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Abstract. One of the pressing problems in mathematical physics is to find a gen-
eralized Poincaré symmetry that could be applied to nonflat space-times. As a step in
this direction, we define the semidirect product of groupoids I'y x I'; and investigate its
properties. We also define the crossed product of a bundle of algebras with the groupoid
Ty and prove that it is isomorphic to the convolutive algebra of the groupoid I'g x I';.
We show that families of unitary representations of semidirect product groupoids in a
bundle of Hilbert spaces are random operators. An important example is the Poincaré
groupoid defined as the semidirect product of the subgroupoid of generalized Lorentz
transformations and the subgroupoid of generalized translations.

1. Introduction

One of the main stumbling blocks in combining general relativity with
quantum mechanics into a suitable generally covariant quantum field theory
is the fact that the Poincaré group does not act on a curved space-time as
a group of motions (e.g., [I2, p. 360]). There are strong reasons to believe
that to make a synthesis of general relativity and quantum physics would
require a suitable generalization of the Poincaré group so as it would be able
to enter into a fruitful interaction with geometry of curved manifolds (see,
for instance, [3, 5l [7]).

The paper is based on the paper [I1] of Pysiak on groupoids. Natural
generalization of group symmetries are groupoid symmetries. In the present
work, we propose such a generalization. First, we define the semidirect
product of groupoids I'g x I'y where I'g and I'; are subgroupoids of the
same groupoid I' (Sect. . Then, in Sect. we define the action of the
subgroupoid I'y on a bundle A of algebras related to the subgroupoid I'y.
This allows us to define the crossed product of a bundle A of algebras with
Iy, AxTI'y, which we prove to be isomorphic to the convolutive algebra of the
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groupoid I'pxT';. In Sect. [ we show that families of unitary representations
of the semidirect product groupoids in a bundle of Hilbert spaces form an
algebra of random operators (in the sense of Connes [4]), which can be
completed to a von Neumann algebra. Finally, in Sect. p| we construct, as
an example of the developed theory, the Poincaré groupoid being a semidirect
product of the subgroupoid of generalized Lorentz transformations and the
subgroupoid of generalized translations.

To fix notation, we briefly describe the groupoid structure (for the defini-
tion see [2, p. 85| or [8, p. 269]). A groupoid I" over X, or a groupoid with
base X, is a 7-tuple (I', X, d, r, €,¢,m) consisting of the following elements:
(1) sets I and X, (2) surjections (d,r) : I' — X, called source and target
map, respectively, (3) injection € : X — I', z — ¢(x), called identity section
or simply identity, (4) map ¢ : T' — T', v+ ¢(y) = yv~!, called inversion map.
Moreover, a composition law is defined m : '® — T, (v,€) — m(y, £) = yo€,
with the domain T'® := {(y,6) e I' x I : 7(€) = d(v)} such that the follow-
ing axioms are satisfied: (i) (associativity law) for arbitrary v, £ n € T’
the triple product (v o &) o n is defined iff v o (£ o) is defined. In such
a case, we have (yo&)on = yo (§omn), (ii) (identities) for each v € I,
e(r(y))oy = voe(d(y)) = v, (iii) (inverses) for each v € T',yoi(y) = e(r(v)),
L(7) 0oy = €(d(7)).

For each 7 € T', the sets: I'* = {y el :r(y) =z}, xz e X, and ', =
{yeTl:d(v) =z}, x € X, are defined. If H < I" and H is closed under
multiplication and inverses, H can be naturally given the structure of the
subgroupoid of I'. A groupoid I is called a Lie groupoid if the sets I' and
X are manifolds, the maps d and r are surjective submersions, and the
structure maps are smooth [2]. A groupoid T is called transitive if for every
pair z,y € X, there exists v € I" such that d(y) = z and r(y) = y.

2. Semidirect products of groupoids

Given two groups one can obtain a new group in various ways. The
resulting product group could be a direct product, a semidirect product,
etc. A direct product of groupoids could be easily defined (see for instance
[2]). The concept of a semi-direct product of groupoids has been introduced
in [I] in the framework of category theory. The definition we adopt below
closely follows [I], although it is slightly less general (we assume the same
base space of two groupoids). On the other hand, it is better suited to the
crossed-product construction in Section [3]and possible physical applications.

Let I" be a topological, locally compact, and locally trivial groupoid over
X [10]. Let us notice that the local triviality of a groupoid implies its
transitivity [9, [1I]. With these assumptions, there exists the Haar system
{Az}zex on T [1I]. We impose the minimal assumptions necessary for the
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convolution (see Section [3) to be well defined. Since our target algebras
consist of L' functions, we are interested in the measurability properties
rather than in topology.

Let us recall the notion of an isotropy groupoid of the groupoid I'

To = U re,
rzeX

where I') = I'y nI'*. The subgroupoid I'y is a wide subgroupoid of I, i.e., it
is the subgroupoid of I' with the same base space.

Let us now consider a wide subgroupoid I'y of I' such that » x d : I' —
X x X, given by

(r>xd)(y) = (r(v),d(v)),

is a surjection, i.e., the subgroupoid I'y is transitive. Here d and r are source
and target mappings in I', respectively.

With the same symbol {\;}.cx, we denote the Haar system obtained by
the restriction of measures A; to the sets I'g ;. In the following, we write
dXz(Y0) = dyo for the measure A, on I'g,. We also assume, for simplicity,
that the groups I'g, are unimodular. It is straightforward to see that the
restricted measures are right-invariant Haar measures on locally compact
groups I'g , [11].

DEFINITION 1. The semidirect product I'g x I'1 of the groupoids I'; and I’y
is the groupoid given by the following elements:
e set

I'=To*I'1 = {(y0,71) € To x 't : d(y0) = 7(m)}

e source and target

(70771) = d(71)7
(70, 71) = 7(70);
e multiplication

(0,7) © (70:71) = (90 © 3, (%), 11 © M),
provided that 1 and 7{ are composable; here we have introduced the
following abbreviation (representing the action of I'y on I'y)
ay, () =71 0707
for (y0,7; ") € T; it can be easily seen that a., : Loty = Tor(y) 1s an
isomorphism of groups;
e identity
er(z) = (ery (), er, (2)) = (e(x), €(x)),

where er, and er, are identities of I'g and I'y, respectively;
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e inverse
(Yo, m) ™" = (%;1(’70_1)771_1)
Let v, € I'. The elements v ~ 7/ are equivalent (in the sense of
equivalence relation) if there exists y9 € T'g, with d(v9) = r(v), such that

Yoy =7 On the set T/Tg = {[v]~ : v € T'}, we introduce the groupoid
structure [9] by defining

provided that d(vy) = r(v/),
DI =071 é@) = [e()].
PROPOSITION 1. The groupoid T'y is isomorphic with the groupoid T'/T if

and only if the semidirect product I'g x I'1 is isomorphic with the groupoid I.

Proof. =) Let the isomorphism assumed in the Proposition be denoted by
j: Ty > T/Ty. We define J : Ty xT'y > T by
J(70,71) =0 ° M-

First, we show that J is a bijection. Let v €T and [y] € T'/Ty. One has
y1 =7"Y[y]) €Ty and let 79 = v 047 '. From the isomorphism property of

4, we have d(y1) = d([v]), r(v) = #([¥])- But d([y]) = d(v), #([+]) = r(7)
and therefore

d(v0) = d(v;") = r(m),
r(v0) =7(v) = r(n)-

Hence, (y0,71) € To x I'1, (y0,m) = J (7).
To show that J is a homomorphism, we apply J to both sides of (v, 1)

(70,71) = (70 © ay, (79), 71 ©71) to obtain
J((v0,71) © (70,m1)) = J (0. 71) © T (79, 71)-

<) Let I : T' — T'yg x I'y be an isomorphism of groupoids. Then I(y) =
(70,71). We define i : I'/Tg — I'y by

i([v]) = praI(7)) = M-

Let us notice that if I(y) = (y0,71), i.€., ¥ = Y0 © 71 then v € [y]. Let now
7' € [7]. This means that there exists 7o € I'g such that

Y=o =% o7 =5 °% oM,

which gives (7),71) = (50 © 70,71) under the action of the isomorphism I
and, in particular, 744 = 1. This shows that the mapping 7 is well defined.
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The mapping ¢ is a surjection since, for v € I'y, one has i([y]) = v, and
it is also an injection since (i71)(y1) = [y1]. Being a homomorphism it is,
therefore, an isomorphism. =

3. Algebras associated with the semidirect product of groupoids

In this section, we define the action of the subgroupoid I'y on a bundle A
of algebras related to the subgroupoid I'yg. The action, denoted by A x I'y, is
called the crossed product of a bundle A of algebras with I';. We also prove
that A x I'; is isomorphic to the convolutive algebra of the groupoid I'g x I';.
Similar ideas are developed by Goehle [6] in the context of C*-algebras.

With a semidirect product of groupoids we can associate various algebraic
structures. Let us first define the bundle A of algebras (A, e),ex where
A, = LI(FOJ;) with convolution

<mwmw=f a1 () az( L 0 10,
FO,z

The action « : I'y x T'yg — T, as it is defined in Section [2| induces the
dual action 8 : 'y x A — A given by

/871 : Ar(qq) - Ad(?’l)’ (ﬁ’Yl (a))(VO) = a(a’Yl (’70))

This allows us to formulate the following definition

DEFINITION 2. The crossed product of the bundle of algebras A =
(A, ®)zex and the groupoid I'y is the algebra

B=AxTIy={FeL'T,A): F(y1) € Ay(,,), V1 €T},

(1)
with twisted convolution as multiplication

(R®R)m) = [ FD e B R6 om)an.

r(v1)
1

By dv] we denote the restriction of the suitable Haar measure A, on I'
to T70),

1

We also define the algebra A = (L'(I'g x I'1,C), #). The fact that func-
tions fi, fo € A are integrable allows us to define their convolution in the
following way

(f1* f2)(v0,m) = L:m) LO’T(M

THEOREM 1. The algebra B is isomorphic with the algebra A; the isomor-
phism K : B — A is given by

A0 F2 (00, 71) ™ 0 (90, 71) ) dvg .-
)

(KF)(v0,71) = (F(71))(0), for all (vo,7) €T,
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Proof. First, we show that K is an homomorphism of algebras. Indeed,

(KFy = KFy)(y0,71)

frm L (KF1) (5. ) (K F2) (10, 71) ™" © (0, 7)) o]

0,m(v1)

f o) L (KF1) (9, 71) (K F2) (a1 (v 00), 71 o) dygdy

0,m(v1)

f o | BODEDEETT ) (a6 o) dii
1 T 1

0,7(v1)

f (v J (F1(71)(00) (8,1 B (Vi o)) (0 0 70)dipd;
(Y1 I 1

0,7(v1)
= ((F1 ® F2)(m)) (0)-
In the second equality, we have used the following formula

(v0, 1) " o (vo,m1) = (4~ 1070 0%,7171)0(70,71)
= (o tomoayi(),7 o)
= (a 1015 ' o0), 71 o).

It remains to show that K is a bijection. Let F' € L*(I'1, A) and suppose
that KF =0, i.e.,

(KF)(y0,7) = (F(71))(70) = 0,
for almost all (9,71) € T in the sense of L!. Therefore, F(y;) = 0 for almost
all y1 € T'y, and (F(71))(70) = 0 for almost all v9 € Tg(,,). Thus F7 =0
which shows that K is an injection.
It is also a surjection since for every f € L'(I'g x I';,C) there exists

F e L'(Ty1, A), namely (F(v1))(v0) = f(70,71)- =

4. Unitary representations and random operators
Let us now investigate the unitary representations of groupoids and the
associated algebras.

DEFINITION 3. [10] Unitary representation of a groupoid I" over X is a pair
(U, H) where H is a bundle of Hilbert spaces over X, H = {H,},ex, and
= {U(y) : v € T'} is a family of unitary transformations U(y) : Hy) —
such that

)

1. U(e(z)) = idy, for z € X,

2. U(m o) = u(m)u(%) for (71,72) € T,

3. U(y™1) =U(y)7?, for almost all v € I' with respect to the measure as it
is defined in [10, p. 92],

[oW
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4. for every ¢,v € L*(X,H) the function

T3y UE)e(AX)), (1), € C

is measurable on I

Let now (Up,H) be a unitary representation of the isotropy groupoid
[y in a Hilbert bundle H = {Hy}zex over X, and {if};ex a family of
isomorphisms of Hilbert spaces, i% : Hy, — H,.
DEFINITION 4. The simple extension of the representation (g, H) of the
groupoid T’y to the groupoid I' = Ty x I'; is the representation (U, H) of T’
given by

U(vo0,71) = Uo(v0) 0 i,

for 49 € To,y, 71 € I'1 ¢ such that x = d(71),y = r(m).

It is easy to see that the family {i}}, ex determines the unitary repre-
sentation of the groupoid I'; in the Hilbert bundle {H},ex.

Let us denote Ui (y1)hy = i%(hy), hy € Hy for 41 € (I'1)%, and let us
notice that the following commutation relation is satisfied

Us (1)U (o)1 (77 = Uo(ar, (70))

for 41,70 such that d(v1) = d(0)-

We now recall the definition of a random operator [4].

DEFINITION 5. A random operator in a Hilbert bundle H = {H},en is
defined to be a map
M >xw— b, € B(H,),

where B(H,) denotes the algebra of bounded operators on H,. It must
satisfy the following conditions:

1. if {¢,;}2, is a measurable field of bases in A then the function
M sz — (Byi(z),¥j(x))s, for i,j=1,2,...

is measurable,
2. the family of operators B,, x € M, is essentially bounded in the operator
norm, i.e., ess sup,cy|| Bzl < 0.

For a € LY(T), we define the operators U .(a) : Hy — Hy by
Una(a)(b) = | al)o()hadA,
FO,m

for h, € Hy; {\z}zex is here the Haar system on the groupoid I'y defined by
the Haar measure on the group G.

PROPOSITION 2. The family of operators ro := {Upx(a)}zex forms a ran-
dom operator in the Hilbert bundle H.
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Proof. Since a € L'(Ty), it is enough to prove that the condition (2) is
satisfied. Indeed,

Una(@)] = sup [Uow(@he] = sup j a(7)Uo () hadAs
[he|<1 [he||<11IT0 2
< sup f ()| [Uo(1)ha|dAs = sup j ()] [halldAs
Hh:cH§1 FO,m th”§1 Fo,z

< f |a(y)|dA; < vol(suppa) - sup |a(y)] < 0. =
FO,a:

Let us notice that for v € I'g 4, v € I'¥, we have a.(y0) € Toy. Let us
also define

(@3(a))(0) = alay(0)));

for a € LY(Ty) and o € Tg, v € I'%.
The following transformation rules for the operators r, hold

Uo(Yo)Uoz(a)o(vy ") = Uoz(ad, (a)),
Ur(1)Uoz(a)Ui(v7 ) = Uoy(ak (a)).

If an operator rq, a € Ll(F 0) satisfies the above conditions, it is said
to be equivariant. Let us notice, that the second rule allows us to call the
representation of L!(T'g) in H a covariant representation with respect to the
induced groupoid action a*.

Let My denote the algebra of operators of the form r,, a € L'(I'g). Then
the algebra M = (My)” is a von Neumann algebra. The bicommutant
(Mo)" is considered here in the Hilbert space §o Hydu(x). We call M the
von Neumann algebra of the groupoid I'g. In a forthcoming publication we
will describe the von Neumann algebra of the semidirect product of groupoids
Fo X Fl.

5. An example—the Poincaré groupoid
In this section, we consider a special case of the above constructions
which may have direct applications to physics. Let E be a frame bundle
over M (we can think of M as of space-time). We define
['={(p1,p2) : p1,p2 € E},

and introduce the following equivalence relation in T

(p1,p2) ~ (P1,py) < g € G, p| = P19, Py = DP2g.

To simplify notation, the equivalence class of the element (p1,p2) will be
denoted by [p1,p2]. We also denote I'/~ =T = E xg E. We introduce the
groupoid structure in I in the following way
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composition [p1,pa] o [p3,ps] = [p1,pag~ "] is defined only if there exists
g € G such that p3 = pag,
source and target

d([p1,p2]) = ma(p2),

([p1,p2]) = T (1),

identity e(x) = [p,p], 7m(p) = =z,
inverse [p1,p2]_1 = [P27P1]~

The following sets are naturally defined

I = {[p1,p2] : mm(p1) = x},
Ly = {[p1,p2] : T (p2) = y}.

In the literature groupoid I' is called gauge groupoid. It is a transitive
groupoid. Indeed, for any x,y € M one finds [p1, p2] € T such that mas(p1) =
€T, TM (pQ) =Y.

We construct two subgroupoids of I': the subgroupoid I'y = {[p1, p19] :
p1 € E,g € G} of the gauge groupoid I' consists of equivalence classes of
Lorentz transformations

(p1,p19) ~ (P190,P1990),

and the subgroupoid I'y = {[s(z), s(y)] : z,y € M}, where s is a measurable
cross section s : M — FE, consisting of generalized translations in M. In
fact, there is an isomorphism between I'y and M x M for each s. Note that
since we do not assume that s is continuous, the frame bundle need not to
be trivial.

Let us notice that I'y is the isotropy groupoid of the groupoid I, i.e.,
Do = {T'%}enr where I'2 =T, n I,

PROPOSITION 3. The semidirect product I'g x I'y, for any cross section s,
is isomorphic with the gauge groupoid T'.

Proof. It is enough to show that there exists an isomorphism I'y ~ I"/T'y. Let
p:I'—= T'/T'y be a canonical projection; it is a homomorphism of groupoids.
Let further i : I'/Ty — I'; be as defined in the proof of Proposition 1. We
can write

i(p([s(z)g,s(y)])) = i(p([s(x)g, s(x)] o [s(2), 5(y)])) = [s(x), s(y)]-
Therefore, ¢ is a homomorphism of groupoids. It is also a bijection. Indeed,
1 is obviously a surjection on I'y, and

i ([s(2), s()]) = p([s(x), s(y)]

shows that it is an injection. =



298 L. Pysiak, M. Eckstein, M. Heller, W. Sasin

Let us notice that translations in £ depend on the cross section s; this can
be regarded as a kind of gauge fixing. If G is the Lorentz group, the above
proposition justifies calling the gauge groupoid the Poincaré groupoid (as a
semidirect product of generalized Lorentz transformations and generalized
translations).

For the Poincaré groupoid, the Haar system {A;}zenr on I'g, is of the
form

FG0)iN () = | £ (b g,
Fo,x G
where G is the Lorentz group, dg is a Haar measure on G and py is a selected
element of E,. On I'y one has

Fn)dA, = f F([5(2), s(@)]dpu(z),
Flyy M

where p is a Lebesgue measure on M.

We have the bundle of algebras A = {A;}enr where A, = L1(T ) and,
on the strength of Theorem [1} the crossed product B = A x 'y is isomorphic
with the algebra (A, %) associated with the Poincaré groupoid I' = I'g x I'y.
Let us write down the product in A explicitly.

Let fi, fo € A and [s(x)g,s(y)] € T =T x I'; then we have

(f1* f2)([s(x)g, s(x)], [s(x), s(y)])
- fff . A[s(@)g’, s(@)], [s(x), s(2)])

< f2(([s(2)d, s(2)], [s(z), s(2)]) " o ([s(x)g, s(2)], [s(z), s(y)])dg'dp(z)
- Lgf . A[s(x)g, ()], [s(x), s(2)])

x fa([s(2)g' " 9. 5(2)]. [s(2), s(y)])dg'dp(z).
In this formula the nonlocal character of the generalized Poincaré symmetry
(of the groupoid type) can explicitly be seen.
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