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INEQUALITIES AND MEANS FROM A CYCLIC
DIFFERENTIAL EQUATION

Abstract. We prove that the solution of the cyclic initial value problem

u1k “ 1{2´ uk{puk`1 ` uk`2q pk P Z{nZq, up0q “ x

is convergent to an equilibrium µpxqp1, . . . , 1q, and study the properties of the function
x ÞÑ µpxq and its relation to Shapiro’s inequality.

1. Introduction
In 1954 H. S. Shapiro [6] raised the question of proving

(1)
x1

x2 ` x3
`

x2
x3 ` x4

` ¨ ¨ ¨ `
xn´1
xn ` x1

`
xn

x1 ` x2
≥ n

2
,

for all n P Nzt1, 2u and all x1, . . . , xn ą 0. Meanwhile, after the investiga-
tions of numerous authors, (1) is known to be false in general for even n ≥ 14
and all n ≥ 25. Moreover (1) is always true for even n ≤ 12 and for odd
n ≤ 23, see [1, p. 233], [3], [5, p. 440], and the references given there.

Inspired by Shapiro’s inequalities, we investigated the following corre-
sponding initial value problem, which turns out to have some interesting
aspects in its asymptotic behaviour. In the sequel, let always n ≥ 3, and let
all indexes of vectors in Rn be understood modulo n, that is from Zn :“ Z{nZ.
Let

D :“ tx “ px1, . . . , xnq P Rn : xk ą 0 pk P Znqu

and let f : D Ñ Rn be defined by

fpxq “ pf1pxq, . . . , fnpxqq “

ˆ

1

2
´

xk
xk`1 ` xk`2

˙

kPZn

.
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We consider the initial value problem

(2) u1ptq “ fpuptqq, up0q “ x P D.

In the sequel, let } ¨ } denote the Euclidean norm on Rn and let Apxq, Gpxq
and Qpxq denote the arithmetic, geometric and quadratic mean of x P D,
i.e.

Apxq “ 1

n

ÿ

kPZn

xk, Gpxq “
ˆ

ź

kPZn

xk

˙1{n

, Qpxq “ 1
?
n
}x},

and note that Gpxq ≤ Apxq ≤ Qpxq px P Dq.
We will see that the solution upt, xq of (2) is convergent to an equilibrium

point µpxqp1, . . . , 1q as tÑ8, and we will study the properties of the hereby
defined function µ : D Ñ R. Among others we show that

Gpxq ≤ µpxq ≤ Qpxq px P Dq,

and that, if (1) is true on D, then even

µpxq ≤ Apxq px P Dq.

For n “ 3, we will see that

µpxq “
1
?

3

?
x1x2 ` x2x3 ` x3x1 px P Dq.

2. Preliminaries
First note that f : D Ñ Rn is locally Lipschitz continuous, hence (2) is

uniquely solvable for each x P D, and that fpλpq “ 0, p :“ p1, . . . , 1q, λ ą 0.
Let up., xq : r0, ω`pxqq Ñ D denote the solution of (2), non extendable to
the right. Next, we consider Rn as ordered by the natural cone

K :“ tx “ px1, . . . , xnq P Rn : xk ≥ 0 pk P Znqu, x ≤ y : ðñ y ´ x P K.

For x, z P Rn, x ≤ z let rx, zs denote the order interval

ty P Rn : x ≤ y ≤ zu.
Now f is quasimonotone increasing on D with respect to K in the sense of
Walter [8, Def. 6.II], that is

x, y P D, x ≤ y, xk “ yk ñ fkpxq ≤ fkpyq.
Since f is locally Lipschitz continuous, it is known that for each pair of
functions v, w P C1pra, bq, Dq, the implication

(3)

#

v1ptq ´ fpvptqq ≤ w1ptq ´ fpwptqq pt P ra, bqq, vpaq ≤ wpaq
ùñ vptq ≤ wptq pt P ra, bqq

is valid, see [7, Satz 2]. From (3), we obtain

(4) mintx1, . . . , xnup ≤ upt, xq ≤ maxtx1, . . . , xnup pt P r0, ω`pxqqq,
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and therefore ω`pxq “ 8 (x P D). Moreover (3) implies

(5) upt, xq ≤ upt, yq px ≤ y, t ≥ 0q.

Proposition 1. For x P D we have

fpxq “ 0 ðñ Dλ ą 0 : x “ λp.

Proof. If fpxq “ 0 then xk “
xk`1`xk`2

2 for all k P Zn. Hence

xk ´ xk`1 “
xk`2 ´ xk`1

2
“ ´

1

2
pxk`1 ´ xk`2q

“ . . . “
p´1qn

2n
pxk`n ´ xk`n`1q “

p´1qn

2n
pxk ´ xk`1q

for all k P Zn. Thus all xk must be equal.

Proposition 2. Let u “ up¨, xq be the solution of p2q. Then

1. t ÞÑ Gpuptqq is monotone increasing on r0,8q;
2. t ÞÑ Qpuptqq is monotone decreasing on r0,8q;
3. t ÞÑ Apuptqq is monotone decreasing on r0,8q, if p1q holds on D.

Proof. 1. From (2), we get
ÿ

kPZn

u1kptq

ukptq
“

ÿ

kPZn

ˆ

1

2ukptq
´

1

uk`1ptq ` uk`2ptq

˙

pt ≥ 0q.

We use the inequality
1

α` β
≤ 1

4α
`

1

4β
pα, β ą 0q,

and obtain
ÿ

kPZn

plogpukqq
1ptq ≥

ÿ

kPZn

ˆ

1

2ukptq
´

1

4uk`1ptq
´

1

4uk`2ptq

˙

“ 0 pt ≥ 0q.

Thus
t ÞÑ log

´

ź

kPZn

ukptq
¯

is monotone increasing on r0,8q, and the assertion follows.
2. First, consider y P D. The Cauchy–Schwarz inequality leads to

´

ÿ

kPZn

yk

¯2
“

ˆ

ÿ

kPZn

yk
?
yk`1 ` yk`2

a

yk`1 ` yk`2

˙2

≤
ÿ

kPZn

y2k
yk`1 ` yk`2

ÿ

kPZn

pyk`1 ` yk`2q

“
ÿ

kPZn

y2k
yk`1 ` yk`2

ÿ

kPZn

2yk,
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hence
ÿ

kPZn

yk ≤
ÿ

kPZn

2y2k
yk`1 ` yk`2

,

and therefore
´

ÿ

kPZn

u2k

¯1

ptq “
ÿ

kPZn

ˆ

ukptq ´
2ukptq

2

uk`1ptq ` uk`2ptq

˙

≤ 0 pt ≥ 0q.

3. Validity of (1) on D leads to
´

ÿ

kPZn

uk

¯1

ptq “
n

2
´

ÿ

kPZn

ukptq

uk`1ptq ` uk`2ptq
≤ 0 pt ≥ 0q.

3. Main results
Theorem 1. For each x P D there exists µpxq ą 0 such that

lim
tÑ8

upt, xq “ µpxqp.

The function µ : D Ñ p0,8q has the following properties:

1. µ is monotone increasing with respect to the order defined by K;
2. µ is continuous;
3. µppx1, . . . , xnqq “ µppx2, . . . , xn, x1qq px “ px1, . . . , xnq P Dq;
4. µpλxq “ λµpxq px P D, λ ą 0q;
5. Gpxq ≤ µpxq ≤ Qpxq px P Dq;
6. µpxq ≤ Apxq px P Dq, if p1q holds on D.

Proof. Fix x P D and let uptq “ upt, xq pt ≥ 0q. We consider h : r0,8q Ñ R
defined by hptq “ }uptq}2. Let

I :“ rmintx1, . . . , xnup,maxtx1, . . . , xnups,

and note that I is a compact subset of D. From (2) and (4), we get

upr0,8qq Ď I, u1pr0,8qq Ď fpIq, u2pr0,8qq Ď pf 1 ¨ fqpIq.

We conclude that u, u1 and u2 are bounded on r0,8q, hence h, h1 and h2 are
bounded, too, and in particular, h and h1 are Lipschitz continuous on r0,8q.
Moreover, h is decreasing on r0,8q according to Proposition 2, and clearly
h is bounded below. Thus

lim
tÑ8

h1ptq “ 0.

Now, let y be an ω-limit point of u, that is there is a sequence ptjq in r0,8q
such that

tj Ñ8 pj Ñ8q, uptjq Ñ y pj Ñ8q.
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Clearly y P I. From h1ptjq Ñ 0 pj Ñ8q we obtain
ÿ

kPZn

2yk

ˆ

1

2
´

yk
yk`1 ` yk`2

˙

“ 0 ñ
ÿ

kPZn

yk “
ÿ

kPZn

2y2k
yk`1 ` yk`2

.

Proceeding as in the proof of Proposition 2, we get
´

ÿ

kPZn

yk

¯2
≤

ÿ

kPZn

2y2k
yk`1 ` yk`2

ÿ

kPZn

yk “
´

ÿ

kPZn

yk

¯2
,

and have equality in the Cauchy–Schwarz inequality. Therefore, the vectors
ˆ

yk
?
yk`1 ` yk`2

˙

and
`a

yk`1 ` yk`2
˘

are linearly dependent. Since both vectors are from D there is some α ą 0
such that

yk “ αpyk`1 ` yk`2q pk P Znq.
Taking the sum, we obtain

ÿ

kPZn

yk “ α
ÿ

kPZn

pyk`1 ` yk`2q “ 2α
ÿ

kPZn

yk ñ α “
1

2
.

Therefore fpyq “ 0, and Proposition 1 proves y “ λp for some λ ą 0. Thus
every ω-limit point of u is an equilibrium of the differential equation in (2).
Now assume that λ1p and λ2p be ω-limit points of u with λ1 ă λ2 and let
δ :“ pλ1 ` λ2q{2. We can find some t0 ≥ 0 such that δp ≤ upt0q. We apply
(3) to v, w : rt0,8q Ñ R defined by vptq “ δp, wptq “ uptq. We have

v1ptq ´ fpvptqq “ 0 “ w1ptq ´ fpwptqq pt ≥ t0q, vpt0q ≤ wpt0q,
hence vptq ≤ wptq, i.e. δp ≤ uptq pt ≥ t0q. Since λ1p is an ω-limit point of u,
we get the contradiction

λ1 ` λ2
2

≤ λ1.

Summing up, there is a single ω-limit point of u and therefore
lim
tÑ8

uptq “ µp,

for some µ ą 0.
We now prove the asserted properties of µ: From (5) we get 1. as tÑ8.
To prove 2. first observe that for each fixed t ≥ 0 the function

x ÞÑ upt, xq

is continuous on D, [4, Ch. V, Th. 2.1]. Hence
x ÞÑ Gpupt, xqq, x ÞÑ Qpupt, xqq

are continuous functions on D. According to Proposition 2, t ÞÑ Gpupt, xqq is
increasing and t ÞÑ Qpupt, xqq is decreasing, both with limit µpxq as t Ñ 8
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for x P D. Therefore µ is lower and upper semicontinuous, hence continuous
on D.

For the proof of 3. let x P D, y “ pxk`1qkPZn and vk “ uk`1p¨, xq
pk P Znq. Then v solves v1ptq “ fpvptqq and vp0q “ y. Since (2) is uniquely
solvable, we have v “ up¨, yq. As tÑ8 we get µpxq “ µpyq.

Next, 4. follows by setting

vptq “ λupt{λ, xq pt ≥ 0q.

Then vp0q “ λx and

v1ptq “ u1pt{λ, xq “ fpupt{λ, xqq “ fpp1{λqvptqq “ fpvptqq pt ≥ 0q.

Thus
upt, λxq “ vptq “ λupt{λ, xq pt ≥ 0q,

and as tÑ8 we get µpλxq “ λµpxq.
Finally 5. and 6. directly follow by Proposition 2 as tÑ8.

Now, set

γn :“

ˆ

d

2 cos

ˆ

2π

n

˙

´ 1

˙´1

pn ≥ 3q.

It is known [2] that for arbitrary n, Shapiro’s inequality (1) is valid, provided
that

x P Cn :“
ď

λą0

λ

„

1

γn
p, γnp



.

Theorem 2. Let x P D and let u “ up¨, xq be the solution of p2q. Then

1. t ÞÑ Apuptqq is eventually monotone decreasing on r0,8q;
2. µpxq ≤ Apxq px P Cnq.

Proof. First note that γn ą 1. According to Theorem 1, we have uptq Ñ
µpxqp as tÑ8. Hence, there exists t0 ≥ 0 such that

µpxq

γn
p ≤ uptq ≤ µpxqγnp pt ≥ t0q.

So uptq P Cn pt ≥ t0q, and as in the proof of Proposition 2, we find
´

ÿ

kPZn

uk

¯1

ptq ≤ 0 pt ≥ t0q.

This proves 1. If in addition x P Cn, that is

Dλ ą 0 :
λ

γn
p ≤ x ≤ λγnp,
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then by (4)

λ

γn
p ≤ mintx1, . . . , xnup ≤ uptq ≤ maxtx1, . . . , xnup ≤ λγnp pt ≥ 0q.

Again t ÞÑ Apuptqq is monotone decreasing on r0,8q and we get 2.

The next result gives an implicit representation of the function µ.

Theorem 3. Let x P D and let u “ up¨, xq be the solution of p2q. Then the
integral

Γ :“

ż 8

0

ÿ

kPZn

ˆ

ukptq

ˆ

1´
uk´1ptq ` uk´2ptq

uk`1ptq ` uk`2ptq

˙˙

dt

is convergent and

µpxq “
1
?

2n

d

ÿ

kPZn

xkpxk`1 ` xk`2q ` Γ.

Proof. We have
ÿ

kPZn

u1kptqpuk`1ptq ` uk`2ptqq “
ÿ

kPZn

ˆ

uk`1ptq ` uk`2ptq

2
´ ukptq

˙

“ 0

on r0,8q. Thus

d

dt

´

ÿ

kPZn

ukptqpuk`1ptq ` uk`2ptqq
¯

“
ÿ

kPZn

ukptqpu
1
k`1ptq ` u

1
k`2ptqq

“
ÿ

kPZn

u1kptqpuk´1ptq ` uk´2ptqq

“
ÿ

kPZn

ˆ

1

2
´

ukptq

uk`1ptq ` uk`2ptq

˙

puk´1ptq ` uk´2ptqq

“
ÿ

kPZn

uk´1ptq ` uk´2ptq

2
´

ÿ

kPZn

ukptq
uk´1ptq ` uk´2ptq

uk`1ptq ` uk`2ptq

“
ÿ

kPZn

ˆ

ukptq

ˆ

1´
uk´1ptq ` uk´2ptq

uk`1ptq ` uk`2ptq

˙˙

pt ≥ 0q.

Integration yields
ÿ

kPZn

ukptqpuk`1ptq ` uk`2ptqq “
ÿ

kPZn

xkpxk`1 ` xk`2q

`

ż t

0

ÿ

kPZn

ˆ

ukpsq

ˆ

1´
uk´1psq ` uk´2psq

uk`1psq ` uk`2psq

˙˙

ds pt ≥ 0q.
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As tÑ8, we obtain

2nµpxq2 “
ÿ

kPZn

xkpxk`1 ` xk`2q ` Γ.

More precise details on µpxq are possible if x is periodic with period 1, 2
or 3. Clearly period 1 means x “ λp for some λ ą 0. Then µpxq “ λ.

Theorem 4. Let x P D. If x has period m P t2, 3u then

µpxq “

$

’

&

’

%

x1 ` x2
2

if m “ 2,

1
?

3

?
x1x2 ` x2x3 ` x3x1 if m “ 3.

Proof. First note that if m P N is a divisor of n and

C :“ tx P D : x is m periodicu,

then C is invariant for (2), that is if x P C then upt, xq P C pt ≥ 0q. If m “ 2
then uk “ uk`2 pk P Znq, thus (2) implies

u11ptq “
1

2
´

u1ptq

u2ptq ` u1ptq
, u12ptq “

1

2
´

u2ptq

u1ptq ` u2ptq
,

hence
u11ptq ` u

1
2ptq

2
“ 0 pt ≥ 0q.

Therefore µpxq “ px1 ` x2q{2.
In case m “ 3, we have uk`2 “ uk´1 pk P Znq, hence Γ “ 0 in Theorem 3.

Therefore

µpxq “
1
?

2n

d

ÿ

kPZn

xkpxk`1 ` xk`2q “
1
?

2n

d

2
ÿ

kPZn

xkxk`1

“
1
?

2n

c

2
n

3
px1x2 ` x2x3 ` x3x1q “

1
?

3

?
x1x2 ` x2x3 ` x3x1.

Remark. Combining Theorem 4 and Theorem 1, we obtain the well known
inequalities

px1x2x3q
1{3 ≤ 1

?
3

?
x1x2 ` x2x3 ` x3x1 ≤

x1 ` x2 ` x3
3

px1, x2, x3 ≥ 0q.

Open Problem. Numerical experiments indicate that in the general case
Γ ≤ 0 in Theorem 3, i.e.

µpxq ≤ 1
?

2n

d

ÿ

kPZn

xkpxk`1 ` xk`2q px P Dq,

and that
µpxq ≤ Apxq px P Dq.
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For n “ 4, 5, 6 the first inequality is the better one, since
1
?

2n

d

ÿ

kPZn

xkpxk`1 ` xk`2q ≤ Apxq px P Dq ðñ n P t3, 4, 5, 6u,

see [3, p. 19].
The following picture shows the solution of (2) in case n “ 12 for the

random initial value
x “ p1.53842, 1.80684, 0.54198, 1.61010, 0.80408, 0.79786,

1.85042, 0.31325, 1.16632, 0.53282, 1.97749, 1.12554q.

Numerically we have Gpxq “ 1.0186, µpxq “ 1.1271, Apxq “ 1.1721 and
1
?

24

d

ÿ

kPZ12

xkpxk`1 ` xk`2q “ 1.1570.

0
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