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SEMIDIRECT PRODUCT OF GROUPOIDS AND
ASSOCIATED ALGEBRAS

Abstract. One of the pressing problems in mathematical physics is to find a gen-
eralized Poincaré symmetry that could be applied to nonflat space-times. As a step in
this direction, we define the semidirect product of groupoids Γ0 ¸ Γ1 and investigate its
properties. We also define the crossed product of a bundle of algebras with the groupoid
Γ1 and prove that it is isomorphic to the convolutive algebra of the groupoid Γ0 ¸ Γ1.
We show that families of unitary representations of semidirect product groupoids in a
bundle of Hilbert spaces are random operators. An important example is the Poincaré
groupoid defined as the semidirect product of the subgroupoid of generalized Lorentz
transformations and the subgroupoid of generalized translations.

1. Introduction
One of the main stumbling blocks in combining general relativity with

quantum mechanics into a suitable generally covariant quantum field theory
is the fact that the Poincaré group does not act on a curved space-time as
a group of motions (e.g., [12, p. 360]). There are strong reasons to believe
that to make a synthesis of general relativity and quantum physics would
require a suitable generalization of the Poincaré group so as it would be able
to enter into a fruitful interaction with geometry of curved manifolds (see,
for instance, [3, 5, 7]).

The paper is based on the paper [11] of Pysiak on groupoids. Natural
generalization of group symmetries are groupoid symmetries. In the present
work, we propose such a generalization. First, we define the semidirect
product of groupoids Γ0 ¸ Γ1 where Γ0 and Γ1 are subgroupoids of the
same groupoid Γ (Sect. 2). Then, in Sect. 3, we define the action of the
subgroupoid Γ1 on a bundle A of algebras related to the subgroupoid Γ0.
This allows us to define the crossed product of a bundle A of algebras with
Γ1, A¸Γ1, which we prove to be isomorphic to the convolutive algebra of the
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groupoid Γ0¸Γ1. In Sect. 4, we show that families of unitary representations
of the semidirect product groupoids in a bundle of Hilbert spaces form an
algebra of random operators (in the sense of Connes [4]), which can be
completed to a von Neumann algebra. Finally, in Sect. 5, we construct, as
an example of the developed theory, the Poincaré groupoid being a semidirect
product of the subgroupoid of generalized Lorentz transformations and the
subgroupoid of generalized translations.

To fix notation, we briefly describe the groupoid structure (for the defini-
tion see [2, p. 85] or [8, p. 269]). A groupoid Γ over X, or a groupoid with
base X, is a 7-tuple pΓ, X, d, r, ε, ι,mq consisting of the following elements:
(1) sets Γ and X, (2) surjections pd, rq : Γ Ñ X, called source and target
map, respectively, (3) injection ε : X Ñ Γ, x ÞÑ εpxq, called identity section
or simply identity, (4) map ι : Γ Ñ Γ , γ ÞÑ ιpγq “ γ´1, called inversion map.
Moreover, a composition law is definedm : Γp2q Ñ Γ, pγ, ξq ÞÑ mpγ, ξq “ γ˝ξ,
with the domain Γp2q :“ tpγ, ξq P Γ ˆ Γ : rpξq “ dpγqu such that the follow-
ing axioms are satisfied: (i) (associativity law) for arbitrary γ, ξ, η P Γ
the triple product pγ ˝ ξq ˝ η is defined iff γ ˝ pξ ˝ ηq is defined. In such
a case, we have pγ ˝ ξq ˝ η “ γ ˝ pξ ˝ ηq, (ii) (identities) for each γ P Γ,
εprpγqq ˝γ “ γ ˝ εpdpγqq “ γ, (iii) (inverses) for each γ P Γ, γ ˝ ιpγq “ εprpγqq,
ιpγq ˝ γ “ εpdpγqq.

For each γ P Γ, the sets: Γx “ tγ P Γ : rpγq “ xu, x P X, and Γx “
tγ P Γ : dpγq “ xu, x P X, are defined. If H Ă Γ and H is closed under
multiplication and inverses, H can be naturally given the structure of the
subgroupoid of Γ. A groupoid Γ is called a Lie groupoid if the sets Γ and
X are manifolds, the maps d and r are surjective submersions, and the
structure maps are smooth [2]. A groupoid Γ is called transitive if for every
pair x, y P X, there exists γ P Γ such that dpγq “ x and rpγq “ y.

2. Semidirect products of groupoids
Given two groups one can obtain a new group in various ways. The

resulting product group could be a direct product, a semidirect product,
etc. A direct product of groupoids could be easily defined (see for instance
[2]). The concept of a semi-direct product of groupoids has been introduced
in [1] in the framework of category theory. The definition we adopt below
closely follows [1], although it is slightly less general (we assume the same
base space of two groupoids). On the other hand, it is better suited to the
crossed-product construction in Section 3 and possible physical applications.

Let Γ be a topological, locally compact, and locally trivial groupoid over
X [10]. Let us notice that the local triviality of a groupoid implies its
transitivity [9, 11]. With these assumptions, there exists the Haar system
tλxuxPX on Γ [11]. We impose the minimal assumptions necessary for the
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convolution (see Section 3) to be well defined. Since our target algebras
consist of L1 functions, we are interested in the measurability properties
rather than in topology.

Let us recall the notion of an isotropy groupoid of the groupoid Γ

Γ0 :“
ď

xPX

Γxx,

where Γxx “ ΓxXΓx. The subgroupoid Γ0 is a wide subgroupoid of Γ, i.e., it
is the subgroupoid of Γ with the same base space.

Let us now consider a wide subgroupoid Γ1 of Γ such that r ˆ d : Γ Ñ
X ˆX, given by

pr ˆ dqpγq “ prpγq, dpγqq,

is a surjection, i.e., the subgroupoid Γ1 is transitive. Here d and r are source
and target mappings in Γ, respectively.

With the same symbol tλxuxPX , we denote the Haar system obtained by
the restriction of measures λx to the sets Γ0,x. In the following, we write
dλxpγ0q “ dγ0 for the measure λx on Γ0,x. We also assume, for simplicity,
that the groups Γ0,x are unimodular. It is straightforward to see that the
restricted measures are right-invariant Haar measures on locally compact
groups Γ0,x [11].

Definition 1. The semidirect product Γ0¸Γ1 of the groupoids Γ1 and Γ0

is the groupoid given by the following elements:

• set
Γ̄ “ Γ0 ˚ Γ1 “ tpγ0, γ1q P Γ0 ˆ Γ1 : dpγ0q “ rpγ1qu;

• source and target

d̄pγ0, γ1q “ dpγ1q,

r̄pγ0, γ1q “ rpγ0q;

• multiplication

pγ0, γ1q ˝ pγ
1
0, γ

1
1q “ pγ0 ˝ αγ1pγ

1
0q, γ1 ˝ γ

1
1q,

provided that γ1 and γ11 are composable; here we have introduced the
following abbreviation (representing the action of Γ1 on Γ0)

αγ1pγ0q “ γ1 ˝ γ0 ˝ γ
´1
1 ,

for pγ0, γ
´1
1 q P Γ̄; it can be easily seen that αγ1 : Γ0,dpγ1q Ñ Γ0,rpγ1q is an

isomorphism of groups;
• identity

εΓ̄pxq “ pεΓ0pxq, εΓ1pxqq “ pεpxq, εpxqq,

where εΓ0 and εΓ1 are identities of Γ0 and Γ1, respectively;
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• inverse
pγ0, γ1q

´1 “ pαγ´1
1
pγ´1

0 q, γ´1
1 q.

Let γ, γ1 P Γ. The elements γ „ γ1 are equivalent (in the sense of
equivalence relation) if there exists γ0 P Γ0, with dpγ0q “ rpγq, such that
γ0 ˝ γ “ γ1. On the set Γ{Γ0 “ trγs„ : γ P Γu, we introduce the groupoid
structure [9] by defining

d̃prγsq “ dpγq, r̃prγsq “ rpγq,

rγs ˝ rγ1s “ rγ ˝ γ1s

provided that dpγq “ rpγ1q,

rγs´1 “ rγ´1s, ε̃pxq “ rεpxqs.

Proposition 1. The groupoid Γ1 is isomorphic with the groupoid Γ{Γ0 if
and only if the semidirect product Γ0¸Γ1 is isomorphic with the groupoid Γ.

Proof. ñ) Let the isomorphism assumed in the Proposition be denoted by
j : Γ1 Ñ Γ{Γ0. We define J : Γ0 ¸ Γ1 Ñ Γ by

Jpγ0, γ1q “ γ0 ˝ γ1.

First, we show that J is a bijection. Let γ P Γ and rγs P Γ{Γ0. One has
γ1 “ j´1prγsq P Γ1 and let γ0 “ γ ˝ γ´1

1 . From the isomorphism property of
j, we have dpγ1q “ d̃prγsq, rpγ1q “ r̃prγsq. But d̃prγsq “ dpγq, r̃prγsq “ rpγq
and therefore

dpγ0q “ dpγ´1
1 q “ rpγ1q,

rpγ0q “ rpγq “ rpγ1q.

Hence, pγ0, γ1q P Γ0 ¸ Γ1, pγ0, γ1q “ J´1pγq.
To show that J is a homomorphism, we apply J to both sides of pγ0, γ1q˝

pγ10, γ
1
1q “ pγ0 ˝ αγ1pγ

1
0q, γ1 ˝ γ

1
1q to obtain

Jppγ0, γ1q ˝ pγ
1
0, γ

1
1qq “ Jpγ0, γ1q ˝ Jpγ

1
0, γ

1
1q.

ð) Let I : Γ Ñ Γ0 ¸ Γ1 be an isomorphism of groupoids. Then Ipγq “
pγ0, γ1q. We define i : Γ{Γ0 Ñ Γ1 by

iprγsq “ pr2pIpγqq “ γ1.

Let us notice that if Ipγq “ pγ0, γ1q, i.e., γ “ γ0 ˝ γ1 then γ1 P rγs. Let now
γ1 P rγs. This means that there exists γ̄0 P Γ0 such that

γ1 “ γ10 ˝ γ
1
1 “ γ̄0 ˝ γ “ γ̄0 ˝ γ0 ˝ γ1,

which gives pγ10, γ11q “ pγ̄0 ˝ γ0, γ1q under the action of the isomorphism I
and, in particular, γ11 “ γ1. This shows that the mapping i is well defined.
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The mapping i is a surjection since, for γ P Γ1, one has iprγsq “ γ, and
it is also an injection since pi´1qpγ1q “ rγ1s. Being a homomorphism it is,
therefore, an isomorphism.

3. Algebras associated with the semidirect product of groupoids
In this section, we define the action of the subgroupoid Γ1 on a bundle A

of algebras related to the subgroupoid Γ0. The action, denoted by A¸Γ1, is
called the crossed product of a bundle A of algebras with Γ1. We also prove
that A¸Γ1 is isomorphic to the convolutive algebra of the groupoid Γ0¸Γ1.
Similar ideas are developed by Goehle [6] in the context of C˚-algebras.

With a semidirect product of groupoids we can associate various algebraic
structures. Let us first define the bundle A of algebras pAx, ‚qxPX where
Ax “ L1pΓ0,xq with convolution

pa1 ‚ a2qpγ0q “

ż

Γ0,x

a1pγ
1
0qa2pγ

1´1
0 ˝ γ0qdγ

1
0.

The action α : Γ1 ˆ Γ0 Ñ Γ0, as it is defined in Section 2, induces the
dual action β : Γ1 ˆAÑ A given by

βγ1 : Arpγ1q Ñ Adpγ1q, pβγ1paqqpγ0q “ apαγ1pγ0qq.

This allows us to formulate the following definition

Definition 2. The crossed product of the bundle of algebras A “

pAx, ‚qxPX and the groupoid Γ1 is the algebra

B “ A¸ Γ1 “ tF P L
1pΓ1, Aq : F pγ1q P Arpγ1q,@γ1 P Γ1u,

with twisted convolution as multiplication

pF1 f F2qpγ1q “

ż

Γ
rpγ1q
1

F1pγ
1
1q ‚ βγ1´1

1
pF2pγ

1´1
1 ˝ γ1qqdγ

1
1.

By dγ11 we denote the restriction of the suitable Haar measure λx on Γ

to Γ
rpγ1q
1 .
We also define the algebra A “ pL1pΓ0 ¸ Γ1,Cq, ˚q. The fact that func-

tions f1, f2 P A are integrable allows us to define their convolution in the
following way

pf1 ˚ f2qpγ0, γ1q “

ż

Γ
rpγ1q
1

ż

Γ0,rpγ1q

f1pγ
1
0, γ

1
1qf2

`

pγ10, γ
1
1q
´1 ˝ pγ0, γ1q

˘

dγ10dγ
1
1.

Theorem 1. The algebra B is isomorphic with the algebra A; the isomor-
phism K : B Ñ A is given by

pKF qpγ0, γ1q “ pF pγ1qqpγ0q, for all pγ0, γ1q P Γ̄.
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Proof. First, we show that K is an homomorphism of algebras. Indeed,

pKF1 ˚KF2qpγ0, γ1q

“

ż

Γ
rpγ1q
1

ż

Γ0,rpγ1q

pKF1qpγ
1
0, γ

1
1qpKF2q

`

pγ10, γ
1
1q
´1 ˝ pγ0, γ1q

˘

dγ10dγ
1
1

“

ż

Γ
rpγ1q
1

ż

Γ0,rpγ1q

pKF1qpγ
1
0, γ

1
1qpKF2q

`

αγ1´1
1
pγ1´1

0 ˝ γ0q, γ
1´1
1 ˝ γ1qdγ

1
0dγ

1
1

“

ż

Γ
rpγ1q
1

ż

Γ0,rpγ1q

pF1pγ
1
1qqpγ

1
0qpF2pγ

1´1
1 ˝ γ1qq

`

αγ1´1
1
pγ1´1

0 ˝ γ0q
˘

dγ10dγ
1
1

“

ż

Γ
rpγ1q
1

ż

Γ0,rpγ1q

pF1pγ
1
1qqpγ

1
0q
`

βγ1´1
1
F2pγ

1´1
1 ˝ γ1q

˘

pγ1´1
0 ˝ γ0qdγ

1
0dγ

1
1

“
`

pF1 f F2qpγ1q
˘

pγ0q.

In the second equality, we have used the following formula

pγ10, γ
1
1q
´1 ˝ pγ0, γ1q “ pγ

1´1
1 ˝ γ1´1

0 ˝ γ11, γ
1´1
1 q ˝ pγ0, γ1q

“ pγ1´1
1 ˝ γ1´1

0 ˝ γ11 ˝ αγ1´1
1
pγ0q, γ

1´1
1 ˝ γ1q

“ pαγ1´1
1
pγ1´1

0 ˝ γ0q, γ
1´1
1 ˝ γ1q.

It remains to show that K is a bijection. Let F P L1pΓ1, Aq and suppose
that KF “ 0, i.e.,

pKF qpγ0, γ1q “ pF pγ1qqpγ0q “ 0,

for almost all pγ0, γ1q P Γ̄ in the sense of L1. Therefore, F pγ1q “ 0 for almost
all γ1 P Γ1, and pF pγ1qqpγ0q “ 0 for almost all γ0 P Γ0,rpγ1q. Thus F “ 0
which shows that K is an injection.

It is also a surjection since for every f P L1pΓ0 ¸ Γ1,Cq there exists
F P L1pΓ1, Aq, namely pF pγ1qqpγ0q “ fpγ0, γ1q.

4. Unitary representations and random operators
Let us now investigate the unitary representations of groupoids and the

associated algebras.

Definition 3. [10] Unitary representation of a groupoid Γ over X is a pair
pU ,Hq where H is a bundle of Hilbert spaces over X, H “ tHxuxPX , and
U “ tUpγq : γ P Γu is a family of unitary transformations Upγq : Hdpγq Ñ

Hrpγq such that

1. Upεpxqq “ idHx for x P X,
2. Upγ1 ˝ γ2q “ Upγ1qUpγ2q for pγ1, γ2q P Γp2q,
3. Upγ´1q “ Upγq´1, for almost all γ P Γ with respect to the measure as it

is defined in [10, p. 92],
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4. for every ϕ,ψ P L2pX,Hq the function

Γ Q γ ÞÑ
`

Upγqϕpdpγqq, ψprpγq
˘

rpγq
P C

is measurable on Γ.

Let now pU0,Hq be a unitary representation of the isotropy groupoid
Γ0 in a Hilbert bundle H “ tHxuxPX over X, and tiyxux,yPX a family of
isomorphisms of Hilbert spaces, iyx : Hx Ñ Hy.

Definition 4. The simple extension of the representation pU0,Hq of the
groupoid Γ0 to the groupoid Γ “ Γ0 ¸ Γ1 is the representation pU ,Hq of Γ
given by

Upγ0, γ1q “ U0pγ0q ˝ i
y
x,

for γ0 P Γ0,y, γ1 P Γ1,x such that x “ dpγ1q, y “ rpγ1q.

It is easy to see that the family tiyxux,yPX determines the unitary repre-
sentation of the groupoid Γ1 in the Hilbert bundle tHxuxPX .

Let us denote U1pγ1qhx “ iyxphxq, hx P Hx for γ1 P pΓ1q
y
x, and let us

notice that the following commutation relation is satisfied

U1pγ1qU0pγ0qU1pγ
´1
1 q “ U0pαγ1pγ0qq,

for γ1, γ0 such that dpγ1q “ dpγ0q.
We now recall the definition of a random operator [4].

Definition 5. A random operator in a Hilbert bundle H “ tHxuxPM is
defined to be a map

M Q x ÞÑ bx P BpHxq,

where BpHxq denotes the algebra of bounded operators on Hx. It must
satisfy the following conditions:

1. if tψiu8i“1 is a measurable field of bases in H then the function

M Q x ÞÑ pBxψipxq, ψjpxqqx, for i, j “ 1, 2, . . .

is measurable,
2. the family of operators Bx, x PM , is essentially bounded in the operator

norm, i.e., ess supxPX}Bx} ă 8.

For a P L1pΓ0q, we define the operators U0,xpaq : Hx Ñ Hx by

U0,xpaqphxq :“

ż

Γ0,x

apγqU0pγqhxdλx,

for hx P Hx; tλxuxPX is here the Haar system on the groupoid Γ0 defined by
the Haar measure on the group G.

Proposition 2. The family of operators ra :“ tU0,xpaquxPX forms a ran-
dom operator in the Hilbert bundle H.
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Proof. Since a P L1pΓ0q, it is enough to prove that the condition (2) is
satisfied. Indeed,

}U0,xpaq} “ sup
}hx}≤1

}U0,xpaqhx} “ sup
}hx}≤1

›

›

›

›

ż

Γ0,x

apγqU0pγqhxdλx

›

›

›

›

≤ sup
}hx}≤1

ż

Γ0,x

|apγq| }U0pγqhx}dλx “ sup
}hx}≤1

ż

Γ0,x

|apγq| }hx}dλx

≤
ż

Γ0,x

|apγq|dλx ≤ volpsupp aq ¨ sup |apγq| ă 8.

Let us notice that for γ0 P Γ0,x, γ P Γyx, we have αγpγ0q P Γ0,y. Let us
also define

pα˚γpaqqpγ0q “ apαγpγ0qqq,

for a P L1pΓ0q and γ0 P Γ0, γ P Γyx.
The following transformation rules for the operators ra hold

U0pγ0qU0,xpaqU0pγ
´1
0 q “ U0,xpα

˚
γ0paqq,

U1pγ1qU0,xpaqU1pγ
´1
1 q “ U0,ypα

˚
γ1paqq.

If an operator ra, a P L1pΓ0q satisfies the above conditions, it is said
to be equivariant. Let us notice, that the second rule allows us to call the
representation of L1pΓ0q in H a covariant representation with respect to the
induced groupoid action α˚.

LetM0 denote the algebra of operators of the form ra, a P L
1pΓ0q. Then

the algebra M “ pM0q
2 is a von Neumann algebra. The bicommutant

pM0q
2 is considered here in the Hilbert space

ş

‘
Hxdµpxq. We call M the

von Neumann algebra of the groupoid Γ0. In a forthcoming publication we
will describe the von Neumann algebra of the semidirect product of groupoids
Γ0 ¸ Γ1.

5. An example—the Poincaré groupoid
In this section, we consider a special case of the above constructions

which may have direct applications to physics. Let E be a frame bundle
over M (we can think of M as of space-time). We define

Γ̃ “ tpp1, p2q : p1, p2 P Eu,

and introduce the following equivalence relation in Γ̃

pp1, p2q „ pp
1
1, p

1
2q ô Dg P G, p11 “ p1g, p

1
2 “ p2g.

To simplify notation, the equivalence class of the element pp1, p2q will be
denoted by rp1, p2s. We also denote Γ̃{„ “ Γ “ E ˆG E. We introduce the
groupoid structure in Γ in the following way
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• composition rp1, p2s ˝ rp3, p4s “ rp1, p4g
´1s is defined only if there exists

g P G such that p3 “ p2g,
• source and target

dprp1, p2sq “ πM pp2q,

rprp1, p2sq “ πM pp1q,

• identity εpxq “ rp, ps, πM ppq “ x,
• inverse rp1, p2s

´1 “ rp2, p1s.

The following sets are naturally defined

Γx “ trp1, p2s : πM pp1q “ xu,

Γy “ trp1, p2s : πM pp2q “ yu.

In the literature groupoid Γ is called gauge groupoid. It is a transitive
groupoid. Indeed, for any x, y PM one finds rp1, p2s P Γ such that πM pp1q “

x, πM pp2q “ y.
We construct two subgroupoids of Γ: the subgroupoid Γ0 “ trp1, p1gs :

p1 P E, g P Gu of the gauge groupoid Γ consists of equivalence classes of
Lorentz transformations

pp1, p1gq „ pp1g0, p1gg0q,

and the subgroupoid Γ1 “ trspxq, spyqs : x, y PMu, where s is a measurable
cross section s : M Ñ E, consisting of generalized translations in M . In
fact, there is an isomorphism between Γ1 and M ˆM for each s. Note that
since we do not assume that s is continuous, the frame bundle need not to
be trivial.

Let us notice that Γ0 is the isotropy groupoid of the groupoid Γ, i.e.,
Γ0 “ tΓ

x
xuxPM where Γxx “ Γx X Γx.

Proposition 3. The semidirect product Γ0 ¸ Γ1, for any cross section s,
is isomorphic with the gauge groupoid Γ.

Proof. It is enough to show that there exists an isomorphism Γ1 » Γ{Γ0. Let
ρ : Γ Ñ Γ{Γ0 be a canonical projection; it is a homomorphism of groupoids.
Let further i : Γ{Γ0 Ñ Γ1 be as defined in the proof of Proposition 1. We
can write

i
`

ρprspxqg, spyqsq
˘

“ i
`

ρprspxqg, spxqs ˝ rspxq, spyqsq
˘

“ rspxq, spyqs.

Therefore, i is a homomorphism of groupoids. It is also a bijection. Indeed,
i is obviously a surjection on Γ1, and

i´1prspxq, spyqsq “ ρprspxq, spyqs

shows that it is an injection.
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Let us notice that translations in E depend on the cross section s; this can
be regarded as a kind of gauge fixing. If G is the Lorentz group, the above
proposition justifies calling the gauge groupoid the Poincaré groupoid (as a
semidirect product of generalized Lorentz transformations and generalized
translations).

For the Poincaré groupoid, the Haar system tλxuxPM on Γ0,x is of the
form

ż

Γ0,x

fpγ0qdλxpγ0q “

ż

G
fprp0, p0gsqdg,

where G is the Lorentz group, dg is a Haar measure on G and p0 is a selected
element of Ex. On Γ1 one has

ż

Γ1,y

fpγ1qdλy “

ż

M
fprspxq, spxqsqdµpxq,

where µ is a Lebesgue measure on M .
We have the bundle of algebras A “ tAxuxPM where Ax “ L1pΓ0,xq and,

on the strength of Theorem 1, the crossed product B “ A¸Γ1 is isomorphic
with the algebra pA, ˚q associated with the Poincaré groupoid Γ “ Γ0 ¸ Γ1.
Let us write down the product in A explicitly.

Let f1, f2 P A and rspxqg, spyqs P Γ “ Γ0 ¸ Γ1 then we have

pf1 ˚ f2qprspxqg, spxqs, rspxq, spyqsq

“

ż

Γx1

ż

Γ0,x

f1prspxqg
1, spxqs, rspxq, spzqsq

ˆ f2pprspxqg
1, spxqs, rspxq, spzqsq´1 ˝ prspxqg, spxqs, rspxq, spyqsqdg1dµpzq

“

ż

Γx1

ż

Γ0,x

f1prspxqg
1, spxqs, rspxq, spzqsq

ˆ f2prspzqg
1´1g, spzqs, rspzq, spyqsqdg1dµpzq.

In this formula the nonlocal character of the generalized Poincaré symmetry
(of the groupoid type) can explicitly be seen.
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