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DE MORGAN FUNCTIONS AND FREE DE MORGAN
ALGEBRAS

Abstract. It is commonly known that the free Boolean algebra on n free generators
is isomorphic to the Boolean algebra of Boolean functions of n variables. The free bounded
distributive lattice on n free generators is isomorphic to the bounded lattice of monotone
Boolean functions of n variables. In this paper, we introduce the concept of De Morgan
function and prove that the free De Morgan algebra on n free generators is isomorphic to
the De Morgan algebra of De Morgan functions of n variables. This is a solution of the
problem suggested by B. I. Plotkin.

1. Introduction and preliminaries
An algebra pQ; t`, ¨,̄ , 0, 1uq with two binary, one unary and two

nullary operations is called a De Morgan algebra if pQ; t`, ¨, 0, 1uq is a
bounded distributive lattice with least element 0 and greatest element 1
and pQ; t`, ¨,̄ , 0, 1uq satisfies the following identities:

x` y “ x ¨ y,

x “ x,

where x “ pxq ([2, 4, 6, 8, 18, 19, 24, 31, 32, 34]; In book [6], the definition
of the reduct of De Morgan algebra is given). The standard fuzzy algebra
F “ pr0, 1s;maxpx, yq,minpx, yq, 1 ´ x, 0, 1q is an example of a De Morgan
algebra.

Except in mathematical logic ([1, 3, 7, 14, 15, 20, 22, 23]) and algebra,
De Morgan algebras (and De Morgan bisemilattices) have applications in
multi-valued simulations of digital circuits too ([9, 10]).

A De Morgan algebra F “ pF ; t`, ¨,̄ , 0, 1uq is called a free De Morgan al-
gebra with the system of free generators X Ď F if the algebra F is generated
by the subset X Ď F and for every De Morgan algebra S “ pS; t`, ¨,̄ , 0, 1uq
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and for every mapping µ : X Ñ S, there exists a unique homomorphism:
ν : F Ñ S with ν|X “ µ. The concepts of the free bounded distributive
lattice and the free Boolean algebra have similar definitions ([16]). These def-
initions are special cases of the general concept of the free algebra of variety
([17, 35]).

Let us consider the following De Morgan algebras: 2 “ pt0, 1u;
t`, ¨, ,̄ 0, 1uq, 3 “ pt0, a, 1u; t`, ¨, ¯ , 0, 1uq, where a “ a, and 4 “

pt0, a, b, 1u; t`, ¨, ¯ , 0, 1uq, where a “ a, b “ b, a` b “ 1, a ¨ b “ 0. (Here 0
and 1 are respectively the least and greatest elements of distributive lattice
and so the other values of operations are defined uniquely. In particular,
1 “ 0, 0 “ 1, for those three algebras.)

Let us recall the following result that makes clear our approach for the
definition of the concept of De Morgan functions.

Theorem 1.1. ([18]) Every non-trivial subdirectly irreducible De Morgan
algebra is isomorphic to one of the following algebras: 2,3,4, where 2 is the
unique non-trivial subdirectly irreducible Boolean algebra.

As a corollary, we can state that the free n-generated De Morgan algebra
is isomorphic to the subalgebra of 44n generated by the projections. Ele-
ments of this subalgebra are functions from 4n into 4.

Let B “ t0, 1u. Define the operations `, ¨,̄ on B by the following way:
0 ` 0 “ 0, 0 ` 1 “ 1 ` 0 “ 1 ` 1 “ 1, 0 ¨ 1 “ 0 ¨ 0 “ 1 ¨ 0 “ 0, 1 ¨ 1 “
1, 0 “ 1, 1 “ 0. We get the Boolean algebra 2 “ pB; t`, ¨,̄ , 0, 1uq and
the bounded distributive lattice pB; t`, ¨, 0, 1uq. Let “≤” be its order. For
u “ pu1, . . . , unq, v “ pv1, . . . , vnq P B

n, we define: u ≤ v if and only if
ui ≤ vi for all i “ 1, . . . , n, where Bn is the set of all n-element sequences of
B. Here and afterwards n ≥ 1 is a positive integer.

Definition 1.2. A Boolean function f : Bn Ñ B is called monotone if

x ≤ y ñ fpxq ≤ fpyq,
where x, y P Bn.

If u “ pu1, . . . , unq, v “ pv1, . . . , vnq P B
n then we will say u � v if there

exists k p1 ≤ k ≤ nq such that ui “ vi for all i ‰ k and uk “ 0, vk “ 1. It is
easy to see that a Boolean function f : Bn Ñ B is monotone if and only if

x � y ñ fpxq ≤ fpyq, x, y P Bn.

Denote the set of all monotone Boolean functions of n variables byMn.
We can define f `g and f ¨g for any two Boolean functions of n variables by
the standard way: pf`gqpxq “ fpxq`gpxq, pf ¨gqpxq “ fpxq¨gpxq, x P Bn. It
is obvious that if f and g are monotone Boolean functions, then f`g and f ¨g
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are monotone, too. Thus, we get the algebra Ln “ pMn; t`, ¨, 0, 1uq (here 0
and 1 are the constant Boolean functions) which obviously is a bounded dis-
tributive lattice. Also, let mn “ |Mn| be the number of monotone Boolean
functions of n variables. (Note that the numbers mn are called Dedekind’s
numbers.) For instance, m1 “ 3,m2 “ 6,m3 “ 20,m4 “ 168,m5 “

7581,m6 “ 7828354 ([11, 21]).
Now, let S Ď 2t1,...,nu be an antichain (or Sperner set [12, 36]) with

respect to the order Ď. This means that S consists of subsets of t1, . . . , nu,
none of which is contained in any other subset from S. Note that the empty
set is also considered an antichain. For an antichain S Ď 2t1,...,nu define the
following monotone Boolean function:

(1.1) fSpx1, . . . , xnq “
ÿ

sPS

ź

iPs

xi.

For S “ ∅ we set f∅ “ 0, and for S “ t∅u we set ft∅u “ 1. Notice that fS
does not depend on the order of the elements in the set S. It is easy to see
that if S1 ‰ S2 are two antichains then fS1 ‰ fS2 . To see this without loss
of generality suppose that there exists s P S1 such that s R S2. We can also
suppose that there does not exist s1 P S2 with s1 Ď s. Otherwise, we would
take s1 instead of s (in that case s1 R S1, because S1 is an antichain). Take
the following values of the variables:

xi “

#

1, if i P s,
0, if i R s.

For these values of variables, we have: fS1 “ 1 and fS2 “ 0.
The form (1.1) is uniquely determined by the antichain S Ď 2t1,...,nu. And

conversely, we show next that every monotone Boolean function is obtained
in that way.

We prove the following well-known result since we use that proof in Sec-
tion 3.

Proposition 1.3. ([6, 11, 12, 16, 21, 33, 36]) For every monotone
Boolean function of n variables, there exists a unique antichain S Ď 2t1,...,nu

such that f “ fS.

Proof. For a “ pa1, . . . , anq P Bn let sa “ ti : ai “ 1u. Consider the
set A “ tsa : a P Bn, fpaq “ 1u. Let S be the subset of A, consisting
exactly of all minimal sets in A. Then S Ď 2t1,...,nu is an antichain. Notice
that fpa1, . . . , anq “ 1 iff for some s P S, we have ai “ 1 for all i P s.
The same is valid for fS . Therefore, fpa1, . . . , anq “ fSpa1, . . . , anq for all
pa1, . . . , anq P B

n, and so f “ fS . The uniqueness follows from the argument
stated above.
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Define the Boolean functions:

δinpx1, . . . , xnq “ xi, i “ 1, . . . , n.

Theorem 1.4. ([6, 12, 16, 33, 36]) The algebra Ln is the free bounded
distributive lattice with the system of free generators: ∆ “ tδ1

n, . . . , δ
n
nu.

Hence every free n-generated bounded distributive lattice is isomorphic to
the bounded distributive lattice Ln.

The problem of similar characterization of the n-generated free De Mor-
gan algebra is suggested by B. I. Plotkin (in algebraic conference, St Peters-
burg, Russia, 1981). In this paper, we introduce the concept of De Morgan
function and prove that the free De Morgan algebra on n free generators is
isomorphic to the De Morgan algebra of De Morgan functions of n variables.

Now, let us establish some further properties of monotone Boolean func-
tions, which are used in the third section.

If i P t1, . . . , 2nu, then denote:

σpiq “

#

i` n, if 1 ≤ i ≤ n,
i´ n, if n` 1 ≤ i ≤ 2n.

For a monotone Boolean function fpx1, . . . , x2nq “
ř

sPS

ś

iPs xi consider
the function:

f 1px1, . . . , x2nq “
ź

sPS

ÿ

iPs

xσpiq.

Clearly f 1 is also a monotone Boolean function.

Lemma 1.5. For any monotone Boolean function f of 2n variables, the
following equality holds for all u1, . . . , un, v1, . . . , vn P B:

(1.2) fpu1, . . . , un, v1, . . . , vnq “ f 1pv1, . . . , vn, u1, . . . , unq.

Proof. For i “ 1, . . . , 2n define:

ti “

#

ui, if 1 ≤ i ≤ n,
vi´n, if n` 1 ≤ i ≤ 2n.

Then we have:

fpu1, . . . , un, v1, . . . , vnq “
ÿ

sPS

ź

iPs

ti “
ź

sPS

ÿ

iPs

ti “

f 1ptσp1q, . . . , tσpnq, tσpn`1q, . . . , tσp2nqq “ f 1pv1, . . . , vn, u1, . . . , unq.

The lemma is proved.

2. De Morgan functions
Denote D “ B ˆ B “ tp0, 0q, p1, 0q, p0, 1q, p1, 1qu “ t0, a, b, 1u, where

0 “ p0, 0q, a “ p1, 0q, b “ p0, 1q, 1 “ p1, 1q. Defining 0` x “ x` 0 “ x and
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1 ¨ x “ x ¨ 1 “ x for all x P D, and a` b “ b` a “ 1, a ¨ b “ b ¨ a “ 0, 0 “ 1,
1 “ 0, a “ a, b “ b, we get the De Morgan algebra 4 “ pD; t`, ¨,̄ , 0, 1uq.
Notice that

pu, vq “ pv, uq,

pu1, v1q ` pu2, v2q “ pu1 ` u2, v1 ` v2q,

pu1, v1q ¨ pu2, v2q “ pu1 ¨ u2, v1 ¨ v2q,

(here the operations on the right hand side are the operations of the Boolean
algebra 2). For x P D let

x˚ “

$

’

&

’

%

x, if x “ 0, 1,

a, if x “ b,

b, if x “ a.

Also for c “ pc1, . . . , cnq, d “ pd1, . . . , dnq P Dn we say that d is a
permitted modification of c if for some k p1 ≤ k ≤ nq, we have di “ ci for all
1 ≤ i ≤ n, i ‰ k and

dk “

#

a, if ck “ 0,

1, if ck “ b.

Definition 2.1. A function f : Dn Ñ D is called a De Morgan function
if the following conditions hold:

(1) if xi P t0, 1u, i “ 1, . . . , n then fpx1, . . . , xnq P t0, 1u,
(2) if xi P D, i “ 1, . . . , n then fpx˚1 , . . . , x˚nq “ pfpx1, . . . , xnqq

˚,
(3) if x, y P Dn with fpxq ‰ b and y is a permitted modification of x then

fpyq P tfpxq, au.

Notice that Condition p1q is a consequence of Condition p2q, however it
is convenient to write it as a separate condition.

Note that it follows from Condition p1q that every De Morgan function
is an extension of some Boolean function. And notice that the constant
functions f “ 1 and f “ 0 are De Morgan functions, but the constant
functions f “ a and f “ b are not. This means that 0 and 1 are the only
constant De Morgan functions. Further examples of De Morgan functions are
fpxq “ x, gpxq “ x, hpx, yq “ x ¨y, qpx, yq “ x`y, where the operations on
the right hand side are the operations of the De Morgan algebra 4. We can
straightforwardly verify that those functions satisfy the Conditions p1q´ p3q
of Definition 2.1, but it also follows from the results of the next section.

As Boolean functions, De Morgan functions (and also all functions
Dn Ñ D) can be given by tables. Also note that there is an algorithm
which, for a given table of a function f : Dn Ñ D, determines whether f is
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a De Morgan function. Let us find the complexity of this algorithm depend-
ing on the number of the rows of the table. We denote that number by k
(obviously, k “ 4n). To test whether a function f is a De Morgan function
we should check whether Condition p2q and p3q are satisfied for f (as we
mentioned above, Condition (1) is a consequence of Condition p2q). And it
is easy to see that to check Condition p2q we need no more than Opkq op-
erations, and to verify Condition p3q we do no more than Opk2q operations,
as we should consider the pairs of rows to decide whether one of them is a
permitted modification of the other (we define Opkq to be a function ppkq

such that the ratio ppkq
k is bounded). And thus the complexity of algorithm is

polynomial (more precisely, it is not greater than C ¨k2 for some constant C).
For xi P D, we denote by pui, viq the pair from B ˆ B which is equal to

xi, i.e. xi “ pui, viq. (Often we will consider B “ t0, 1u as a subset of D.)

Definition 2.2. The function f : Dn Ñ D is called a quasi-De Morgan
function, if there exists a Boolean function ϕ : B2n Ñ B such that

(2.1) fpx1, . . . , xnq “ pϕpu1, . . . , un, v1, . . . , vnq, ϕpv1, . . . , vn, u1, . . . , unqq,

for all x1, . . . , xn P D.

Proposition 2.3. The function f : Dn Ñ D is a quasi-De Morgan func-
tion if and only if it satisfies Conditions p1q and p2q of Definition 2.1.

Proof. Let f be a quasi-De Morgan function. If xi P t0, 1u, then ui “ vi and
ϕpu1, . . . , un, v1, . . . , vnq “ ϕpv1, . . . , vn, u1, . . . , unq. Hence, fpx1, . . . , xnq P
B. Thus, Condition p1q holds for f . Now let us check Condition p2q. To do
this recall that pu, vq˚ “ pv, uq. Hence,

fpx˚1 , . . . , x
˚
nq “ pϕpv1, . . . , vn, u1, . . . , unq, ϕpu1, . . . , un, v1, . . . , vnqq

“ pϕpu1, . . . , un, v1, . . . , vnq, ϕpv1, . . . , vn, u1, . . . , unqq
˚ “ pfpx1, . . . , xnqq

˚.

Now suppose Conditions p1q and p2q hold for f , and let us prove that
there exists a Boolean function ϕ with condition (2.1). First we prove that
there are at most 24n functions for which Conditions p1q and p2q hold. To
see this notice that there are 2n n-tuples pu1, . . . , unq P B

n. For such n-
tuples f can take only two values (by Condition p1q). Further, if the n-
tuple pv1, . . . , vnq P Dn contains a or b, then pv˚1 , . . . , v˚nq ‰ pv1, . . . , vnq
and fpv˚1 , . . . , v˚nq is uniquely determined by fpv1, . . . , vnq (by Condition p2q).
There are 4n´2n such n-tuples. Thus, the number of such functions does not
exceed 22n ¨4

4n´2n

2 “ 22n ¨24n´2n “ 24n . It is clear that for a quasi-De Morgan
function f , there exists exactly one Boolean function ϕ with condition (2.1).
Therefore, there are 24n “ 222n quasi-De Morgan functions. And all quasi-
De Morgan functions satisfy Conditions p1q and p2q. Hence, all functions
f : Dn Ñ D satisfying p1q and p2q are quasi-De Morgan functions.
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This proposition makes clear why those functions are called quasi-De
Morgan functions. As we mentioned in the proof, for a quasi-De Morgan
function f : Dn Ñ D, there exists a unique Boolean function ϕ : B2n Ñ B
which satisfies (2.1). To emphasize that ϕ is the unique Boolean function
corresponding to f , we denote it by ϕf .

Theorem 2.4. The function f : Dn Ñ D is a De Morgan function if
and only if it is a quasi-De Morgan function and ϕf is a monotone Boolean
function.

Proof. If f is a De Morgan function then by Proposition 2.3, it is a quasi-De
Morgan function. Let us prove that ϕf is monotone. Let u “ pu1, . . . , u2nq,
v “ pv1, . . . , v2nq P B

2n and for some k p1 ≤ k ≤ 2nq ui “ vi, if i ‰ k,
uk “ 0, vk “ 1. We show that ϕf puq ≤ ϕf pvq. Suppose it is not true, i.e.
ϕf puq “ 1, ϕf pvq “ 0. For 1 ≤ i ≤ n denote:

ci “

#

pui, un`iq, if 1 ≤ k ≤ n,
pun`i, uiq, if n` 1 ≤ k ≤ 2n,

and

di “

#

pvi, vn`iq, if 1 ≤ k ≤ n,
pvn`i, viq, if n` 1 ≤ k ≤ 2n.

Suppose 1 ≤ k ≤ n. Then d “ pd1, . . . , dnq is a permitted modification
of c “ pc1, . . . , cnq.

fpcq “ pϕf pu1, . . . , un, un`1, . . . , u2nq, ϕf pun`1, . . . , u2n, u1, . . . , unqq

“ p1, ϕf pun`1, . . . , u2n, u1, . . . , unqq ‰ b.

Analogously:
fpdq “ p0, ϕf pvn`1, . . . , v2n, v1, . . . , vnqq.

By Condition p3q, we have fpdq “ fpcq or fpdq “ a. This gives a contradic-
tion with the above equalities.

Now suppose n ` 1 ≤ k ≤ 2n. Then c is a permitted modification of d.
We have:

fpdq “ pϕf pvn`1, . . . , v2n, v1, . . . , vnq, ϕf pv1, . . . , vn, vn`1, . . . , v2nqq

“ pϕf pvn`1, . . . , v2n, v1, . . . , vnq, 0q ‰ b.

And also
fpcq “ pϕf pun`1, . . . , u2n, u1, . . . , unq, 1q.

Again, by Condition p3q, we have fpcq “ fpdq or fpcq “ a, which is a
contradiction.

In both cases, we arrived at a contradiction. Consequently, ϕf is a mono-
tone Boolean function.



278 Yu. M. Movsisyan, V. A. Aslanyan

Thus, the “only if”-part of the theorem is proved. Now, let us prove the
“if”-part.

Suppose that f is a quasi-De Morgan function and ϕf is a monotone
Boolean function. We verify that Condition p3q holds for f . To see this, let
d “ pd1, . . . , dnq P D

n be a permitted modification of c “ pc1, . . . , cnq P D
n.

This means that for some k p1 ≤ k ≤ nq ci “ di if i ‰ k and

dk “

#

a, if ck “ 0,

1, if ck “ b.

Let ci “ pui, viq, di “ ppi, qiq. Then ui ≤ pi and vi “ qi for all
i “ 1, . . . , n. Therefore, pu1, . . . , un, v1, . . . , vnq ≤ pp1, . . . , pn, q1, . . . , qnq
and pv1, . . . , vn, u1, . . . , unq ≥ pq1, . . . , qn, p1, . . . , pnq. Hence,

ϕf pu1, . . . , un, v1, . . . , vnq ≤ ϕf pp1, . . . , pn, q1, . . . , qnq

and
ϕf pv1, . . . , vn, u1, . . . , unq ≥ ϕf pq1, . . . , qn, p1, . . . , pnq.

Thus, the first coordinate of fpcq is less than (or equal to) the first coordinate
of fpdq and the second coordinate of fpcq is greater than or equal to the
second coordinate of fpdq. Thus, if fpcq “ 0 then fpdq P t0, au; if fpcq “ a
then fpdq “ a; and if fpcq “ 1 then fpdq P t1, au.

Corollary 2.5. There are m2n De Morgan functions of n variables.

3. Free De Morgan algebras
Denote the set of all De Morgan functions of n variables by Dn. For the

functions f, g : Dn Ñ D define f ` g, f ¨ g and f by the standard way, i.e.
pf`gqpxq “ fpxq`gpxq, pf ¨gqpxq “ fpxq¨gpxq, fpxq “ fpxq, x P Dn, where
the operations on the right hand side are the operations of De Morgan algebra
4. We claim that Dn is closed under those operations, i.e. if f, g P Dn, then
f ` g, f ¨ g, f P Dn. We can verify it straightforwardly, using the definition
of De Morgan function. But it is easier to prove it, using Theorem 2.4. If
f, g P Dn then

fpx1, . . . , xnq “ pϕf pu1, . . . , un, v1, . . . , vnq, ϕf pv1, . . . , vn, u1, . . . , unqq,

and

gpx1, . . . , xnq “ pϕgpu1, . . . , un, v1, . . . , vnq, ϕgpv1, . . . , vn, u1, . . . , unqq.

Hence:

pf ` gqpx1, . . . , xnq

“ ppϕf ` ϕgqpu1, . . . , un, v1, . . . , vnq, pϕf ` ϕgqpv1, . . . , vn, u1, . . . , unqq
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and

pf ¨ gqpx1, . . . , xnq

“ ppϕf ¨ ϕgqpu1, . . . , un, v1, . . . , vnq, pϕf ¨ ϕgqpv1, . . . , vn, u1, . . . , unqq.

As ϕf , ϕg are monotone boolean functions, ϕf ¨ϕg and ϕf`ϕg are monotone,
as well. So by Theorem 2.4 f ` g and f ¨ g are De Morgan functions.

Further, from Lemma 1.5 we get:

fpx1, . . . , xnq “ pϕf pu1, . . . , un, v1, . . . , vnq, ϕf pv1, . . . , vn, u1, . . . , unqq

“ pϕf pv1, . . . , vn, u1, . . . , unq, ϕf pu1, . . . , un, v1, . . . , vnqq

“ pϕ1f pu1, . . . , un, v1, . . . , vnq, ϕ
1
f pv1, . . . , vn, u1, . . . , unqq.

And ϕf is monotone; therefore, ϕ1f is also monotone. Hence, f is a De
Morgan function.

Thus, we get an algebra: Dn “ pDn, t`, ¨,̄ , 0, 1uq (here 0 and 1 are the
constant De Morgan functions), which obviously is a De Morgan algebra.
Also, for f, g P Dn we have: ϕf`g “ ϕf ` ϕg, ϕf ¨g “ ϕf ¨ ϕg, ϕf “ ϕ1f .

Let a “ pa1, a2q, b “ pb1, b2q P 2t1,...,nu ˆ 2t1,...,nu. We say that a Ď
b, if a1 Ď b1 and a2 Ď b2. In this way, we get a partially ordered set
2t1,...,nu ˆ 2t1,...,nupĎq. For an antichain S Ď 2t1,...,nu ˆ 2t1,...,nu, define the
function fS : Dn Ñ D in the following way:

(3.1) fSpx1, . . . , xnq “
ÿ

s“ps1,s2qPS

´

ź

iPs1

xi ¨
ź

iPs2

xi

¯

.

Notice that fS does not depend on the order of the elements in the set S
(cf. [32]).

Note that we set f∅ “ 0 and ftp∅,∅qu “ 1.
Let us consider the functions

δinpx1, . . . , xnq “ xi, i “ 1, . . . , n,

as functionsDn Ñ D. Obviously, δin is a De Morgan function. And according
to (3.1), for any antichain S Ď 2t1,...,nu ˆ 2t1,...,nu, we have:

fS “
ÿ

s“ps1,s2qPS

´

ź

iPs1

δin ¨
ź

iPs2

δin

¯

.

Hence, fS P Dn, i.e. fS is a De Morgan function for any antichain S Ď
2t1,...,nu ˆ 2t1,...,nu.

For s “ ps1, s2q P 2t1,...,nuˆ2t1,...,nu let s1 “ s1Ytn` i : i P s2u P 2t1,...,2nu,
and for S Ď 2t1,...,nuˆ2t1,...,nu let S1 “ ts1 : s P Su Ď 2t1,...,2nu. In this way, we
give a bijective mapping from the set of all antichains of 2t1,...,nuˆ2t1,...,nupĎq
to the set of all antichains of 2t1,...,2nupĎq. And so the number of all antichains
of the partially ordered set 2t1,...,nu ˆ 2t1,...,nupĎq is m2n.
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Now, for any De Morgan function f P Dn from Proposition 1.3 and
Theorem 2.4, we conclude that there exists an antichain S1 Ď 2t1,...,2nu such
that:

fpx1, . . . , xnq “ pϕf pu1, . . . , un, v1, . . . , vnq, ϕf pv1, . . . , vn, u1, . . . , unqq

“

´

ÿ

s1PS1

´

ź

iPs1
1≤i≤n

ui ¨
ź

iPs1
n`1≤i≤2n

vi´n

¯

,
ÿ

s1PS1

´

ź

iPs1
1≤i≤n

vi ¨
ź

iPs1
n`1≤i≤2n

ui´n

¯¯

“
ÿ

s1PS1

´

ź

iPs1
1≤i≤n

pui, viq ¨
ź

iPs1
n`1≤i≤2n

pvi´n, ui´nq
¯

“
ÿ

s“ps1,s2qPS

´

ź

iPs1

xi ¨
ź

iPs2

xi

¯

“ fSpx1, . . . , xnq,

where S is the antichain of 2t1,...,nu ˆ 2t1,...,nupĎq, corresponding to S1.
Moreover, the number of all De Morgan functions of n variables is the

same as the number of all antichains of 2t1,...,nuˆ 2t1,...,nupĎq. Hence, we get
the following result.

Theorem 3.1. For any De Morgan function f of n variables there exists
a unique antichain S Ď 2t1,...,nu ˆ 2t1,...,nu such that f “ fS.

In particular, fS1 ‰ fS2 if S1 ‰ S2.
Thus, every nonconstant De Morgan function can be uniquely presented

in the form (3.1). This form is called the canonical form (or disjunctive
normal form (or briefly - DNF)) of De Morgan function f . Notice that from
Theorem 2.4 and from the proofs of Theorem 3.1 and Proposition 1.3, we
get an algorithm which, given a De Morgan function, gives its disjunctive
normal form. It is easy to see that the complexity of this algorithm is linear
depending on the number of the rows of the table of the given De Morgan
function f .

We can also prove that every nonconstant De Morgan function can be
uniquely presented in conjunctive normal form (CNF), i.e. in the following
form:

ź

ps1,s2qPS

´

ÿ

iPs1

xi `
ÿ

iPs2

xi

¯

.

Theorem 3.2. The algebra Dn is the free De Morgan algebra with the
system of free generators: ∆ “ tδ1

n, . . . , δ
n
nu. Hence, every free n-generated

De Morgan algebra is isomorphic to the De Morgan algebra Dn.

Proof. Let F “ pQ; t`, ¨,̄ , 0, 1uq be a De Morgan algebra and µ : ∆ Ñ Q be
a mapping. We prove that there exists a unique homomorphism: ν : Dn Ñ F
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with ν|∆ “ µ. Any element f P Dn can be represented in the form

f “
ÿ

s“ps1,s2qPS

´

ź

iPs1

δin ¨
ź

iPs2

δin

¯

,

for the uniquely determined antichain S Ď 2t1,...,nu ˆ 2t1,...,nu. Set

νpfq “
ÿ

s“ps1,s2qPS

´

ź

iPs1

µpδinq ¨
ź

iPs2

µpδinq
¯

.

Obviously, ν is a homomorphism and νpδinq “ µpδinq, i “ 1, . . . , n. Unique-
ness of ν is evident too.

A similar result is valid for the finitely generated free algebras of the
hypervariety defined by the system of hyperidentities of De Morgan algebras
(Boolean algebras, distributive lattices)([25–30, 32]).

4. Conclusion
We give a new characterization of finitely generated free De Morgan

algebras. The free De Morgan algebras have been characterized by several
authors by describing the canonical forms of their elements ([2, 4, 13–15]) (cf.
[27, 28, 32]). Besides, it is commonly known that the free Boolean algebra on
n free generators is isomorphic to the Boolean algebra of Boolean functions
of n variables. In this paper, we introduce the concept of De Morgan function
and prove that the free De Morgan algebra on n free generators is isomorphic
to the De Morgan algebra of De Morgan functions of n variables. The
advantage of this representation of the free De Morgan algebra is the fact
that it gives rise to a new concept of the De Morgan function, which is a
new object in discrete mathematics.
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