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INEQUALITIES AND MEANS FROM A CYCLIC
DIFFERENTIAL EQUATION

Abstract. We prove that the solution of the cyclic initial value problem
up = 1/2 — up/(ups1 + ups2) (k€ Z/nZ), u(0)=x

is convergent to an equilibrium p(z)(1,...,1), and study the properties of the function
x — u(x) and its relation to Shapiro’s inequality.

1. Introduction
In 1954 H. S. Shapiro [0] raised the question of proving

+ + =
To + T3 xr3 + x4 Tp + 21 r1 + o

n
2 )
for all n € N\{1,2} and all xy,...,z, > 0. Meanwhile, after the investiga-
tions of numerous authors, (1) is known to be false in general for even n > 14
and all n > 25. Moreover (1) is always true for even n < 12 and for odd
n < 23, see [I, p. 233], [3], [5, p. 440], and the references given there.
Inspired by Shapiro’s inequalities, we investigated the following corre-
sponding initial value problem, which turns out to have some interesting
aspects in its asymptotic behaviour. In the sequel, let always n > 3, and let
all indexes of vectors in R™ be understood modulo n, that is from Z,, := Z/nZ.
Let

D:={x=(21,...,2,) ER" 12 > 0 (k € Zy)}
and let f: D — R” be defined by

F@) = (@) fule)) = (; - “)M

Th41 + Tht2
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Inequalities and means from a cyclic differential equation 301

We consider the initial value problem

(2) u'(t) = f(u(?), u(0)=z¢eD.
In the sequel, let | - || denote the Euclidean norm on R™ and let A(x), G(z)

and Q(x) denote the arithmetic, geometric and quadratic mean of x € D,
i.e.

1 1/n 1
A(x) = — xk,gajz( xk> , 9Qz) = —|=z,
(x) nk;zn () kle;[n () \/ﬁH H
and note that G(x) < A(x) < Q(z) (z € D).
We will see that the solution u(t, z) of (2) is convergent to an equilibrium
point u(z)(1,...,1) as t — oo, and we will study the properties of the hereby
defined function p : D — R. Among others we show that

G(x) < p(x) < Qx) (ze D),
and that, if (1) is true on D, then even
p(x) < A(z)  (z e D).

For n = 3, we will see that

1
pw(r) = —=+/x122 + 273 + 2321 (2 € D).

V3

2. Preliminaries

First note that f : D — R™ is locally Lipschitz continuous, hence (2) is
uniquely solvable for each z € D, and that f(Ap) =0, p:=(1,...,1), A > 0.
Let u(.,z) : [0,w+(x)) — D denote the solution of (2), non extendable to
the right. Next, we consider R™ as ordered by the natural cone

K:={x=(x1,...,2p) eR" 105, >0 (k€ Zy)}, z<y:<— y—xekK.
For z,z € R", x < z let [z, z] denote the order interval
{yeR" :x <y <z}

Now f is quasimonotone increasing on D with respect to K in the sense of
Walter [8, Def. 6.11], that is

r,yeD, <y, =y = fr(z) < fu(y).
Since f is locally Lipschitz continuous, it is known that for each pair of
functions v, w € C([a,b), D), the implication

3) {U'(t) — f(0(®)) <w'(t) = f(w(t)) (t€[a,b)), v(a) < w(a)
— u(t) < w(t) (t € [a,b))
is valid, see [7, Satz 2|. From (3), we obtain

(4)  min{z1,...,2.}p < u(t,x) < max{zi,...,z,}p (t€[0,wi(x))),



302 G. Herzog, P. Chr. Kunstmann

and therefore w, (z) = 0 (z € D). Moreover (3) implies

(5) u(t,z) <u(t,y) (x<y, t>0).

PROPOSITION 1. For z € D we have
f(2)=0<=3IN>0:2=\p.

Proof. If f(z) = 0 then zj, = 1352 for ]l k € Z,,. Hence

Th+2 — Th+1 1
T — Tpyl = % = —§($k+1 — Tpy2)
1" 1"
== ( Qn) (Than — Thant1) = ( 2n) (T — Tht1)

for all k € Z,,. Thus all x; must be equal. »
PROPOSITION 2. Let u = u(-,x) be the solution of (2). Then

1. t — G(u(t)) is monotone increasing on [0,0);
2. t— Q(u(t)) is monotone decreasing on [0,00);
3. t— A(u(t)) is monotone decreasing on [0,00), if (1) holds on D.

Proof. 1. From (2), we get

up(t) I 1
Lo~ 2 <2Uk<t> Uk+1<t>+uk+2(t>> (£ 0).

keZn Uk (t) k€

We use the inequality

1 1 1
< - 4
a+ 8~ 4a+4ﬂ (@, 8> 0),
and obtain
S (loglun))()) > 3 (o2 ot ) 0 (t=0).
Kez., _kGZn 2uk(t) 4uk+1(t) 4uk+2(t) -
Thus

t— log< H uk(t)>

k€Zn

is monotone increasing on [0, ), and the assertion follows.
2. First, consider y € D. The Cauchy—Schwarz inequality leads to

2 ) 2
( Z yk) = ( Z N — VYk+1 + Yk+2
vez, VYk+1 + Yk+2

keZy,
y2
Z + Z (Yk+1 + Yr+2)
keZ,, Yk+1 T Yk+2 ke,

2
O

rez, Jk+1 + Yk+2 rez.,

IN
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hence

LwS ) o —

ke, vez, Yk+1 + Ykt2
and therefore

(Z ) 0= % (w0 i am) <© (20

kJEZn kEZn

3. Validity of (1) on D leads to

(Z uk)/(t) - g -y k() <0 (t>0). =

ke v uk (t) + uri2(t)

3. Main results
THEOREM 1. For each x € D there exists u(x) > 0 such that

lim u(t,2) = u(@)p.
The function p: D — (0,00) has the following properties:

1 1s monotone increasing with respect to the order defined by K ;
. [ 18 continuous;
((xla .- )) = M((l’g, R 7xn>$1)) (:U = (:Ela cee 7$n) € D);
p(Ar) = (:B) (xeD, A>0);
G(z) < p(z) < Q@) (z € D);
wu(z) < A(z) (x € D), if (1) holds on D.

Proof. Fix x € D and let u(t) = u(t,z) (t > 0). We consider h : [0,00) —> R
defined by h(t) = |u(t)|?. Let

=2

I := [min{xy,...,z,}p, max{x1, ..., z,}p],

and note that I is a compact subset of D. From (2) and (4), we get

u([0,00)) = I, w/([0,00)) < f(I), u"([0,0)) = (f'- ).

We conclude that u, ' and «” are bounded on [0, o), hence h, h' and h” are
bounded, too, and in particular, h and h’ are Lipschitz continuous on [0, c0).
Moreover, h is decreasing on [0, 00) according to Proposition 2, and clearly
h is bounded below. Thus

lim 1'(t) = 0.

t—00

Now, let y be an w-limit point of u, that is there is a sequence (¢;) in [0, c0)
such that
tj—>o (j =), ult))—y ([j—o0).
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Clearly y € I. From R/(t;) — 0 (j — o) we obtain

2
Y ) RIS e

keZ., Yk+1 + Yk+2 ez, vez, Yk+1 + Yk+2

Proceeding as in the proof of Proposition 2, we get

<Z yk)2§ Z _ W Zykz:(Z Z/k>2a

keZn kezy, Il T Yk2 iz kEZn,
and have equality in the Cauchy—Schwarz inequality. Therefore, the vectors

Yk
— and  (\/Uk+1 + Y42
(\/yk—H +yk+2> ( " * )

are linearly dependent. Since both vectors are from D there is some o > 0
such that

U = a(Yr+1 + Yrr2) (k€ Zy).

Taking the sum, we obtain

1
=« + = 2a == —.
kezzjn Yk keZZ:n(yk+1 Yk+2) keZZ:n Yk 5
Therefore f(y) = 0, and Proposition 1 proves y = Ap for some A > 0. Thus
every w-limit point of u is an equilibrium of the differential equation in (2).
Now assume that A\1p and Aop be w-limit points of v with Ay < A9 and let
d := (A1 + A2)/2. We can find some to > 0 such that dp < u(tg). We apply

(3) to v,w : [ty,0) — R defined by v(t) = dp, w(t) = u(t). We have

V(t) = flo(t) =0 =w'(t) — f(w(t) (t > t0), vlto) < wlto),

hence v(t) < w(t), i.e. dp < wu(t) (¢t > tp). Since A\1p is an w-limit point of u,

we get the contradiction
A1+ Ao

2
Summing up, there is a single w-limit point of u and therefore

li -
Jim u(t) = pp,

< A1

for some p > 0.
We now prove the asserted properties of u: From (5) we get 1. as t — o0.
To prove 2. first observe that for each fixed ¢t > 0 the function

x — u(t,x)
is continuous on D, [4, Ch. V, Th. 2.1|. Hence
x> G(u(t,z), - Qu(t,x))

are continuous functions on D. According to Proposition 2, t — G(u(t,x)) is
increasing and ¢ — Q(u(t,z)) is decreasing, both with limit u(z) as t — o
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for x € D. Therefore p is lower and upper semicontinuous, hence continuous
on D.

For the proof of 3. let z € D, y = (Tg41)kez, and vy = ugs1(-, )
(k € Zy,). Then v solves v/(t) = f(v(t)) and v(0) = y. Since (2) is uniquely
solvable, we have v = u(+,y). As t — o0 we get pu(z) = u(y).

Next, 4. follows by setting

v(t) = Au(t/A,x) (t>0).
Then v(0) = Az and
V(t) = ' (t/N x) = fu(t/A 2)) = F(L/A)o(t) = f(v(B) (¢ =0).
Thus
u(t, A\z) = v(t) = Au(t/A,x) (t>0),

and as t — o0 we get u(Az) = Au(zx).
Finally 5. and 6. directly follow by Proposition 2 as ¢t — c0. =

'yn:=< 2cos<2;;>—1>_1 (n>3).

It is known [2] that for arbitrary n, Shapiro’s inequality (1) is valid, provided

that
1
weCni=[JA [p,’ynp] :
A>0 n

Now, set

THEOREM 2. Let x € D and let u = u(-,x) be the solution of (2). Then

1. t — A(u(t)) is eventually monotone decreasing on [0,00);
2. u(x) < A(z) (zeCy).

Proof. First note that v, > 1. According to Theorem 1, we have u(t) —
w(x)p as t — oo. Hence, there exists ¢y > 0 such that
p(x)
Tn

So u(t) € Cy, (t > tg), and as in the proof of Proposition 2, we find

(3 uk)/(t) <0 (t>to).

k€Zn

p<u(t) < p(@)mp (= to).

This proves 1. If in addition z € C),, that is

A
IAN>0: —p <z < Awp,

n
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then by (4)

A
—p <min{xy,...,2,}p < u(t) < max{xi,...,xn}p < Ayp (> 0).

Tn

Again t — A(u(t)) is monotone decreasing on [0,00) and we get 2. m
The next result gives an implicit representation of the function u.

THEOREM 3. Let x € D and let u = u(-, x) be the solution of (2). Then the

integral
L. joo y (uk(t) (1 Cup—n(t) + Uk—Q(t)>> gt
0 ez, U1 (1) + up2(t)
s convergent and

wu(x) = \/1271\/ Z Ti(Tht1 + Thyo) + 1.

k€l

Proof. We have
3 deuen(®) + ura) = 3 (0T )

k€Znp, k€Zn, 2
on [0,00). Thus
(D w0+ wea()) = 3 w0t (0) + (1)
k€Zn, k€Zn
= Z () (ug—1(t) + ug—2(t))
k€Zn,
vl w® N e
B kezz:n <2 up+1(t) + uk+2(t)> (wr-1(t) + 1ue—2(0))
_ uk,l(t) + Ug—9 (t) . u uk,l(t) + uk,Q(t)
- kEZZ:n 2 kezzln k(t)uk+1(t) + up42(t)
_ u B uk_l(t) + uk_g(t)
- k;ﬂ( ) (1 u+1(t) + uk+2(t))) 2 0)

Integration yields

D7 ur() (ursr (1) + wrra(t) = D) wr(Tris + i)
keZn keZn,

ug41(8) + upr2(s)
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As t — o0, we obtain
2np(z)? = Z Tp(Ths1 + Thao) + 0. m
keZn

More precise details on p(x) are possible if x is periodic with period 1, 2
or 3. Clearly period 1 means z = Ap for some A > 0. Then u(x) = A.
THEOREM 4. Let x € D. If x has period m € {2,3} then
xr1 + T2

2

if m =2,
p(x) =

1
—/x129 + x93 + 2321 if M = 3.
V3

Proof. First note that if m € N is a divisor of n and
C:={x e D:xis m periodic},

then C' is invariant for (2), that is if z € C' then u(t,z) e C (t > 0). If m = 2
then up = ugio (k € Zy,), thus (2) implies

1 t 1 t

=g - 0y e

2 U9 (t) + U (t) 2 Ul (t) + U2 (t)
hence
—0 (t>0).

Therefore p(z) = (21 + x2)/2.
In case m = 3, we have ug,o = up_1 (k € Zy,), hence I' = 0 in Theorem 3.
Therefore

1 1
Tr) = — Tr(T +x =— /2 TLx
p(x) W keZZ:n k(Tht1 + Thyo) NeT) / keZZ:n kTh41

1 n 1
= T 2§(CE1$2 + xox3 + x371) = %\/561352 + Tox3 + T3%1. =

REMARK. Combining Theorem 4 and Theorem 1, we obtain the well known
inequalities

1+ X9 + 3
3

OPEN PROBLEM. Numerical experiments indicate that in the general case
I"' <0 in Theorem 3, i.e.

() < \/1270 \/ S 2 (wke1 + 7ks2) (2 € D),

keZn,

1
(z12923)" /3 < %\/&“1%2 + xox3 + w377 < (21,22, 73 > 0).

and that
p(x) < A(z) (zeD).
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For n = 4,5,6 the first inequality is the better one, since

1
— Tp(Tpe1 + < Az reD) < ne{3,4,5,6},
oy D ok a2) SA@) (D) (3.4.5,6)
see [3, p. 19].
The following picture shows the solution of (2) in case n = 12 for the
random initial value

x = (1.53842,1.80684,0.54198, 1.61010, 0.80408, 0.79786,
1.85042,0.31325,1.16632, 0.53282, 1.97749, 1.12554).
Numerically we have G(z) = 1.0186, u(x) = 1.1271, A(z) = 1.1721 and

D wk(@per + TRan) = 11570,

1
24 kGZlg
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