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OPTIMAL DIVIDEND POLICY IN DISCRETE TIME

Abstract. A problem of optimal dividend policy for a firm with a bank loan is
considered. A regularity of a value function is established. A numerical example of
calculating value function is given.

1. Introduction

A firm which net income is uncertain must choose between paying divi-
dends and creating cash reserves in order to maximize the expected present
value of all payoffs until bankruptcy time. In influential papers [DV] and
[JS] some continuous time problems were formulated and studied. In [DV],
Décamps and Villeneuve considered a firm with a growth option, which gives
the opportunity to invest in a new technology in order to increase its profit
rate. They showed when it is optimal to postpone dividend payoffs, to accu-
mulate cash and to invest at a certain date.

This work deals with the optimal dividend and growth option problem,
where expenses are covered by a loan. We are concerned with a discrete time
model.

2. Formulation of the problem

Consider a firm whose activities generate at moment n an income Y,, and
a cash process X,,. Moreover, the firm took out a loan that have to be paid
in constant rates C' at each moment n. That may cause bankruptcy if the
cash process is too low. The manager of the firm acts in the best interest of
shareholders and at any moment n may decide to pay out dividends. The
aim of this paper is to maximize the expected discounted satisfaction of
payoffs paid out till bankruptcy time.

The mathematical formulation of this problem is as follows. Assume we
have a probability space (2, F,P) and a sequence &1, &, ... of independent
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identically distributed random variables such that
P >—-1)=1 and E|§|P <o, for some p > 1.
Let » > 0 be a risk free rate of return. Define
Fw,,b,€) =y (1+€) h (b,2),
G(z,y,a,b) := (z—C)(1+r)(1—a—0>)+y,

where function h is positive, increasing and bounded from above by a con-
stant M > 0. Starting with initial values (Xo,Yy) = (x,y), we have the
following recursive formula

Yn+1 = F(Xn,Ynybn>§n+1)a
Xn+1 = G(Xn7Yn+17ambn)7

where a,, and b,, represent respectively dividend paid out and investment at

time n. A control policy m = (af;, b};),,cn is said to be admissible if and only

if (a7, bl") is adapted to the filtration generated by the process (X,,Y,,) and

n»-n

(a,b7) € U, for all n € N, where
U={(a,b):a>0,b>0and a+b<1}.
Define the bankruptcy time 7y by
70 :=inf{n >0: X,, —C <0}

and performance functional
0
T (w,5) = B 3 979 (@ (X0 = O) Ty |
n=0

where v € (0,1) is a given discount factor and ¢ is a utility function from
the class

K= {f:R—>[0,oo):f(x)zOforalla;SO,

f is continuous and | f|, := sup f (@)l < oo}.
zeR 1 ‘.%"

The objective is to calculate the value function vy, and an optimal divi-

dend policy 7% = (a;°,b}),,cn- that is vy and 7% such that

Voo (:Cay) ‘= sup J" (:E?y) = JWOO (‘T7y)a

where supremum is taken over all admissible strategies. Notice that since
the time of bankruptcy is included in the function J™, we need to extend a
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state space putting E := {0} u E; u Ey, where
Ey = {(z,y) € [0,0)*: . — C < 0},
By :={(z,y) € [0,0)?: 2 — C > 0},
5 € R?\[0,0)2.
We equipped E with a natural topology and assume that if (X,,Y,) €

{6} U E1, then (Xp41,Yn+1) = 9. Further, for the admissible strategy
m = (a,b]) ,en» We have that (a7, b]) € A(X,,,Y,), for each n € N, where

n»-n

A(z,y) ={(a,b) : a>0,b>0and a + b < 1}, for (z,y) € Es,
A(z,y) ={(0,0)}, for (x,y) € E1 U {d}.

Finally, we will denote by (X7,Y,T), .y the process corresponding to the

ni» n

strategy ™ = (aj;, b7),. .- Note that

n»-n

T (a,) = B[ Y 37 (aF (X - €],
n=0

3. Solution by the Bellman Dynamic Programming

For the convenience of the reader, we recall the definitions of upper semi-
continuous functions and set-valued mappings. Below (S,7) and (R, p) are
topological spaces and 2% denotes the set of all subsets of R.

DEFINITION 3.1. A function ¢: S — R is called upper semi-continuous
(u.s.c.) if for each open set B < R, the set {s € S: ¢ (s) € B} is open.

DEFINITION 3.2. A set-valued mapping v: S — 2% is called upper semi-
continuous (u.s.c.) if for each open set F' < R, the set {se€ S: ¢ (s) c F}
is open.

Let A be a positive constant. We will consider the following set of func-
tions

W = {f: E — [0,00): fisus.c. on FE, HfHW = sup M < o0,

(z,y)eE W ($, y)
f(z,y) =0 for each (z,y) € Ey u {d} },

with the weight function

1+ x+ Ay, if (x,y) € B\ {0},
w(x,y)—{l’ it (z,y)=04.

Obviously (W, ||-|yy,) is a complete metric space. Define an operator T, on
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W by the formula

Lf@y = sw {glale—C)+P"f(@p)},
(a,b)eA(zy)

where
Pubf(z,y) = BE(f(Xnt1, Yns1)| Xn = 2, Yy =y, = a,b, = b).
THEOREM 3.3. Let
a:=max{l+r M1 +E&)}.

Suppose that g € K and ya < 1. Then there exists A > 0 such that the value
function v* belongs to W and is the unique solution to the equation

T’Yv(x’y)zv<x7y)a veWw.

Moreover, there are measurable functions a*: E — [0,1] and b*: E — [0, 1],
such that for all (z,y) € E, (a* (x,y),b* (z,y)) € A(z,y) and

T,0* (,y) = g (a* (2,y) (x — C)) + yPTEDTED® (2 y),

and the optimal strategy ™ = (a};,b%), oy @5 of the form

n’»-n
(a*,b%) = (a* (X;;*, Ynﬂ*) b (Xg*,yg*)) , neN.

To prove Theorem|[3.3] we need the following general result on measurable
selectors (for proofs see [SI] and [S2]).

THEOREM 3.4. Let X be a metric space, U be a separable metric space,
and let U: X — 2Y be a u.s.c. set-valued measurable mapping, such that for
each x € X, U (x) is nonempty and compact in U. Assume that

U= {(z,u):z€ X andue U (x)}

18 measurable with respect to the product topology on X x U and that
P: U — R is measurable, u.s.c. and bounded from above. Then there ex-
ists a measurable function f: X — U such that for all x € X,

f()eU(z) and ¢*(z):= sup ¢ (z,u) =1 (z, [ ().

uelU(x)
Furthermore, ¥* is measurable, u.s.c. and bounded from above on X.

Proof of Theorem Let us first prove that the operator T, transforms
W into W. To this end, notice that for any function f € W, we have

(1) f ($,y) < HfHWw (may)v for all (a:,y) €L

Consider two cases:
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1. If (z,y) € {6} U E} then A(z,y) = {(0,0)} and

(2) Ty f (z,y) = g (0) +7Ef (6) =0,
sup |T’}’f (‘T?y)|
(z,y)e{d}uE W (x,y)
2. If (z,y) € Ey then

=0.

(3) Tf@y) = s {glal@—0)+yPf ()]
(a,b)eA(z,y)
< s {glale—0))
(a,b)eA(z,y)

+y Il A+ @ +7) +y (1 +A)M(1+EG)))
Since g € I, we have

(4) gla(z—0C)) <|g|lxc(1+z), forall0<a<1andaz>0.
By and ,
M (1 +E&
1,5 ) < w o) (ol + (a+ LEED) 1, ).
Therefore, in particular we have

sup
(z,y)eE2 w(m,y)
In conclusion
‘T’Yf («T,y)|
) T flyy = sup ——————
( ) H 0 HW (r.y)eF w(:c,y)

Furthermore, from (2) we have T f (,y) = 0, for all (z,y) € {6} U E\.
Our next claim is that T, f is u.s.c. for any f € W. Fix an arbitrary
f €W and define

¢ (z,y) :=Tof (x,9) = | flyyw(zy) = sup ¢ (z,9,0,b),
(a,b)eA(z,y)

< oo, forall feW.

where

¥ (2,y,a,b) := g (a(x—C)) +yP’f (z,y) — | T flyw (2, y).
Notice that by , the function v is non positive. To use Theorem (3.4} we
need ¢ to be ws.c. on ¥ := {(z,y,a,b): (z,y) € E, (a,b) € A(z,y)}. As g
and w are continuous, it is sufficient to prove that P**f (x,y) is u.s.c.. Con-
sider an arbitrary sequence (Zn,Yn, an,bpn),,~; © ¥ such that (2, yn, an, bn)
— (z,y,a,b). Applying (), we obtain a

lgnl” == |f (@ns1:Yns )P <1+ &7, P—as.,
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for some ¢ > 0. Hence, as E |£1]P < o0, the sequence {¢n},>, is uniformly
integrable and by the Fatou lemma, for all (2, yn, an,by) — (z,y,a,b), we
have

limsup Pan’bnf (J:nyyn) < Pa’bf (xvy)

n—0o0

Therefore, P**f (x,7) is u.s.c. on .

Applying Theorem [3.4, we conclude that ¢ is w.s.c. and there exists a
measurable selector (@, b) such that

¢ (0,9) =¥ (w,9.0(2,9).b(0,y)), forall (v,y) e E.

Hence, since w is continuous on E, the function T, f is u.s.c. on E and

T, f (z,y) = g (a(z,y) (x — C)) + Y P £ (3 4)).

Finally, T’ f € W for all f e W.

To show that T’, is a contraction on W, consider two arbitrary functions
f17 f2 € W. Then

T f1(2,y) — Tofo ()| <y sup PP [(f1 — f2) (z,9)]].
(@b)eA(z.y)

Using we obtain

T, f1 (2 y) = Tofo (@, 9) <711 = felyy  sup P*Pw(a,y).
(a,b)eA(z,y)

We need to consider 3 cases:
1. If (z,y) = 6 then since A (x,%) = {(0,0)} and P%%w (§) = 1, we have

T5f1(6) = T f2 (9)]
w (9)

< 'Y”fl _fZHW‘

2. If (z,y) = Fy then A(x,y) = {(0,0)} and P*%w (z,y) = w(§) = 1.
Moreover, since w > 1, for all (z,y) = E;, we have

Ty f1 (2, y) — Ty fa (2, )] <7 If1 = faly <
w (z,y) T w(ry) T

Y Ifr = falw -

3. If (z,y) € F3 then A(z,y) = {(a, b)e[0,1]* i a+b< 1} and

sup  P%w(z,y) <1+ (1 +r)z+y(1+A)M(1+EE).
(a,b)eA(z,y)
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Therefore,

|T"/fl (‘Tvy) - T’Yf? (337y)|
1+2+ Ay

1+1+nr)z+y(1+A)MA+ES)

<vIfi = faly sup

(x,y)eEg 1 +$+Ay
yM (1 +E&;)
<v|f1 = fellw <a+21§3)1+Ay>
<vfi = follw (04 + M(le&)>
M E
= (o ) 1y - o,

Summarizing, we have

HT’yfl - T’yf2HW < Hfl - f2||W7

M (1 +E&)
=lat+ ——772).
v (o M0
Since we assumed that ya < 1, therefore yn < 1 for A large enough.
This proves that T is a contraction on W. Thus by the Banach fixed
point theorem, T, has a unique fixed point v* in W. It remains to prove
that

where

Jim AVES* (X, V) =0,

for all (z,y) € F and all admissible strategies w. Notice that for any (x,y) €
Es and (a,b) € A(x,y),
6)  P%w(z,y) <1+ (1 +7r)z+y(l+ AM+EE) <nw(z,y).
For (z,y) € E1 v {¢}, A(x,y) = {(0,0)} and
(7) P*w (a,y) = w (8) =1 < nw (z,y).
Combining @ and , we obtain

Py (z,y) < qw (z,y), for all (z,y) € E, (a,b) € A(z,y).

Going recursively backwards, we get that for any initial state (x,y) € E and
admissible strategy m = (a, b]}),,cns

(8) EYw (X7, Y0) < 0w (x,y).

We proved that v* € W. Therefore, combining and gives

E*00* (X5, YR < Jolly BV w (X5, YR < ol n¥w (2,5).
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Hence, we have
lim YVE®Yo* (X5, YE) = 0,

N—o

and we can use the arguments from the proof of Theorem 8.3.6 in [HL]. m

4. Numerical example

By Theorem @, the value function can be obtained by iteration of 7.
In this section, we give a numerical example. Suppose that the state space
is of the form F = {0} U Es, where

0:=(0,0), Ey:=[C,L]x[0,S] and 0<C<L, 0<5S.

In order to make numerical approximations, we need to discretize the state
space. We shall consider a sequence (Ay,),,oy Of partitions of Eo defined as
follows

C=$1<$2<...<$l(m)=L,
0<y1<y2<"'<ys(m) :S’
with the convention

1A, = sup  (Tpg1 — k) + sup  (Yr+1 — Yk),
k=1,...,[(m)—1 k=1,....,s(m)—1

ml_lg_loo [ A = 0.
Therefore, we replace the original state space by the discrete one
Em) — {(0,0)} u {(:p,y): = {O,xl, .. 7a:l(m)} Y € {O,yl, . ,ys(m)}}.
Moreover, we assume that
A(z,y) = {(a,b) : a,b€ {0,0.1,...,1} and a + b < 1}, for (z,y) € Es,
A(z,y) = {(0,0)}, for (z,y) =24.
Then for all n € N, we have
V2 i= min {F (X,, Yy, by, €), S},
X,j;jrl = min {G (X, Yni1,0n,0,),L},
and the value function is of the form
o0
VED (zy) = sup Em’y[z g (a; (X# - C’))]
(a,b)eA(z,y) n—0
First, we estimate the value function V%) (z,y) from below. Define
0, if z<ux,
ﬂﬁ(az) =19 w, if =z <z<xi4, whereie{l,... [(m)—1},
L, if z>1L,
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0, if y<uw,
Oy (y) =1y, if 5 <y<yje1, whereje{l,... s(m)—1},
S, if y>85,
and consider a new control problem. Namely, for all n € N, we have
Yoin = Fp (X, Yo, b, €) o= F (I (X,) 10, (V) b, €),
Xpir = Gy (X Y1,y bn) 1= G (I, (X)), Y1, s b,
with an initial condition

(X0, Yo) := (IL;, (Xo) 1L, (Y0))

and the value function
0

K%’S) (x,y):= sup Ex’y[Z 7" g (ay (X, — C)>]
(a,b)eA(z,y) n=0

To estimate the value function V&%) (z,y) from above, we need to consider

one more problem. Define

0, if =<,
=X Zy, if z= Z1,
Titl, if Z; <x§mi+1, whereze{l,...,l(m)—l},
L, if z>1,
07 if Yy <y,
=Y Y1, if y=u,
Hm(y) = . .
Yji+1, if Y <y§yj+17 whereye{l,...,s(m)—l},

S, if y>S8S.
For all n € N, we have

Vit i= Fou (X0, Vb €) 1= F (T, (X)L (V) b0 €),

J— J— — J— 7X — J—
Xnt1:=Gn (Xna Ynt1,an, bn) =G (Hm (Xn) y Ynt1, Gn, bn)a
with an initial condition

(%0, Y5) := (I, (X0) T, (¥0)).

The value function of this problem is

a0
7(L.5) ~
Vo, (x,y):= sup E*Y Y'g (al (Xn—C))]|.

(a,b)eA(z,y) [nz_:o ( ( ))]
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Notice that, for all (x,y,a,b,§)

Em < Em+1 SF< Ferl < Fm,
and

Qm < Qm-i—l < G < ém+1 < ém.
Hence
©) VED <V <vED <7D <7EY,

From @), the limits lim,, ¢ Kgf’L) and lim,, e Vﬁf’L

raises some natural question. Namely

)

exist. This result

QUESTION 1. If

lim VD (z,4) = VD (2,9) = lim Vg’L)(x,y), for all (z,y) € E?
m—00 m—0o0

Now we present numerical solutions for parameters
r=0.03 C=1, v=0.35 and M =2.
Suppose S = 4.5, L = 14.3 and the partition of Es is of the form

C=1<11<12<13<18<23<28<3.3
<38<48<58<68<93<11.8<143=1L,
0<075<15<3<45=S8.

Let
1

h(b,x) =2— ma

and the random variable
¢ = 0.1, where P (£ =0.1) = 0.6,
—0.1, where P(¢&=-0.1)=0.4.

Note that all the assumptions of Theorem are satisfied. In the Ap-
pendix we show the optimal strategies, the value functions and the difference
between the value functions.

Acknowledgements. The authors are very grateful to Professor
S. Peszat for encouragement, helpful comments and suggestions.
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5. Appendix
The optimal consumption a
State State x
vy JoJri]i2]1s]1s]23]28]33]38][a8]s8]6s8]03]118]143
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8
0.75 0 1 1 1 1 1 1 1 0.8 1 0.9 | 0.8 ]| 0.8 0.8 0.8
1.5 0 1 1 1 081090910909 ]08|09]08]0.9 0.9 0.9
3 0 1 1 1 1 0910910910909 ]08]|09]0.9 0.9 0.9
4.5 0 1 1 1 1 0.8 1 09109(109]09|09]09 0.9 0.9
The optimal investment b
State State x
y 0 ‘ 1.1 ‘ 1.2 ‘ 1.3 ‘ 1.8 ‘ 2.3 ‘ 2.8 ‘ 3.3 ‘ 3.8 ‘ 4.8 ‘ 5.8 ‘ 6.8 ‘ 9.3 ‘ 11.8 ‘ 14.3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0201]01(01]01]0.1 0 0.1 | 0.1 0.1 0
3 0 0 0 0 0 0.1,01]01}01]01]02]|01]0.1 0.1 0.1
4.5 0 0 0 0 0 0.2 0 0.1{01(01]01}0.1]0.1 0.1 0.1
The optimal consumption @
State State x
vy o \ 1.1 \ 1.2 \ 1.3 \ 18 \ 2.3 \ 2.8 \ 3.3 \ 3.8 \ 4.8 \ 5.8 \ 6.8 \ 9.3 \ 1.8 \ 14.3
0 0 1 1 1 1 1 1 1 1 1 1 1 0.8 0.8 0.9
0.75 0 1 1 1 03|1061|07|07)07]08]|08]08]0.8 0.9 0.9
1.5 0 1 1 1 0.8109]091]09]|09 1 1 0.9 | 0.9 0.9 0.9
3 0 1 1 1 1 1 0910909 (09]09]09]|0.9 0.9 0.9
4.5 0 1 1 1 1 1 1 0.9 1 1 1 1 0.9 0.9 0.9
The optimal investment b
State State x
y 0 ‘ 1.1 ‘ 1.2 ‘ 1.3 ‘ 1.8 ‘ 2.3 ‘ 2.8 ‘ 3.3 ‘ 3.8 ‘ 4.8 ‘ 5.8 ‘ 6.8 ‘ 9.3 ‘ 11.8 ‘ 14.3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.75 0 0 0 0 02|01]01(01]01]0.1]|0.1 0 0.1 0 0
1.5 0 0 0 0 02|01]01](01]0.1 0 0 0.1 | 0.1 0.1 0
3 0 0 0 0 0 0 0.1{01(01]01}]01]0.1]0.1 0.1 0.1
4.5 0 0 0 0 0 0 0 0.1 0 0 0 0 0.1 0.1 0.1
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