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OPTIMAL DIVIDEND POLICY IN DISCRETE TIME

Abstract. A problem of optimal dividend policy for a firm with a bank loan is
considered. A regularity of a value function is established. A numerical example of
calculating value function is given.

1. Introduction
A firm which net income is uncertain must choose between paying divi-

dends and creating cash reserves in order to maximize the expected present
value of all payoffs until bankruptcy time. In influential papers [DV] and
[JS] some continuous time problems were formulated and studied. In [DV],
Décamps and Villeneuve considered a firm with a growth option, which gives
the opportunity to invest in a new technology in order to increase its profit
rate. They showed when it is optimal to postpone dividend payoffs, to accu-
mulate cash and to invest at a certain date.

This work deals with the optimal dividend and growth option problem,
where expenses are covered by a loan. We are concerned with a discrete time
model.

2. Formulation of the problem
Consider a firm whose activities generate at moment n an income Yn and

a cash process Xn. Moreover, the firm took out a loan that have to be paid
in constant rates C at each moment n. That may cause bankruptcy if the
cash process is too low. The manager of the firm acts in the best interest of
shareholders and at any moment n may decide to pay out dividends. The
aim of this paper is to maximize the expected discounted satisfaction of
payoffs paid out till bankruptcy time.

The mathematical formulation of this problem is as follows. Assume we
have a probability space pΩ,F ,Pq and a sequence ξ1, ξ2, . . . of independent
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identically distributed random variables such that

P pξ1 ą ´1q “ 1 and E |ξ1|p ă 8, for some p ą 1.

Let r ≥ 0 be a risk free rate of return. Define

F px, y, b, ξq :“ y p1` ξqh pb, xq,

Gpx, y, a, bq :“ px´ Cqp1` rqp1´ a´ bq ` y,

where function h is positive, increasing and bounded from above by a con-
stant M ą 0. Starting with initial values pX0, Y0q “ px, yq, we have the
following recursive formula

Yn`1 “ F pXn, Yn, bn, ξn`1q,

Xn`1 “ G pXn, Yn`1, an, bnq,

where an and bn represent respectively dividend paid out and investment at
time n. A control policy π “ paπn, bπnqnPN is said to be admissible if and only
if paπn, bπnq is adapted to the filtration generated by the process pXn, Ynq and
paπn, b

π
nq P U , for all n P N, where

U “ tpa, bq : a ≥ 0, b ≥ 0 and a` b ≤ 1u.

Define the bankruptcy time τ0 by

τ0 :“ inf tn ≥ 0: Xn ´ C ă 0u

and performance functional

Jπ px, yq “ Ex,y
”

8
ÿ

n“0

γng paπnpXn ´ Cqq Itτ0ąnu
ı

,

where γ P p0, 1q is a given discount factor and g is a utility function from
the class

K :“

"

f : RÑ r0,8q : f pxq “ 0 for all x ≤ 0,

f is continuous and }f}K :“ sup
xPR

|f pxq|

1` |x|
ă 8

*

.

The objective is to calculate the value function v8 and an optimal divi-
dend policy π8 “ pa8n , b8n qnPN, that is v8 and π8 such that

v8 px, yq :“ sup Jπ px, yq “ Jπ
8

px, yq,

where supremum is taken over all admissible strategies. Notice that since
the time of bankruptcy is included in the function Jπ, we need to extend a
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state space putting E :“ tδu Y E1 Y E2, where

E1 :“ tpx, yq P r0,8q2 : x´ C ă 0u,

E2 :“ tpx, yq P r0,8q2 : x´ C ≥ 0u,

δ P R2zr0,8q2.

We equipped E with a natural topology and assume that if pXn, Ynq P
tδu Y E1, then pXn`1, Yn`1q “ δ. Further, for the admissible strategy
π “ paπn, b

π
nqnPN, we have that paπn, bπnq P A pXn, Ynq, for each n P N, where

A px, yq “ tpa, bq : a ≥ 0, b ≥ 0 and a` b ≤ 1u, for px, yq P E2,

A px, yq “ tp0, 0qu, for px, yq P E1 Y tδu .

Finally, we will denote by pXπ
n , Y

π
n qnPN the process corresponding to the

strategy π “ paπn, bπnqnPN. Note that

Jπ px, yq “ Ex,y
”

8
ÿ

n“0

γng paπn pXn ´ Cqq
ı

.

3. Solution by the Bellman Dynamic Programming
For the convenience of the reader, we recall the definitions of upper semi-

continuous functions and set-valued mappings. Below pS, τq and pR, ρq are
topological spaces and 2R denotes the set of all subsets of R.

Definition 3.1. A function φ : S Ñ R is called upper semi-continuous
(u.s.c.) if for each open set B Ă R, the set ts P S : φ psq P Bu is open.

Definition 3.2. A set-valued mapping ψ : S Ñ 2R is called upper semi-
continuous (u.s.c.) if for each open set F Ă R, the set ts P S : ψ psq Ă F u
is open.

Let A be a positive constant. We will consider the following set of func-
tions

W :“

"

f : E Ñ r0,8q : f is u.s.c. on E, }f}W :“ sup
px,yqPE

|f px, yq|

w px, yq
ă 8,

f px, yq “ 0 for each px, yq P E1 Y tδu

*

,

with the weight function

w px, yq “

#

1` x`Ay, if px, yq P Ez tδu ,

1, if px, yq “ δ.

Obviously pW, }¨}Wq is a complete metric space. Define an operator Tγ on
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W by the formula

Tγf px, yq :“ sup
pa,bqPApx,yq

!

g pa px´ Cqq ` γP a,bf px, yq
)

,

where

P a,bfpx, yq :“ EpfpXn`1, Yn`1q|Xn “ x, Yn “ y, an “ a, bn “ bq.

Theorem 3.3. Let

α :“ max t1` r,M p1` Eξ1qu .

Suppose that g P K and γα ă 1. Then there exists A ą 0 such that the value
function v˚ belongs to W and is the unique solution to the equation

Tγv px, yq “ v px, yq , v PW.

Moreover, there are measurable functions a˚ : E Ñ r0, 1s and b˚ : E Ñ r0, 1s,
such that for all px, yq P E, pa˚ px, yq , b˚ px, yqq P A px, yq and

Tγv
˚ px, yq “ g pa˚ px, yq px´ Cqq ` γP a

˚px,yq,b˚px,yqv˚ px, yq,

and the optimal strategy π˚ “ pa˚n, b˚nqnPN is of the form

pa˚n, b
˚
nq “

´

a˚
´

Xπ˚

n , Y π˚

n

¯

, b˚
´

Xπ˚

n , Y π˚

n

¯¯

, n P N.

To prove Theorem 3.3, we need the following general result on measurable
selectors (for proofs see [S1] and [S2]).

Theorem 3.4. Let X be a metric space, U be a separable metric space,
and let U : X Ñ 2U be a u.s.c. set-valued measurable mapping, such that for
each x P X, U pxq is nonempty and compact in U . Assume that

Ψ :“ tpx, uq : x P X and u P U pxqu

is measurable with respect to the product topology on X ˆ U and that
ψ : Ψ Ñ R is measurable, u.s.c. and bounded from above. Then there ex-
ists a measurable function f : X Ñ U such that for all x P X,

f pxq P U pxq and ψ˚ pxq :“ sup
uPUpxq

ψ px, uq “ ψ px, f pxqq .

Furthermore, ψ˚ is measurable, u.s.c. and bounded from above on X.

Proof of Theorem 3.3. Let us first prove that the operator Tγ transforms
W into W. To this end, notice that for any function f PW, we have

(1) f px, yq ≤ }f}W w px, yq , for all px, yq P E.

Consider two cases:
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1. If px, yq P tδu Y E1 then A px, yq “ tp0, 0qu and
Tγf px, yq “ g p0q ` γEf pδq “ 0,(2)

sup
px,yqPtδuYE1

|Tγf px, yq|

w px, yq
“ 0.

2. If px, yq P E2 then

Tγf px, yq “ sup
pa,bqPApx,yq

!

g pa px´ Cqq ` γP a,bf px, yq
)

(3)

≤ sup
pa,bqPApx,yq

tg pa px´ Cqq

` γ }f}W p1` x p1` rq ` y p1`AqM p1` Eξ1qqu.

Since g P K, we have

(4) g pa px´ Cqq ≤ }g}K p1` xq, for all 0 ≤ a ≤ 1 and x ≥ 0.

By (3) and (4),

Tγf px, yq ≤ w px, yq
ˆ

}g}K ` γ

ˆ

α`
M p1` Eξ1q

A

˙

}f}W

˙

.

Therefore, in particular we have

sup
px,yqPE2

|Tγf px, yq|

w px, yq
ă 8.

In conclusion

(5) }Tγf}W “ sup
px,yqPE

|Tγf px, yq|

w px, yq
ă 8, for all f PW.

Furthermore, from (2) we have Tγf px, yq “ 0, for all px, yq P tδu Y E1.
Our next claim is that Tγf is u.s.c. for any f P W. Fix an arbitrary

f PW and define

φ px, yq :“ Tγf px, yq ´ }Tγf}W w px, yq “ sup
pa,bqPApx,yq

ψ px, y, a, bq,

where

ψ px, y, a, bq :“ g pa px´ Cqq ` γP a,bf px, yq ´ }Tγf}W w px, yq.

Notice that by (5), the function ψ is non positive. To use Theorem 3.4, we
need ψ to be u.s.c. on Ψ :“ tpx, y, a, bq : px, yq P E, pa, bq P A px, yqu. As g
and w are continuous, it is sufficient to prove that P a,bf px, yq is u.s.c.. Con-
sider an arbitrary sequence pxn, yn, an, bnqn≥1 Ă Ψ such that pxn, yn, an, bnq
Ñ px, y, a, bq. Applying (1), we obtain

|qn|
p :“ |f pxn`1, yn`1q|

p ≤ q p1` |ξ1|pq , P´ a.s.,
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for some q ą 0. Hence, as E |ξ1|p ă 8, the sequence tqnun≥1 is uniformly
integrable and by the Fatou lemma, for all pxn, yn, an, bnq Ñ px, y, a, bq, we
have

lim sup
nÑ8

P an,bnf pxn, ynq ≤ P a,bf px, yq .

Therefore, P a,bf px, yq is u.s.c. on Ψ.
Applying Theorem 3.4, we conclude that φ is u.s.c. and there exists a

measurable selector pâ, b̂q such that

φ px, yq “ ψ
´

x, y, â px, yq , b̂ px, yq
¯

, for all px, yq P E.

Hence, since w is continuous on E, the function Tγf is u.s.c. on E and

Tγf px, yq “ g pâ px, yq px´ Cqq ` γP âpx,yq,b̂px,yqf px, yq.

Finally, Tγf PW for all f PW.
To show that Tγ is a contraction on W, consider two arbitrary functions

f1, f2 PW. Then

|Tγf1 px, yq ´ Tγf2 px, yq| ≤ γ sup
pa,bqPApx,yq

ˇ

ˇ

ˇ
P a,b rpf1 ´ f2q px, yqs

ˇ

ˇ

ˇ
.

Using (1) we obtain

|Tγf1 px, yq ´ Tγf2 px, yq| ≤ γ }f1 ´ f2}W sup
pa,bqPApx,yq

P a,bw px, yq.

We need to consider 3 cases:
1. If px, yq “ δ then since A px, yq “ tp0, 0qu and P 0,0w pδq “ 1, we have

|Tγf1 pδq ´ Tγf2 pδq|

w pδq
≤ γ }f1 ´ f2}W .

2. If px, yq “ E1 then A px, yq “ tp0, 0qu and P 0,0w px, yq “ w pδq “ 1.
Moreover, since w ≥ 1, for all px, yq “ E1, we have

|Tγf1 px, yq ´ Tγf2 px, yq|

w px, yq
≤
γ }f1 ´ f2}W
w px, yq

≤ γ }f1 ´ f2}W .

3. If px, yq P E2 then A px, yq “
!

pa, bq P r0, 1s2 : a` b ≤ 1
)

and

sup
pa,bqPApx,yq

P a,bw px, yq ≤ 1` p1` rqx` y p1`AqM p1` Eξ1q .
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Therefore,
|Tγf1 px, yq ´ Tγf2 px, yq|

1` x`Ay

≤ γ }f1 ´ f2}W sup
px,yqPE2

1` p1` rqx` y p1`AqM p1` Eξ1q
1` x`Ay

≤ γ }f1 ´ f2}W

˜

α` sup
y≥0

yM p1` Eξ1q
1`Ay

¸

≤ γ }f1 ´ f2}W

ˆ

α`
M p1` Eξ1q

A

˙

“ γ

ˆ

α`
M p1` Eξ1q

A

˙

}f1 ´ f2}W .

Summarizing, we have

}Tγf1 ´ Tγf2}W ≤ γη }f1 ´ f2}W ,

where

η :“

ˆ

α`
M p1` Eξ1q

A

˙

.

Since we assumed that γα ă 1, therefore γη ă 1 for A large enough.
This proves that Tγ is a contraction on W. Thus by the Banach fixed

point theorem, Tγ has a unique fixed point v˚ in W. It remains to prove
that

lim
NÑ8

γNEx,yv˚ pXπ
N , Y

π
N q “ 0,

for all px, yq P E and all admissible strategies π. Notice that for any px, yq P
E2 and pa, bq P A px, yq,
(6) P a,bw px, yq ≤ 1` p1` rqx` yp1`AqMp1` Eξq ≤ ηw px, yq.
For px, yq P E1 Y tδu, A px, yq “ tp0, 0qu and
(7) P 0,0w px, yq “ w pδq “ 1 ≤ ηw px, yq.
Combining (6) and (7), we obtain

P a,bw px, yq ≤ ηw px, yq, for all px, yq P E, pa, bq P A px, yq.
Going recursively backwards, we get that for any initial state px, yq P E and
admissible strategy π “ paπn, bπnqnPN,

(8) Ex,yw pXπ
n , Y

π
n q ≤ ηnw px, yq.

We proved that v˚ PW. Therefore, combining (1) and (8) gives

Ex,yv˚ pXπ
N , Y

π
N q ≤ }v}W Ex,yw pXπ

N , Y
π
N q ≤ }v}W ηNw px, yq.
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Hence, we have
lim
NÑ8

γNEx,yv˚ pXπ
N , Y

π
N q “ 0,

and we can use the arguments from the proof of Theorem 8.3.6 in [HL].

4. Numerical example
By Theorem 3.3, the value function can be obtained by iteration of Tγ .

In this section, we give a numerical example. Suppose that the state space
is of the form E “ tδu Y E2, where

δ :“ p0, 0q , E2 :“ rC,Ls ˆ r0, Ss and 0 ă C ă L, 0 ă S.

In order to make numerical approximations, we need to discretize the state
space. We shall consider a sequence p∆mqmPN of partitions of E2 defined as
follows

C “ x1 ă x2 ă . . . ă xlpmq “ L,

0 ă y1 ă y2 ă . . . ă yspmq “ S,

with the convention

}∆m} :“ sup
k“1,...,lpmq´1

pxk`1 ´ xkq ` sup
k“1,...,spmq´1

pyk`1 ´ ykq,

lim
mÑ`8

}∆m} “ 0.

Therefore, we replace the original state space by the discrete one

Epmq “ tp0, 0qu Y
 

px, yq : x P
 

0, x1, . . . , xlpmq
(

, y P
 

0, y1, . . . , yspmq
((

.

Moreover, we assume that

A px, yq “ tpa, bq : a, b P t0, 0.1, . . . , 1u and a` b ≤ 1u, for px, yq P E2,

A px, yq “ tp0, 0qu, for px, yq “ δ.

Then for all n P N, we have

Y S
n`1 :“ min tF pXn, Yn, bn, ξq , Su,

XL
n`1 :“ min tG pXn, Yn`1, an, bnq , Lu ,

and the value function is of the form

V pL,Sqpx, yq :“ sup
pa,bqPApx,yq

Ex,y
”

8
ÿ

n“0

γng
`

aπn
`

XL
n ´ C

˘˘

ı

.

First, we estimate the value function V pL,Sqpx, yq from below. Define

ΠX
mpxq :“

$

’

&

’

%

0, if x ă x1,

xi, if xi ≤ x ă xi`1, where i P t1, . . . , lpmq ´ 1u,

L, if x ≥ L,
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ΠY
mpyq :“

$

’

&

’

%

0, if y ă y1,

yj , if yj ≤ y ă yj`1, where j P t1, . . . , spmq ´ 1u,

S, if y ≥ S,

and consider a new control problem. Namely, for all n P N, we have

Y n`1 :“ Fm pXn, Y n, bn, ξq :“ F
`

ΠX
m pXnq ,Π

Y
m pY nq , bn, ξ

˘

,

Xn`1 :“ Gm
`

Xn, Y n`1, an, bn
˘

:“ G
`

ΠX
m pXnq , Y n`1, an, bn

˘

,

with an initial condition
`

X0, Y0
˘

:“
`

ΠX
m pX0q ,Π

Y
m pY0q

˘

and the value function

V pL,Sqm px, yq :“ sup
pa,bqPApx,yq

Ex,y
”

8
ÿ

n“0

γng paπn pXn ´ Cqq
ı

.

To estimate the value function V pL,Sqpx, yq from above, we need to consider
one more problem. Define

Π
X
mpxq :“

$

’

’

’

’

&

’

’

’

’

%

0, if x ă x1,

x1, if x “ x1,

xi`1, if xi ă x ≤ xi`1, where i P t1, . . . , lpmq ´ 1u,

L, if x ≥ L,

Π
Y
mpyq :“

$

’

’

’

’

&

’

’

’

’

%

0, if y ă y1,

y1, if y “ y1,

yj`1, if yj ă y ≤ yj`1, where j P t1, . . . , spmq ´ 1u,

S, if y ≥ S.

For all n P N, we have

Y n`1 :“ Fm
`

Xn, Y n, bn, ξ
˘

:“ F
´

Π
X
m

`

Xn

˘

,Π
Y
m

`

Y n

˘

, bn, ξ
¯

,

Xn`1 :“ Gm
`

Xn, Y n`1, an, bn
˘

:“ G
´

Π
X
m

`

Xn

˘

, Y n`1, an, bn

¯

,

with an initial condition
`

X0, Y0
˘

:“
´

Π
X
m pX0q ,Π

Y
m pY0q

¯

.

The value function of this problem is

V
pL,Sq
m px, yq :“ sup

pa,bqPApx,yq
Ex,y

”

8
ÿ

n“0

γng
`

aπn
`

Xn ´ C
˘˘

ı

.
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Notice that, for all px, y, a, b, ξq

Fm ≤ Fm`1 ≤ F ≤ Fm`1 ≤ Fm,

and

Gm ≤ Gm`1 ≤ G ≤ Gm`1 ≤ Gm.

Hence

(9) V pS,Lqm ≤ V pS,Lqm`1 ≤ V
pS,Lq ≤ V pS,Lqm`1 ≤ V

pS,Lq
m .

From p9q, the limits limmÑ8 V
pS,Lq
m and limmÑ8 V

pS,Lq
m exist. This result

raises some natural question. Namely

Question 1. If

lim
mÑ8

V pS,Lqm px, yq “ V pS,Lqpx, yq “ lim
mÑ8

V
pS,Lq
m px, yq, for all px, yq P E?

Now we present numerical solutions for parameters

r “ 0.03, C “ 1, γ “ 0.35 and M “ 2.

Suppose S “ 4.5, L “ 14.3 and the partition of E2 is of the form

C “ 1 ă 1.1 ă 1.2 ă 1.3 ă 1.8 ă 2.3 ă 2.8 ă 3.3

ă 3.8 ă 4.8 ă 5.8 ă 6.8 ă 9.3 ă 11.8 ă 14.3 “ L,

0 ă 0.75 ă 1.5 ă 3 ă 4.5 “ S.

Let

hpb, xq “ 2´
1

bpx´ Cq ` 1
, gpzq “

?
z,

and the random variable

ξ “

#

0.1, where P pξ “ 0.1q “ 0.6,

´0.1, where P pξ “ ´0.1q “ 0.4.

Note that all the assumptions of Theorem 3.3 are satisfied. In the Ap-
pendix we show the optimal strategies, the value functions and the difference
between the value functions.

Acknowledgements. The authors are very grateful to Professor
S. Peszat for encouragement, helpful comments and suggestions.
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5. Appendix

The optimal consumption a

State State x

y 0 1.1 1.2 1.3 1.8 2.3 2.8 3.3 3.8 4.8 5.8 6.8 9.3 11.8 14.3

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8

0.75 0 1 1 1 1 1 1 1 0.8 1 0.9 0.8 0.8 0.8 0.8

1.5 0 1 1 1 0.8 0.9 0.9 0.9 0.9 0.8 0.9 0.8 0.9 0.9 0.9

3 0 1 1 1 1 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9

4.5 0 1 1 1 1 0.8 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

The optimal investment b

State State x

y 0 1.1 1.2 1.3 1.8 2.3 2.8 3.3 3.8 4.8 5.8 6.8 9.3 11.8 14.3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.5 0 0 0 0 0.2 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0

3 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

4.5 0 0 0 0 0 0.2 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

The optimal consumption a

State State x

y 0 1.1 1.2 1.3 1.8 2.3 2.8 3.3 3.8 4.8 5.8 6.8 9.3 11.8 14.3

0 0 1 1 1 1 1 1 1 1 1 1 1 0.8 0.8 0.9

0.75 0 1 1 1 0.3 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9

1.5 0 1 1 1 0.8 0.9 0.9 0.9 0.9 1 1 0.9 0.9 0.9 0.9

3 0 1 1 1 1 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

4.5 0 1 1 1 1 1 1 0.9 1 1 1 1 0.9 0.9 0.9

The optimal investment b

State State x

y 0 1.1 1.2 1.3 1.8 2.3 2.8 3.3 3.8 4.8 5.8 6.8 9.3 11.8 14.3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.75 0 0 0 0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1 0 0

1.5 0 0 0 0 0.2 0.1 0.1 0.1 0.1 0 0 0.1 0.1 0.1 0

3 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

4.5 0 0 0 0 0 0 0 0.1 0 0 0 0 0.1 0.1 0.1
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