l')—f(l')| < 2ep$w1 (f7p351)a
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fort >0, x>0, where

6 =+/3tx +t2(a + 1) (o + 2),
51 = \/(3 + 2a2*%> ot + t2a(a + 1) (1 . 2*%).

Proof. Using the property of modulus of continuity, we can write

(s —2)°

6= ) < e (14 S5 Y eatsineo),

for arbitrary s,z € [0, 4+00) and an arbitrary ¢ > 0. Therefore,

|Ma(f;t7x> - f(ZL')’ < ep:cwl(f;p’ 6) <Ma(€0;t,1‘) + (;Ma(¢x,2;t7x)> .

Hence, by Lemma [2.1] and Lemma [2.3] we have

|Mo(f3t,2) — f(z)| < ePPwi(f;p,0)
2
y <1+3xt+t (a+1)(04—|—2)>.

62

Choosing § = 4/3zt + 12(a + 1)(a + 2), we obtain (18).
The proof of follows similarly. =

In the following, we are going to prove another estimate. We will use the
second order modulus of smoothness.

LEMMA 3.15. Let f € E, be a function of C? in [0, +0) and let ', f" € E,.
If T' is a linear and positive operator, which maps E, into E,, 0 < p < g,
such that T'(eg) = eq, then

(200 [T(H)(@) = f@)] < [f @IT(¢en)(@)] + [ ]85, (;T(fo)(x)

1 1
_ Pepx _ pepzT(Qﬁx,l)(:E)) 5

if p>0 and

(21) IT(f)(z) = f(@)] < | (@) T(¢u,1)(2)] + %Hf”HEO T(¢pz,2)(),
if p=0.

Proof. We can write

£(5) = f(@) + (s — ) f'(2) + j S j () dudz,
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Therefore,

T(F) (@) = f@)| < [F@IT(¢e1) (@) + £ 2, T () (),

where

Az(s) = f f e’ dudz =

Hence we get and . "

Now, we give the following results which will be used in the proof of the
next theorem. We will use the Steklov mean (see [3])

w"_‘

1
(eP? — eP¥) — —eP¥(s —x), for p >0,

o =3

(s — )2, for p = 0.

fn(z) = }ijoz J: 2f(x+u+v)— f(z+2(u+v))] dudv.

Let p > 0. Note that if f € E, then f;, € E},. Therefore

Fu(@) — fl2) = % L fo [2F(z +u+v) — f(z+2(u+ ) — f(2)] dudo.
Using this and 7 we obtain
e P fu(z) = fx)| < walfsp, h).

Hence

(22) fn = fllg, < w2(fip,h).

We observe that if f is continuous then

fn(@) = ]:12{2J0; (f <x+v+g) *f(z+v)> dv

h

_;Jj(f<$+2v+h)_f(x+2y))dv].

From this, we have

(23) Fr@)] < e en(f,p.h)

and
z+h o+ z+2h
J f(z)dz—QJ f(z)dz—le f(z)dz

T z+h
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Note that fj, is the function of C? in [0, +00) and

ﬂm:jékﬂx+M—lw<x+Z>+&ﬂm—f@+2m

+2f(z+h)— f(:x)]
We observe that if f € E, then f; € E, and

" 9
(24) 1171, < mawa(fip ).
THEOREM 3.16. If fe E,, 0 <p < g, then
(25) HMa,t(f) - f”Eq < CwQ(fapa \/E) + 5(06 + 1)\/‘Ew1(f7p7 \/Z)v

(26) 1Sai(f) = fllE, < Cwa(f,p,Vt) + Savtwi(f,p, V1),

fort € I, where I is the interval defined in the proof of LemmaR.7], C denotes
some positive constant depending only on a and p.

Proof. We can write
(Mo (f5t,2) — f(2)| < Mo (|f = fulit,z) + [Ma (fn — fal(2);t, 2)]
+ | falz) — f()].
Using Lemma , and
Ma(¢z,1§ta z) = (a+ 1),

A
Ma(foit,z) = A —tp)at

we get

|Ma (fh - fh(fﬁ),t,ﬂf” < %ep:ﬂ(a + 1)twl(f’p’ h) + %WQ(f7p) h)

1 A 1
—  _pm | _ Zpm 1
) [pz ((1—151))0‘+1 ‘ ) p° (ot )t]’

forx>0,h>0and 0 <t < %. From Theorem w and from 1) we have
Mo (If = fulit, @) <207 f — fu]m, <27 e wo(f,p, h).

Hence, we obtain

1
Ikhﬁﬁﬂﬂ—fmﬂé[¥x+f”%w+ji(—Jﬂa+1ﬁ
b

|

5
+ e (ot twn(f,p,h),
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forx>0,h>0and 0 <t < %. Choosing h = +/t, we have

1
Ma(fit,2) - f(2)] < [ saorier 9 <_em<a L1y
b

e ) sns
+5eP (a + D)Vtwi (f,p, V1),

forx20,0<t<$.
Note that there exists C7 > 0 such that

e A 1
_ P _ Zo—(gp)= <
tp? ((1 —ip)et € > p° (at+1) <,

for t € I, x > 0. Therefore,
| Mai(f) = fllg, < Cwa(f,p, V) + 5(c+ DVtwi(f,p, V),

for t € I, where C = Cy + 1 + 2¢F1,
Similarly we can prove . "

From , we obtain the next result at once.
COROLLARY 3.17. If fe E,, 0 <p < g, then
1S0,6(f) = flz, < Cwn(f;p, Vi), fortel.

Now, we discuss the case p = 0. Using the same method as in the proof
of Theorem we have the following estimations.

THEOREM 3.18. If f € Ey then

Mo (f;t,x) — f(x)] < (2 + %x + %(a +1)(a + 2)) wo(f, V1)

+5(a + DvVtwi (f, V1),
|Sa(fit, ) — f(x)] < (2 + 2(3 + 2a)T + %a(a + 1)) wo(f, V1)
+5a\/¥w1(f, \/7;),

forx>0,t>0.

COROLLARY 3.19. If f € Ey then

1So(f5t, ) — f(x)| < <2+227x> wo(f,\Vt), forz >0, t>0.

Acknowledgment. The authors are grateful to the referee for making
valuable comments leading to the overall improvements in the paper.
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