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DE MORGAN FUNCTIONS AND FREE DE MORGAN
ALGEBRAS

Abstract. It is commonly known that the free Boolean algebra on n free generators
is isomorphic to the Boolean algebra of Boolean functions of n variables. The free bounded
distributive lattice on n free generators is isomorphic to the bounded lattice of monotone
Boolean functions of n variables. In this paper, we introduce the concept of De Morgan
function and prove that the free De Morgan algebra on n free generators is isomorphic to
the De Morgan algebra of De Morgan functions of n variables. This is a solution of the
problem suggested by B. I. Plotkin.

1. Introduction and preliminaries

An algebra (Q;{+,-,” ,0,1}) with two binary, one unary and two
nullary operations is called a De Morgan algebra if (Q;{+,-,0,1}) is a
bounded distributive lattice with least element 0 and greatest element 1
and (Q; {+,-,,0,1}) satisfies the following identities:

rT+Yy=2"Y,
T=u,

where T = (Z) (|2, 4, 6, 8, 18] 119, |24, [31} 32, 34]; In book [6], the definition
of the reduct of De Morgan algebra is given). The standard fuzzy algebra
F = ([0,1]; maz(x,y), min(z,y),1 — 2,0,1) is an example of a De Morgan
algebra.

Except in mathematical logic (|1} 3} |7, 114} 15 20} 22, 23|) and algebra,
De Morgan algebras (and De Morgan bisemilattices) have applications in
multi-valued simulations of digital circuits too (|9, 10]).

A De Morgan algebra F = (F'; {+,+,7,0,1}) is called a free De Morgan al-
gebra with the system of free generators X < F' if the algebra F is generated
by the subset X < F' and for every De Morgan algebra & = (S;{+,-,7,0,1})
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and for every mapping u : X — S, there exists a unique homomorphism:
v:F — & with v|x = p. The concepts of the free bounded distributive
lattice and the free Boolean algebra have similar definitions (|16]). These def-
initions are special cases of the general concept of the free algebra of variety
(117, 135]).

Let us consider the following De Morgan algebras: 2 = ({0,1};
{+,-, ,0,1}), 3 = ({0,a,1};{+,:, ~,0,1}), where @ = a, and 4 =
({0,a,b,1}; {+,-, 7,0,1}), wherea =a, b=0b, a+b=1, a-b=0. (Here 0
and 1 are respectively the least and greatest elements of distributive lattice
and so the other values of operations are defined uniquely. In particular,
1=0,0=1, for those three algebras.)

Let us recall the following result that makes clear our approach for the
definition of the concept of De Morgan functions.

THEOREM 1.1. ([18|) Every non-trivial subdirectly irreducible De Morgan
algebra is isomorphic to one of the following algebras: 2,3, 4, where 2 is the
unique non-trivial subdirectly irreducible Boolean algebra. w

As a corollary, we can state that the free n-generated De Morgan algebra
is isomorphic to the subalgebra of 44" generated by the projections. Ele-
ments of this subalgebra are functions from 4” into 4.

Let B = {0,1}. Define the operations +,-,” on B by the following way:
0+0=00+1=14+40=1+1=10-1=0-0=1-0=0,1-1-=
1,0 = 1,1 = 0. We get the Boolean algebra 2 = (B;{+,-,”,0,1}) and
the bounded distributive lattice (B;{+,-,0,1}). Let “<” be its order. For
u = (Ur,...,up), v = (v1,...,v,) € B", we define: u < v if and only if
u; <w; foralli=1,...,n, where B" is the set of all n-element sequences of
B. Here and afterwards n > 1 is a positive integer.

DEFINITION 1.2. A Boolean function f : B" — B is called monotone if
z<y=f(z)< f(y),

where z,y € B™.

Ifu=(u1,...,un), v=(v1,...,0,) € B™ then we will say u < v if there
exists k (1 < k < n) such that u; = v; for all ¢ # k and up, =0, vy, = 1. It is
easy to see that a Boolean function f : B" — B is monotone if and only if

v 2y = f(z) < f(y), v,ye B"

Denote the set of all monotone Boolean functions of n variables by M,,.

We can define f + g and f - g for any two Boolean functions of n variables by

the standard way: (f+g)(z) = f(z)+g(z), (f-9)(z) = f(z)-g(x), z € B™. It
is obvious that if f and g are monotone Boolean functions, then f+g and f-g
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are monotone, too. Thus, we get the algebra £, = (My; {+,-,0,1}) (here 0
and 1 are the constant Boolean functions) which obviously is a bounded dis-
tributive lattice. Also, let m,, = |M,]| be the number of monotone Boolean
functions of n variables. (Note that the numbers m,, are called Dedekind’s
numbers.) For instance, m; = 3,mgy = 6,m3 = 20,my = 168, ms =
7581, mg = 7828354 (|11}, 21]).

Now, let § < 2t be an antichain (or Sperner set [12, 36]) with
respect to the order €. This means that S consists of subsets of {1,...,n},
none of which is contained in any other subset from S. Note that the empty
set is also considered an antichain. For an antichain S < 2{1"} define the
following monotone Boolean function:

(1.1) f(zi,.mn) = Y [ s
seS ies

For S = () we set fy = 0, and for S = {0} we set fyp, = 1. Notice that fg
does not depend on the order of the elements in the set S. It is easy to see
that if S; # Sz are two antichains then fs, # fs,. To see this without loss
of generality suppose that there exists s € 51 such that s ¢ So. We can also
suppose that there does not exist s’ € Sy with s’ = s. Otherwise, we would
take s’ instead of s (in that case s’ ¢ S1, because Sp is an antichain). Take
the following values of the variables:

1, ifies,
Ti = e -
0, ifi¢s.
For these values of variables, we have: fg, =1 and fg, = 0.
The form (T.1) is uniquely determined by the antichain S < 217} And
conversely, we show next that every monotone Boolean function is obtained
in that way.

We prove the following well-known result since we use that proof in Sec-
tion 3.

ProrosiTION 1.3. (|6}, 11, 12}, (16, 21}, [33] 136]) For every monotone
Boolean function of n variables, there exists a unique antichain S < 2{1--n}
such that f = fg.

Proof. For a = (ay,...,a,) € B" let s = {i : a; = 1}. Consider the
set A = {s, : a € B", f(a) = 1}. Let S be the subset of A, consisting
exactly of all minimal sets in A. Then S < 2t} is an antichain. Notice
that f(a1,...,a,) = 1 iff for some s € S, we have a; = 1 for all ¢ € s.
The same is valid for fg. Therefore, f(a1,...,a,) = fs(ai,...,ay) for all
(a1,...,ay) € B™ and so f = fg. The uniqueness follows from the argument
stated above. m
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Define the Boolean functions:

S (xy,. ) =xi i=1,...,n.
THEOREM 1.4. (|6, |12, (16, 33| 136]) The algebra £, is the free bounded
distributive lattice with the system of free generators: A = {5} ... d"}.

Hence every free n-generated bounded distributive lattice is isomorphic to
the bounded distributive lattice £,,. m

The problem of similar characterization of the n-generated free De Mor-
gan algebra is suggested by B. I. Plotkin (in algebraic conference, St Peters-
burg, Russia, 1981). In this paper, we introduce the concept of De Morgan
function and prove that the free De Morgan algebra on n free generators is
isomorphic to the De Morgan algebra of De Morgan functions of n variables.

Now, let us establish some further properties of monotone Boolean func-
tions, which are used in the third section.

Ifie{1,...,2n}, then denote:

) i+n, ifl<i<n,
o(i) =1 . . 4
i—mn, ifn+1<i<2n.

For a monotone Boolean function f(x1,...,%2,) = X .cq [ [;es i consider
the function:
f/(xh v ,.’L’Qn) = Hzmo’(l)
seS i€s

Clearly f’ is also a monotone Boolean function.

LEMMA 1.5. For any monotone Boolean function f of 2n wvariables, the
following equality holds for all ui,...,un,v1,...,v, € B:

(1.2) flut, ... un,01,...,0,) = f (V1,00 U, UL, ..., Tp).
Proof. For i = 1,...,2n define:
ti_{ui, if1<i<n,
Vi—n, fn+1<i<2n.

Then we have:

f(ub...,un,ﬁl,...,ﬁn) = Zntl = HZE =

seS ies seS ies
f/(ta(l)v o 7t0(n)7t0'(n+1)a v 7t0'(2n)) = f/(Ula cey Upy UL, - - 7ﬂn)-

The lemma is proved. m

2. De Morgan functions
Denote D = B x B = {(0,0),(1,0),(0,1),(1,1)} = {0,a,b,1}, where
0=(0,0), a =(1,0),b=(0,1),1 = (1,1). Defining 0+ 2 = x + 0 = z and
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z-1=zforalzeD,anda+b=b+a=1a-b=b-a=0,0=1,
a = a, b =0b, we get the De Morgan algebra 4 = (D;{+,-,7,0,1}).

(u,v) = (v,7),
(u1,v1) + (ug,v2) = (u1 + ug,v1 + v2),
(ulavl) : (UQ,UQ) = (Ul s U2,01 /02))

(here the operations on the right hand side are the operations of the Boolean
algebra 2). For x € D let

z, ifxz=0,1,
' =14a, ifx=0>,

b, ifz=a.

Also for ¢ = (c1,...,¢4), d = (dy,...,d,) € D™ we say that d is a
permitted modification of c if for some k (1 < k < n), we have d; = ¢; for all

1<i<n,i#kand
dk: a, ifckzo,
1, if ¢, =0.

DEFINITION 2.1. A function f : D" — D is called a De Morgan function
if the following conditions hold:

(1) if x; €{0,1}, i =1,...,n then f(x1,...,zy) € {0, 1},
(2) ifx;e D, i =1,...,nthen f(x7,...,2}) = (f(z1,...,2,))%,

(3) if z,y € D™ with f(z) # b and y is a permitted modification of  then
fy) e {f(x), a}.

Notice that Condition (1) is a consequence of Condition (2), however it
is convenient to write it as a separate condition.

Note that it follows from Condition (1) that every De Morgan function
is an extension of some Boolean function. And notice that the constant
functions f = 1 and f = 0 are De Morgan functions, but the constant
functions f = a and f = b are not. This means that 0 and 1 are the only
constant De Morgan functions. Further examples of De Morgan functions are
flz) ==z, g(x) =7, h(z,y) =x-y, q(x,y) = x+y, where the operations on
the right hand side are the operations of the De Morgan algebra 4. We can
straightforwardly verify that those functions satisfy the Conditions (1) — (3)
of Definition [2.I] but it also follows from the results of the next section.

As Boolean functions, De Morgan functions (and also all functions
D™ — D) can be given by tables. Also note that there is an algorithm
which, for a given table of a function f : D™ — D, determines whether f is
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a De Morgan function. Let us find the complexity of this algorithm depend-
ing on the number of the rows of the table. We denote that number by &
(obviously, k = 4™). To test whether a function f is a De Morgan function
we should check whether Condition (2) and (3) are satisfied for f (as we
mentioned above, Condition (1) is a consequence of Condition (2)). And it
is easy to see that to check Condition (2) we need no more than O(k) op-
erations, and to verify Condition (3) we do no more than O(k?) operations,
as we should consider the pairs of rows to decide whether one of them is a
permitted modification of the other (we define O(k) to be a function p(k)
such that the ratio %k) is bounded). And thus the complexity of algorithm is
polynomial (more precisely, it is not greater than C'-k? for some constant C).
For x; € D, we denote by (u;,v;) the pair from B x B which is equal to
x4, 1.e. x; = (ug,v;). (Often we will consider B = {0, 1} as a subset of D.)

DEFINITION 2.2. The function f : D™ — D is called a quasi-De Morgan
function, if there exists a Boolean function ¢ : B?® — B such that

(2.1) fx1,. .y zn) = (@(Uly .oy Up, U1y ooy T )y (V1 ooy Uy Tty ooy Up) )y
for all z1,...,x, € D.

PROPOSITION 2.3. The function f : D™ — D 1is a quasi-De Morgan func-
tion if and only if it satisfies Conditions (1) and (2) of Deﬁm’tion
Proof. Let f be a quasi-De Morgan function. If z; € {0, 1}, then u; = v; and
O(ULy ey Un, U1y .oy Un) = @(V1, ..., Un, U1, .., Uy). Hence, f(x1,...,2y,) €
B. Thus, Condition (1) holds for f. Now let us check Condition (2). To do
this recall that (u,v)* = (v,u). Hence,

Flt, o xk) = (v, ooy Uny W1y e ), @(ULy ey U, U1y e+ Ty))
= (U1, Uny U1y ey Tn), @(V1, ooy Uy Uty e Un)) S = (f(1, -5 20)) T
Now suppose Conditions (1) and (2) hold for f, and let us prove that
there exists a Boolean function ¢ with condition . First we prove that
there are at most 2" functions for which Conditions (1) and (2) hold. To
see this notice that there are 2" n-tuples (uy,...,u,) € B™. For such n-
tuples f can take only two values (by Condition (1)). Further, if the n-
tuple (v1,...,vn) € D™ contains a or b, then (vf,...,v¥) # (vi,...,v,)

and f(vf,...,v}) is uniquely determined by f(v1,...,vy) (by Condition (2)).

rrn
There are 4™ — 2™ such n-tuples. Thus, the number of such functions does not

exceed 22" 47 = 22".24" 2" — 94" Tt is clear that for a quasi-De Morgan
function f, there exists exactly one Boolean function ¢ with condition ({2.1)).

Therefore, there are 24" = 22" quasi-De Morgan functions. And all quasi-
De Morgan functions satisfy Conditions (1) and (2). Hence, all functions
f: D™ — D satistying (1) and (2) are quasi-De Morgan functions. =
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This proposition makes clear why those functions are called quasi-De
Morgan functions. As we mentioned in the proof, for a quasi-De Morgan
function f : D™ — D, there exists a unique Boolean function ¢ : B?* — B
which satisfies . To emphasize that ¢ is the unique Boolean function
corresponding to f, we denote it by ¢y.

THEOREM 2.4. The function f : D™ — D is a De Morgan function if
and only if it is a quasi-De Morgan function and ¢y is a monotone Boolean
function.

Proof. If f is a De Morgan function then by Proposition [2.3] it is a quasi-De
Morgan function. Let us prove that ¢; is monotone. Let v = (u1, ..., uap),
v = (vi,...,v2,) € B?" and for some k (1 < k < 2n) w; = v;, if i # k,
up = 0, v = 1. We show that pr(u) < ¢g(v). Suppose it is not true, i.e.
vf(u) =1, pf(v) = 0. For 1 < i < n denote:

(Ui, Unvyi), 1<k <n,
ci =
’ (Unti,ui), ifn+1<k<2n,
and

d: = (Uiavn+i)7 if 1 < k < n,
’ (Tnti,vi), ifn+1<k<2n.
Suppose 1 < k < n. Then d = (dy,...,d,) is a permitted modification

of c=(c1,...,¢cn).

f(C) = (QDf(’UJ]_, ceeyUn, Un+41, - 7u2n)790f<un+1’ e 5@7ﬂ17 s )En))
= (Lof(Untt,-- - U2n, Ut, ..., Up)) # b.
Analogously:

f(d) = (0,07 (Uns1, .- -, V20,01, - - -, Vn))-
By Condition (3), we have f(d) = f(c) or f(d) = a. This gives a contradic-
tion with the above equalities.

Now suppose n + 1 < k < 2n. Then c is a permitted modification of d.
We have:

F(d) = (@f(Ong1s - V2ns U1y -3 0n), @F(VL, - ooy Uy Upge1s - -+, V2p))
= (¢¢(Untt1,---+U20,01,-..,0pn),0) # b.
And also
f(e) = (pf(Ung1, ..., Ugn, Uty - -, Un), 1).
Again, by Condition (3), we have f(c¢) = f(d) or f(¢) = a, which is a
contradiction.

In both cases, we arrived at a contradiction. Consequently, ¢ is a mono-
tone Boolean function.
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Thus, the “only if”-part of the theorem is proved. Now, let us prove the
“if”-part.

Suppose that f is a quasi-De Morgan function and ¢y is a monotone
Boolean function. We verify that Condition (3) holds for f. To see this, let
d = (dy,...,d,) € D" be a permitted modification of ¢ = (c1,...,¢,) € D™
This means that for some k (1 <k <n) ¢; =d; if i # k and

a, if Cr = 0,
dp =
1, if ¢, =0.

Let ¢; = (us,v;), di = (pi,qi). Then u; < p; and v; = ¢; for all
i = 1,...,n. Therefore, (ui,...,Un,01,...,0n) < (D1y-- s Pnsq1y--->qp)
and (vi,...,Un,U1,...,Upn) > (q1,---,Gn,Dy,---,Pp). Hence,

cpf(ul, e Uy UL,y ) S QD1 P Qs - -+ )
and

Cr(v1, . U, Ty Tn) 2> QF(Q1y s @y Prs -+ D)
Thus, the first coordinate of f(c) is less than (or equal to) the first coordinate
of f(d) and the second coordinate of f(c) is greater than or equal to the
second coordinate of f(d). Thus, if f(¢) = 0 then f(d) € {0,a}; if f(c) =a
then f(d) = a; and if f(c) = 1 then f(d) € {1,a}. =

COROLLARY 2.5. There are mo, De Morgan functions of n variables.

3. Free De Morgan algebras

Denote the set of all De Morgan functions of n variables by D,,. For the
functions f,g : D™ — D define f + g, f - g and f by the standard way, i.e.
(f+9)(x) = f(x)+g(z), (f-9)(x) = f(z)-9(x), f(z) = f(z), x € D", where
the operations on the right hand side are the operations of De Morgan algebra
4. We claim that D, is closed under those operations, i.e. if f, g € D,,, then
f+g,f g, f€D,. We can verify it straightforwardly, using the definition
of De Morgan function. But it is easier to prove it, using Theorem [2:4] If
f,9 € D, then

fxi,..oozn) = (@f(ur, .o Un, Ty, Tn), @ (V1 ooy Un, Tty - - -5 U),
and

g(x1, ..., xn) = (@g(ur, ..., Un, U1y, Tp), @g(V1, .o, U, U, - ., Tp)).

Hence:

(f+9)(x1,...,70)
= ((Spf +‘Pg)(ulw~-7Un,51,-'-7®n)7(@f +@g)(vla"'7’Unaﬂ17-"7ﬂn))
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and

(f-g)(@1,... zn)
= ((QOf : (Pg)(ulv ceyUp,y U1y e 76n)7 (Sof : (Pg)(vlv ceey Up, UL, - - 7ﬂn))
As ¢y, pg are monotone boolean functions, - ¢4 and ¢+ ¢4 are monotone,

as well. So by Theorem [2.4] f 4+ g and f - g are De Morgan functions.
Further, from Lemma we get:

fxi, .o xn) = (@p(ur, .o Un, U1y, Tn), (V15 ooy Uny Uty - - -5 Up)
= (pr(vla"'7vnaﬂla""ﬂn)a¢f(ulv , Un, V1, a@n))
= (Lp/f(ul,...,un,ﬁl,...,En),go’f(vl,...,vn,ﬂl,...,ﬂn)).

And ¢y is monotone; therefore, <p’f is also monotone. Hence, f is a De
Morgan function.

Thus, we get an algebra: ©,, = (D, {+,-,7,0,1}) (here 0 and 1 are the
constant De Morgan functions), which obviously is a De Morgan algebra.
Also, for f,g € D, we have: ©riq = @5+ @g, ©r.g = Pf " Pgs o7 = gp}.

Let a = (a1,az), b = (by,by) € 28bmt x 2L} We say that a <
b, if a1 € by and as S by. In this way, we get a partially ordered set
2flnd o 2llmb (). For an antichain § < 2{1-n} x 2{L-7} " define the
function fg : D™ — D in the following way:

(3.1) fstrvm) = Y ([Ta [1®):

s=(s1,52)€S 1€s1 €S9
Notice that fg does not depend on the order of the elements in the set S
(cf. [32]).
Note that we set fy = 0 and f(gg) = 1.
Let us consider the functions

) .
O (1, xn) =x i=1,...,n,

as functions D™ — D. Obviously, &, is a De Morgan function. And according
to , for any antichain S < 211} x 21} we have:
fs= (H%'H%)-
s=(s1,52)€S €51 1€892
Hence, fs € D,, i.e. fg is a De Morgan function for any antichain S <
2{1,...,71} « 2{1,...,71}'

For s = (s1,s9) € 2tLomd s olbond Jet o = 5y U{n+i:ie so} e 2(b2nd
and for § < 2t x o2lbnd Jet §7 = (¢ : s € S} < 21127} In this way, we
give a bijective mapping from the set of all antichains of 2{1--n} x 211} (©)
to the set of all antichains of 2{1»2"} (). And so the number of all antichains
of the partially ordered set 2{1-m} 5 2{L-m}(2) is myg,.
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Now, for any De Morgan function f € D, from Proposition [1.3] and
Theorem we conclude that there exists an antichain S’ < 2{127} guch
that:

f@i, .o xn) = (U, . Un, U1, -, Un)s @F (V15 -2, Uny Ty - -, Tp))
“(S(Mw IT 5 S(Me T w)
s'eS" ies’ i€s’ s'eS’  jes’ i€s’
1<i<n n+1<i<2n 1<i<n n+1<i<2n
=) ( [T wivi)- T] (@z‘—n,ﬂi—n))
s'eS’  qes’ i€s’
1<i<n n+1<i<2n
= Z (H$1H51>:f5(55177$n)7
s=(s1,52)€S 1€51 i€So

where S is the antichain of 217 x 211} (<), corresponding to S’

Moreover, the number of all De Morgan functions of n variables is the
same as the number of all antichains of 2{17} x 2{L-1}(Z). Hence, we get
the following result.

THEOREM 3.1. For any De Morgan function f of n variables there exists
a unique antichain S < 2L 5 2t} guch that f = fg. w

In particular, fs, # fs, if S1 # So.

Thus, every nonconstant De Morgan function can be uniquely presented
in the form . This form is called the canonical form (or disjunctive
normal form (or briefly - DNF)) of De Morgan function f. Notice that from
Theorem and from the proofs of Theorem and Proposition [1.3] we
get an algorithm which, given a De Morgan function, gives its disjunctive
normal form. It is easy to see that the complexity of this algorithm is linear
depending on the number of the rows of the table of the given De Morgan
function f.

We can also prove that every nonconstant De Morgan function can be
uniquely presented in conjunctive normal form (CNF), i.e. in the following

form:

(s1,82)€S €51 i€So

THEOREM 3.2. The algebra ®,, is the free De Morgan algebra with the
system of free generators: A = {6%,...,6%}. Hence, every free n-generated
De Morgan algebra is isomorphic to the De Morgan algebra .

Proof. Let § = (Q; {+,-,7,0,1}) be a De Morgan algebra and p: A — @ be
a mapping. We prove that there exists a unique homomorphism: v : D,, — §
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with v|a = p. Any element f € D,, can be represented in the form

r= % (TTe-T1%)

s=(s1,52)€S 1€s1 €S9

for the uniquely determined antichain § < 217} x 2{L-n} - Qet

i) = Y (TTwe - TTu@D).

s=(s1,52)€S i€s1 1€82

Obviously, v is a homomorphism and v(8) = p(d%), i = 1,...,n. Unique-
ness of v is evident too. =

A similar result is valid for the finitely generated free algebras of the
hypervariety defined by the system of hyperidentities of De Morgan algebras
(Boolean algebras, distributive lattices)([25-30} 32]).

4. Conclusion

We give a new characterization of finitely generated free De Morgan
algebras. The free De Morgan algebras have been characterized by several
authors by describing the canonical forms of their elements (|2, |4} 13-15]) (cf.
[27, 28] 132]). Besides, it is commonly known that the free Boolean algebra on
n free generators is isomorphic to the Boolean algebra of Boolean functions
of n variables. In this paper, we introduce the concept of De Morgan function
and prove that the free De Morgan algebra on n free generators is isomorphic
to the De Morgan algebra of De Morgan functions of n variables. The
advantage of this representation of the free De Morgan algebra is the fact
that it gives rise to a new concept of the De Morgan function, which is a
new object in discrete mathematics.
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