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ENDOMORPHISMS OF IMPLICATION ALGEBRAS

Abstract. In this note we prove that if two implication algebras have isomorphic
monoids of endomorphisms then they are isomorphic.

It is known that Boolean algebras (they are the algebraic counterpart of clas-
sical propositional logic) are determined by their endomorphism monoids (see
[4.5,7]). Implication algebras, also called Tarski algebras or semi-Boolean al-
gebras (see [IL, [6]), are the algebraic counterpart of the implication fragment
of classical propositional logic. Implication algebras form a variety which
corresponds to the {—}-subreducts of Boolean algebras. For a given implica-
tion algebra A, we denote the monoid of its endomorphisms by End(A). In
[3], we prove that finite implication algebras are determined by their endo-
morphisms. In this paper, we remove the finiteness hypothesis proving the
following result:

THEOREM 1. Let Ay and Ay be two implication algebras. Then
A1 = A2 ’iﬁ End(Al) = End(Az)

In [2] Celani and Cabrer prove that Tarski spaces with T-partial functions
as arrows (see definitions below) form a category and this category is dually
equivalent to the algebraic category of implication algebras.

A Tarski space (T-space for short) is a structure X = (X, K, 7) such that

(1) (X, 7)is atopological space where K is a basis for 7 consisting of compact
open subsets.

(2) If A,Be K then An B’ e K.

(3) If z,y € X and x # y then there exists U € K such that = ¢ U and
yeU.
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(4) If F is a closed subset and {U; : i € I} is a directed subfamily of I such
that F nU; # 0 for all i € I then F n (({U; : i€ I}) # 0.

It follows from conditions (1), (2) and (3) that a T-space is a Hausdorff space
and consequently, every compact open set is closed (and hence, clopen). Also,
it follows from (2) that () € K.

A T-partial function between two T-spaces X1 and X is a partial map
¢ : X1 —> X5 such that =1 (U) € K; for all U € K.

If X is a T-space, a T-partial function between X and itself is called a
T-partial endomorphism of X. We denote the monoid of T-partial endomor-
phisms of X by Pend(X).

In the light of the equivalence of Celani and Cabrer (see details of this
equivalence in [2]), Theorem [1]is equivalent to the following theorem:

THEOREM 2. Let X1 and Xy be two Tarski spaces. Then
X = Xy iﬁ Pend(?(l) = Pend(Xg).

Here, X7 =~ X5 means that there exists a T-function from X; onto Xo
(i.e., a T-partial function with domain X7) which is a bijection and such that
its inverse is also a T-function (see Lemma 4.8 in [2]).

So, instead of proving Theorem [I] we prove Theorem [2] With this pur-
pose, we introduce next an important family of T-partial functions: Let
X = (X,K,7) be a Tarski space. For each U € K and a € X, define the
partial function ¢, on X with domain U by the rule ¢y q(z) = a if z € U.
Clearly, ¢r4 is a T-partial endomorphism because for V e I,

_ U ifaeV,
‘PU;(V) = {

0 otherwise.

We now state and prove various propositions and lemmas from which our
main result will follow easily. Our first proposition is an easy consequence
of the definition of ¢y, -

PROPOSITION 1. For any T-partial endomorphism ¢, any a € X and any
U e K, the following hold:

(1) PP,a = 0.
_ J9uw@ ifaisin the domain of ¢,

il o =
(i) ¢ ©vua 0 otherwise.

(iil) Yv.e°® = Yyp-1)a-
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In what follows, &; := (X;,K;, ;) (i = 1,2) will denote a Tarski space
and ® : Pend(X;) — Pend(AX%), a monoid isomorphism. The next lemma
asserts that the T-partial endomorphisms ¢y, are preserved under monoid
isomorphisms.

LEMMA 1.

(i) ®(0) =0.

(il) For Uy € K1 ~ {0} and a1 € X1 there exist Uy € Ko and ag € Xy such
that CD(‘PUMH) = PUs,az-

Proof. (i) It follows from the following facts: in any Tarski space, () = ¢of) =

() o4p for each partial endomorphism 1) and any element in a semigroup with

such a property is unique.

(ii) Set ¥ := &~ and 0 := ®(py,.q, ) By injectivity of @, ®(pp,.q,) # 0.
Let b € Imo and ¢ € X3 such that o(c) = b. Pick U € Ky such that b e U.
By Proposition (iil), pup © 0 = Yo-1(17)p- Observe that () # o 1 (U) € K3
and consequently, @,—1 )y # (). Then, on one hand we have

U(pup) © pura = Y(vup) o ¥(0) = V(1))
and, on the other hand, using Proposition [l (ii) we have

U(pup) © Pur,a1 = PUyd
where d = U(ppp)(ar) and, as a byproduct, a; is in the domain of ¥ ().
So,
®(puy,d) = Po1(v) b
Now pick V € K1 such that d € V. Clearly, for t € U; we have

$V,a © 90U1,d(t) = PU,a1 (d) = ap,
SO, ¥V,a; © PUL.d = PU,,a; @nd, by applying ® on both sides of this equality,
we get P(ouy.a1) = P(Pviay) © Yo-1(1)p SO that, for t € o~} (U) we have
D (pu,,a1)(t) = ®(pv,q,)(b) which means that ®(py, q,) = Po-1(U),e Where
e = B(pva)(b). =

LEMMA 2. ®(¢ua) = ¢vp and D(pua) = vy imply V =V’

Proof. Pick W € K; such that a’ € W. Then, for t € U, pw, o gy (t) =
ewala’) = a; 50 pw,a © YU = YU, and, by taking the images under ® on
both sides of this equality we get ®(¢w,qa) oy = @vp. From another side,
fort e V', ®(pw,a) ooy (t) = ®(ow,a)(V), that is, ®(pw,e) 0@y y = Yy e,
where ¢ = ®(pw,q)(b'). So, we have shown that ¢y, = ¢y . and this means
that V=V’ (and b=c¢). m

LEMMA 3. IfU # () # U’ then, ®(¢u.a) = @vp and ®(oyr ) = oy imply
b=1"V.
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Proof. Pick W € K; such that a € W and, by virtue of Lemmal([l] we may set
®(pw,a) = pw . for some W’ € Ky and ¢ € Xy. Then, as ¢w,, 0 0ua = ¢U.q,
by taking the images under ® on both sides of this equality, we get ¢y .o
vy = ¢vp. But for t € V we have oy .0 ovp(t) = pwr (b)) = pvp(t) = b
from which it follows that ¢ = b; so, ®(¢wa) = ewrp. With the same
argument but applied now to ¢, we conclude that gy 0 oy y = @y .
Since for t € V' we have that ¢y y(t) = b then b’ = @yrp 0 pyry(t) =
ow (b)) = b (and, as a byproduct. b’ € W’). =

Define ¢ : X1 — X3 by the rule
¢(x) =y iff for every V € Ky, there exists U € Ky such that®(pp ) = pvy.

By Lemma 3] ¢ is well defined and by Lemma [2], ¢ is one to one. Indeed, if
U := &~ ! and we define 9 : Xo — X by the rule

Y(y) = x iff for every U € Ky, there exists V' € Ky such that
V(ovy) = pua-
It is easy to check that 1 = ¢! so that ¢ is a bijection.

PROPOSITION 2. ¢ and ¢~ are T-functions.

Proof. Since ¢ and ¢! are defined symmetrically using ®, it is enough to
prove the result just for ¢. Let V € Ky and = € ¢~ (V). Let U € Ky such
that

(1) Q(pus) = Pv.(x)-

Since ¢(x) € V, ©v,4(z) © PVig(z) = PV.é(x)- 1t follows from this that z € U
(if z ¢ U then ¢y, 0@y, = 0 and by taking the images under ® we have
PV.é(z) © PVez) = O, a contradiction) and this proves that (V) c U.
Conversely, suppose that € U. Then, again from it follows that ¢(x) €
V. So, ~1(V) = U and this prove that ¢ is a T-function. m

CoONCLUSION: Theorem [2] follows at once from the previous results and
Theorem [l follows from the equivalence of Celani and Cabrer.
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